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ABSTRACT

Deformable models are a powerful tool in both computer graphics and computer vision. The description and
implementation of the deformations have to be simultaneously flexible and powerful, otherwise the technique
may not satisfy the requirements of all the distinct applications. In this paper, we introduce a new method for
the deformable model specification: deformable fields. Deformable fields are conceptually simple, lead to an
easy implementation, and are suitable for adaptive models. We apply our new technique to describe an adaptive
deformable face, and compare three different adaptation strategies. We show how our technique is suitable to
describe different individuals, how to construct a model based on information from a single image, and how it
allows the tracking of the deformation parameters over a video sequence.
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1. Introduction

Deformable models are at the heart of many applications in
both computer graphics and computer vision. These models
can represent rigid parts, such as in CAD applications; ar-
ticulated rigid bodies, such as in robots; or soft deformable
surfaces, such as the human face. It is not an easy task to rep-
resent and manipulate all these different objects in a unified
way.

In computer graphics, the models usually need more than
justrigid transformations to convey realism, whereas in com-
puter vision, model-based techniques use this same model to
reduce the search space of inverse problems, such as track-
ing or fitting. A good model for the deformations will allow
better results and more robust implementations.

tBased on “Adaptive Deformable Models”, by S. Goldenstein,
C. Vogler and L. Velho, which appeared in Proceedings of SIB-
GRAPI/SIACG 2004 (ISBN 0-77=695-2227-0). © 2004 IEEE.
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In computer vision, deformable models reduce the dimen-
sionality of an inverse problem, allowing us to look for so-
lutions only spanned by the deformation parameters. Classic
applications are shape fitting and tracking the dynamics of
the model’s parameters.

Concrete 3D models are usually represented by a finite
number of vertices, whose connectivity is organized in a
mesh, that is, a discretization of the surface. This discretiza-
tion is critical to the application: too few vertices and the
model approximation will be poor, with disastrous effects.
As we show later in the paper, in Section 8, the level of detail
has a large impact on the accuracy of tracking. In contrast,
too many vertices make it computationally too expensive to
perform all calculations since many algorithms have higher
than linear complexity. In any case, the designer needs a good
understanding of the problem beforehand, so as to choose the
right model resolution, or we need a computer algorithm to
automate the task.

In this paper, we address the question of adapting and de-
forming models simultaneously, and apply the results to both
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computer graphics and computer vision tracking. First, we
introduce the concept of deformable fields (Section 3). De-
formable fields are a new method to describe deformations
that are resolution independent. They are conceptually sim-
ple, lead to an easy implementation, and are suitable for adap-
tive models.

Then, we describe how a powerful adaptive mesh library
can be plugged into the deformation description system
(Section 4), and compare different mesh-refining criteria to
achieve levels of detail best suited to the application at hand
(Section 5).

In Section 6, we show how to describe a principal compo-
nent decomposition of a face database as deformation maps.
With that in hand, it is only natural to use PCA (Principal
Component Analysis) techniques [3] to find three-
dimensional models from model-image correspondences.

We present local deformations and animation of human
faces as a more elaborate example of deformation fields (Sec-
tion 7). We derive a simple set of deformations and show that
they are indeed face independent, appropriate for immediate
use after the fitting stage.

Finally, in Section 8, we use the deformable model to re-
cover the rigid and non-rigid motion of a face from uncali-
brated monocular images and without the aid of visual mark-
ers. For that to happen, we first have to fit it to represent the
particular subject in a video sequence, and we also need to
design the deformations that describe all the motion we want
to capture. We perform a quantitative validation of the pro-
cedure’s accuracy with different types of model adaptation,
and investigate how the level of detail affects accuracy and
runtime.

2. Related Work

In order for a computer graphics or computer vision appli-
cation employ deformable models, it needs some type of ge-
ometry and deformation representation [1,3,14,19,30,34].

There exist a significant number of problem domains in
which dynamic meshes are required. Consequently, the liter-
ature in this area is vast. Here, we will mention only a few
illustrative examples. Bowden and colleagues [2] employ an
inflating balloon model to reconstruct a surface from volu-
metric data. The dynamic mesh is based on refinement by
edge bisection. Kobbelt and colleagues [18] propose a mul-
tiresolution shape representation based on geometry smooth-
ing and dynamic meshes. The adaptation uses edge collapses,
edge splits and edge flips.

Existing schemes for dynamic meshes are usually based
on operations defined on edges because of their good adap-
tation properties. Multiresolution representations can be de-
fined through global or local operations on a mesh [9]. In
order to support adaptation, the multiresolution data struc-

ture has to be constructed using local operations. Progressive
meshes [16] constitute one example of such data structure.
Another example is the hierarchical 4K meshes [32]. In this
kind of representation, different meshes can dynamically be
extracted from the data structure. However, the local opera-
tions need to be explicitly stored.

For good fitting, stereo can be combined with shading [28],
and anthropometric databases can be used to generate bio-
metrically accurate models [6]. PCA decompositions are an
extremely powerful way to fit, track and even recognize ob-
jects [5,22,3,24,26] at the cost of building a large database of
examples beforehand. Additionally, a powerful deformable
volumetric model has been used for fast face tracking [30]
and subtle motion [35] capture.

Predictive filters [11], such as the Kalman filter [4,21] and
particle filters [12,17,27], are usually used to complement
and/or smooth out the observations made.

3. Deformations

Rigid models have their fair share of applications, butin many
applications, such as animation and model-based tracking,
we need models whose shape and attribute can change over
time. Usually, these changes are controlled by a set of param-
eters, such that the entire model can fully be described by an
instance of this, potentially large, parameter space.

As laser scanners become more affordable, it becomes in-
creasingly easier to obtain detailed 3D rigid models of the
surfaces of interest. Yet, the basic problem remains the same:
how can we deform this surface according to our needs, such
that it will work across different instances of this same object
with minimal user interaction?

First, we need to fit the result of the scan to a “normalized”
mesh, so as to have a basis from which to work. We apply a
PCA-based method [3] to accomplish this fit. The result is a
normalized 2D space representing the model’s surface, called
the u, v space, which describes the geometric features of the
face (such as the corners of the eyes) as a function of u, v.

We now describe a novel method to describe deforma-
tions. It is a cascaded composition of deformation fields ap-
plied over the u, v space. Because this space is normalized,
this method results in resolution and person-independent
deformations.

3.1. Computation of model coordinates

In order to visualize, track, or process a model, we need to
calculate the three-dimensional coordinates of each point p;,
given the value of the deformation parameter vector g. For
every point p;, in u;, v; there is a function F; = F, ,, such
that

pi=F = F(q,ui,v) = F ,,(@). ey
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Conceptually, we represent the F; as a cascade of basic math-
ematical operations, such as adding a vector to a point, scaled
by a parameter [13]. Although simple, this representation is
powerful enough to describe any number of complex defor-
mations, and also connects well with the concept of defor-
mation fields, which we describe in the following.

3.2. Deformation fields

Deformation fields are a resolution-independent way to de-
scribe deformations over the whole model. Such a field de-
scribes how deformations behave with respect to the contin-
uous domain u, v of the model surface. This field can then be
sampled at discrete u, v points, one per model point, to obtain
the F, ,; that is, the cascade of basic mathematical operations
for the computation of the point’s 3D coordinates.

There are three elements needed to define a deformation
field: the type of deformation itself, a set of vector fields,
and a set of parameters. Additionally, a deformation field
might operate over the results of other deformations fields,
allowing the compositions of results, which corresponds to
the aforementioned cascade of mathematical operations for
a model point.

A vector field V/ is a function V¥ : R? — R?, defined over
the u, v domain. It is used any time when a deformation field
requires an u, v-dependent vector to represent its mathemat-
ical operation.

3.3. Two examples of deformation fields

Example 1. A geometry image [10] is a rigid model, which
can be treated as a special case of a deformation field. We
interpret the geometry image as a discretized description of
a vector field. The constant deformation field takes only one
vector field as a parameter, where its value at u, v provides
us with the 3D position of the corresponding model point.

Puy = VEOME(y v), 2)

where Veeoimage jg the continuous vector field, obtained from
the discretized geometry image through interpolation.

Example 2. A description of a PCA face [3] is also easily
accomplished through a cascade of deformation fields. We
describe the mean positions with a constant deformation field

pL (@) = V™ (u, v), 3)

where V™" behaves as in the previous example. For every
principal component k, we can define a vector field V7%,
We create a cascade of AddVector deformation fields, where
deformation field k will take into account all PCA components
<k. The kth deformation field takes the k — 1th deformation
field and adds a parameter times a vector field. We describe

this cascade as

Peo@) = Pi @) + qi - VP, v), @

where g, is the parameter responsible for the kth PCA
component.

3.4. Deformable faces with deformation fields

A very simple deformable face, yet powerful and useful for
tracking, can be defined as a cascade of a few carefully de-
signed affine transformations; that is, Add Vector deformation
fields (Equation 4).

We start with a representation of the face at rest, which
is in no way an easy task, and a fertile area of study in
its own right [23,6,3]. First, we define the eyebrow defor-
mations using a vector field, which is zero-valued outside
the influence area of the eyebrows. The vectors are assigned
monotonically decreasing magnitudes from a maximum at
the eyebrows themselves, to zero at the border (Figure 1, top
center). This deformation can be broken into two separate
ones, if we require asymmetric eyebrow movements in the
face. This deformation simulates the effect of the frontalis
face muscle.

Simple lip movements can be modeled by the use of two
different muscles — the zygomatic major, which pulls the
lips and cheeks in the direction of the temples, and the riso-
rius, which pulls lips and cheeks in the direction of the ears.
Again, each deformation can be split into two for asymmetric
movements (Figure 1, top right and bottom left).

Finally, jaw openings can be modeled by a constant open-
ing area (chin), superior and inferior lips (that creates the
elliptic opening of the mouth) and decreasing values up to
the border (Figure 1, bottom center).

The cascading of these simple affine transformations, al-
though with fairly complex vector fields, provides us with a
deformable face model that is sufficiently powerful even for
computer vision tracking from a single uncalibrated camera
[14,15]. Our technique and framework allow us to use repre-
sentations constructed from captured data [1], to design de-
formations by hand [14], and even to use hybrid approaches.

We should point out that for an arbitrary cascade of de-
formation fields, there are values of the parameter vec-
tor that lead to invalid models. Indeed, the valid subset of
parameter vector values creates models that have no self-
intersection. This property is strongly tied to the behavior of
Jacobians and u, v gradients of the underlying deformation
fields.

4. Adaptive Mesh

Recall that the deformable model is a discretization of the tar-
get surface. One of the most common discretization methods
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Figure 1: Cascade of deformable fields that generate a simple face.

is through a polygonal mesh that decomposes the base do-
main and gives a piecewise linear approximation of various
properties defined over the domain — including the geometry
in the case of a parametric surface.

In applications that employ deformable models it is desir-
able to have all the computations structured independently of
a particular surface discretization. We have achieved one half
of this requirement through the use of deformation fields over
the u, v domain described in the previous section. The other
half consists of developing methods to make the piecewise
linear approximation sufficiently accurate for the purposes of
the application.

For this reason, it is desirable to have amesh library that can
provide the application with a dynamic adaptive discretiza-
tion of the surface based on problem-dependent criteria. In
this way, it is possible to cleanly separate the application
specific computations from the representation.

In the following, we describe a dynamic adaptive mesh li-
brary based on stellar operators that addresses most of the re-
quirements of applications dealing with deformable models.
This library encapsulates all the functionality for supporting
the mesh representation. The implementation is robust, com-
putationally efficient and economical in terms of memory
usage. The library API is easy to use and provides the right
level of abstraction for the application.

This library has the following features:

® The mesh is based on the half-edge, a standard topo-
logical data structure. Because the half-edge is widely
adopted, there are many applications that can benefit from
this library.

® The mesh has an underlying semi-regular multiresolution
structure. As a result, no additional storage beside the
current state of the mesh is required in the representation.

® The mesh dynamically changes its resolution based on
general adaptation criteria specified by the application.
This is implemented through refinement and simplifica-
tion methods that maintain a restricted multiresolution.

® The library API includes operators for mesh cre-
ation, dynamic mesh adaptation and topological query
operators.

The library is based on results from stellar subdivision the-
ory and the notion of binary multitriangulation. We now give
an overview of these concepts and describe the implementa-
tion of the library.

4.1. Splitting and welding

The key to an adaptive mesh representation is an underlying
multiresolution structure. A multiresolution mesh, H = (M,
M,,...,M,;),is amonotonic sequence of triangulations of a
domain U, such that, |M;| < |M;|, for i < j, where |M] is the
number of triangles of a mesh M.

© The Eurographics Association and Blackwell Publishing Ltd 2005
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In general, the meshes M; € H are related by operators
that perform refinement or simplification to change the mesh
resolution. It is desirable that these operators affect the mesh
only locally. This property makes it possible to create many
multiresolution sequences by piecing together independent
local modifications.

Stellar subdivision theory provides suitable local operators
to modify the resolution of a mesh. The stellar subdivision
operators for two-dimensional triangle meshes are the face
split and its inverse, the face weld; and the edge split and its
inverse, the edge weld (Figure 2).

The main theorem of stellar theory asserts that these opera-
tors can transform between any two equivalent triangulations
[20]. Moreover, stellar subdivision operators define the most
localized atomic changes to a triangulation. We use stellar
subdivision operators on edges as the building blocks for
multiresolution meshes.

4.2. Semi-regular BMTs

The adaptive mesh maintains the multiresolution structure
of a semi-regular binary multitriangulation. A binary mul-
titriangulation (BMT) is a multiresolution structure formed
by applying edge splits to an initial mesh, M, called the base
mesh, and producing a final mesh, M, called the full mesh. The
BMT can be thought of as a directed acyclic graph (DAG)
describing all possible paths of local changes to the mesh
[32,7]. In this DAG, arrows are labeled with stellar subdivi-
sions on edges, and the vertices represent sub-meshes. Any
cut in the DAG that separates M from M represents a valid
mesh, called the current mesh.

A regular binary multitriangulation (RBMT) is a binary
multitriangulation that satisfies the following conditions:

1. The base triangulation is the union of basic blocks.

2. Edge splits are only applied to interior edges of basic
blocks.

A basic block is a pair of triangles with a common edge,
called the internal edge of the block. The other edges are
called external edges. In an RBMT, when the internal edge
of a basic block is subdivided, new blocks are formed with
the adjacent triangles and some additional edges may need to
be subdivided. In that way, external edges of previous blocks
become internal edges of new blocks. This process is called
interleaved refinement and produces a restricted quad-tree
[31] in which adjacent triangles differ at most by one resolu-
tion level.

The regularity of the RBMT allows us to store only the
current mesh, yet allows us to refine or simplify the mesh
according to the multiresolution structure.

Splitting

7N
N

Welding

Figure 2: Splitting and welding operations.

5. Adaptive Refinement and Simplification

The mesh adaptation is implemented in the library by enforc-
ing a RBMT structure using operators for restricted refine-
ment and simplification.

The library assumes that shape information is known to the
application independently of the mesh. More specifically, the
following requirements need to be satisfied:

® There is a base domain in which the surface geometry
and other properties are defined;

® It is possible to take and compute samples of points on
the surface.

The application provides four functions to the library
through a surface object: a procedure to construct a poly-
hedron that defines the geometry and topology of the base
domain; a sampling function to evaluate the geometry of the
surface at a vertex of the mesh; and refinement and sim-
plification tests to determine where the mesh needs further
subdivision or coarsening.

The library API for mesh construction and adaptation is
composed of a mesh constructor, that takes as a parameter of
the surface object, and methods for adaptive refinement and
simplification of the mesh. These methods use the adaptation
test functions and the sampling function of the surface.

The functionality of the mesh library is sufficient to create
adaptive meshes of dynamic surfaces for our application of
deformable models. In this context, some important specific
aspects are:

® The base mesh incorporates all the important features of
the surface;

® The surface is defined by a parametric function;

® The criteria for mesh adaptation are derived from the de-
formations driven by tracking, discussed in the following
sections.

5.1. Obtaining the base resolution

One of the secrets for this method to work well is a properly
built base resolution mesh. Ideally, the coarsest model should
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already have the appropriate topological structure for the
adaptive mesh. Additionally, the model triangles should have
approximately the same surface area, for a visually pleasant
refining process.

We satisfy the first requirement by enforcing compliance
of the base mesh with the topological requirements of the
adaptation scheme. The mesh library provides functionality
to bring the base mesh into the required form through a one-
time application of carefully selected edge splits.

Initial similar-sized triangles, on the other hand, imply a
good balance between minimal detail selection, and the vari-
ance of the edge sizes. So far we have maintained this bal-
ance through manual selection of points in the u, v space,
and triangulation of this space with constraints (with the
help of triangle (http://www-2.cs.cmu.edu/~quake/
triangle.html) to find the base connectivity. We then use
the deformation fields themselves to generate the appropriate
base geometry.

In Figure 3(a) we show a hand-crafted base model con-
structed from coordinates in u, v, and in Figure 3(b) we show
the model after making it compliant with the RBMT struc-
tural requirements.

5.2. Adapting the mesh to the model

Once we have the base model at the coarsest possible reso-
lution, we have to decide by how much to refine the mesh
to obtain a good-looking model. The optimal level of detail
depends on both the facial characteristics of the person, to
whom the mesh is being adapted, and which area of the face
we are looking at. An additional concern is the complexity
of the refined model — as the number of triangles increases,
so does memory consumption, and computational overhead
for the animation of the model. In the following, we compare
three different refinement strategies.

5.2.1. Unconditional refinement

This strategy is the simplest one possible: repeatedly refine
a model a fixed number of times (three times in the exam-
ples presented in this paper). The advantages are that this
refinement method is very fast, because there are no time-
consuming tests, and that it is guaranteed to yield a good-
looking model with a high level of detail. Offsetting the ad-
vantages, however, is the indiscriminately high number of
vertices and triangles in the resulting model, with all the com-
plexity disadvantages mentioned earlier.

5.2.2. Normals-based refinement

The idea behind this strategy is to obtain a smooth model
by breaking up sharp ridges and valleys, and jagged angles
at the model edges. Ridges and valleys are defined by the

angle between the triangle normals of any two triangles that
share a common edge. If it falls above a threshold, we refine
the edge. Similarly, jagged angles at the model edges occur
when the triangle orientations at the endpoints differ greatly
from one another. To compute the difference, we average the
triangle normals of the triangles surrounding each respective
endpoint. If the angle between the averages falls above a
threshold, we refine the edge in question.

This method is computationally inexpensive, and results
in reasonable approximations of the model surface contour.
The number of vertices and triangles in the resulting model is
much lower than with the unconditional refinement strategy.
On the other hand, if there are indeed sharp ridges in the con-
tour, such as around the eyes and the lips, this method keeps
refining unnecessarily without a corresponding increase in
the appearance of the model.

5.2.3. Surface contour error-based refinement

This strategy directly computes the quality of the polygonal
approximation to the true contour of the model. We define
the error of a polygon Poly at a point (u, v) to be

SPoly(Ms 'U) = |pu.v - PPD]}'(M7 U)lv (5)

where p,, , is the 3D position of the contour and Pp,y (u, v)
is the 3D position of the polygon at coordinates (u, v).

Then the total error in the approximation of the surface
contour with the polygon is

Epaty = / & oy (0, v) dut v, ©)
Poly )

The average error is obtained by dividing & p,, by the area
of the polygon. If it falls above a threshold, we refine this
polygon. In addition, we compute the maximum error

rr;g)x{wozy(u, v)}, @)

which helps capturing peaks and troughs in the model surface
contour, and lets us refine accordingly.

This method yields a visually pleasing refinement of the
model with far fewer vertices and triangles than with either
of the two other methods (Figure 3(e)), at a higher com-
putational cost. Evaluating this criterion requires a discrete
approximation of the integral in Equation (6), via sampling
the polygon. For the models shown in Figure 3, this process is
three times slower than normals-based and unconditional re-
finement. Therefore, this criterion is best suitable for applica-
tions where we change the model parameters frequently, and
refine the model only infrequently. Additionally, this method
requires us to measure, even if only approximately, the true
contour of the model. Such a contour can be provided by a
geometry image giving a discrete sampling of the underlying
u, v space.
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(a)

113 vertices
195 triangles

(b}

233 vertices
414 tnangles

e}

3416 vertices
6624 triangles

(d)

1917 vertices
3674 triangles

e}

1351 vertices
2567 tnangles

Figure 3: (a) Original mesh, (b) mesh in RBMT form, (c) unconditional refinement to constant depth, (d) normals-based
refinement and (e) surface contour error-based refinement. Left to right: Mesh in u—v space, polygonal mesh, face with texture

applied.

6. Deformations Fields for Face Fitting

A lot of research has gone into creating a three-dimensional
model from one or more images [3,8,24]. Among these tech-
niques, PCA-based decompositions of models have proven
effective and well behaved when single images are the
source of information. Of course, PCA can only be used
once enough data have been collected to find the principal
components.

In this paper, we cast a PCA decomposition of faces as a
series of deformation maps that affect a basic shape (Equa-
tion 4). The basic shape is the mean of the PCA decomposition,
and represents a neutral, genderless model.

For fitting, we manually create correspondences between
some points in the coarse discretization of the face and their
desired locations in the image. Then, we search for the values
of the parameters (Equation 4) that best align the model to the

© The Eurographics Association and Blackwell Publishing Ltd 2005
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Figure 4: Different faces under deformations.

Figure 5: Fitting of a subject, used in the facial expression tracking of a native American sign language signer telling a story.
Left to right: Initial shape for fitting process, an intermediate stage and the final refined shape using the contour criterion.

Figure 6: Fitting for the subject used in the quantitative validation of our tracking technique. Left to right: Initial shape for
fitting process, an intermediate stage and the final refined shape using the contour criterion.

image. Because there are rotations and projections involved,
this search is a nonlinear optimization. We look for ¢ that
minimizes

error =Y " |puy (q) — corr . ®)

where corr, , is the correspondence, the goal position, of
DPu.v- In Appendix A, we explain in more detail how to per-
form this optimization.

In our implementation, we used a semi-automated tool to
allow us to adjust initially guessed 2D positions based on the
coarse orientation/translation of the face. For fitting, between
80 and 160 correspondences usually yield a good result for a
100-dimension PCA space.

In Figures 6 and 5, we show the initial generic model
(the mean of the PCA decomposition), an intermediate state
during the optimization procedure, and the final fit after re-
finement using the contour-based criterion for two differ-
ent subjects. After establishing the desired model-image
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Figure 7: Three snapshots from the ASL storytelling sequence with partial occlusions. The sequence was signed by a native

signer and used a model based on the contour criterion.

correspondences, the optimization process takes under 5 s
to find the solution. To help the nonlinear optimization, we
manually give an initial approximate orientation and transla-
tion as a starting point.

7. Deformable Retargetable Faces

‘We have coupled the library described in Section 4 with an
implementation of the deformation fields in Section 3 and the
adaptation strategies in Section 5 to our deformable model
simulation and tracking system [14,15]. Figure 3 shows that
our description with deformation fields is resolution indepen-
dent. At this level of detail, animation of the facial parameters
can be done in real time on a Pentium 4 system running at
2.4 GHz. The refinement of the base mesh takes 0.7 s for the
unconditional and normals criteria, and 2.5 s for the contour-
based criterion.

Because the u, v space is normalized across different hu-
man faces (Section 3), in theory the deformation maps should
apply to any human face that can be represented in this nor-
malized space. To test this hypothesis, we applied the defor-
mations to a few of the subjects of the dataset PCA dataset of
[3], seven in total. An example selection of faces is shown
in Figure 4. This figure, as well as the supplemental movie,
show that our method indeed makes retargeting feasible with
minimal effort.

8. Deformable Model Tracking

The goal of deformable model tracking is to estimate the value
of the parameters that best describe the model for every frame
of a video sequence. Tracking is an inductive process, and
requires a good estimate of the model at the first frame. The
basic shape comes from the technique described in Section 6,
and the deformation parameters are also obtained in a similar
way. The tracking technique we use in this section has been
thoroughly explained in [14,15,33], and here we only validate
the use of our new model description methodology.

We use low-level computer vision techniques (such as a
point tracker, edge tracker and optical flow) to find image
correspondences between the current and the new images.
Since we know where each model point is in the current

image, we can establish model-image correspondences as
in Equation (8) [14]. Since displacements are usually small
across subsequent frames, the current value of the parame-
ters is a good initial estimate for the nonlinear optimization
(Appendix A).

Different low-level algorithms exploit distinct local char-
acteristics of the image. A point tracker is only effective over
areas rich in texture [29], while an edge tracker behaves
well around zeros of the second derivative [14]. Since we
ultimately look for model-image correspondences, we only
evaluate image points that are vertices of our model. This
means that the more points a model has, more candidates
for good correspondences it will have. Unfortunately, more
points also require more processing time and memory capac-
ity, and decrease the performance of tracking. Thus, there
is a compromise between performance and accuracy, and it
is necessary to look for the best possible refinement of the
model for tracking.

In the following, we discuss two experiments, which
tracked a realistic data sequence, and a validation sequence
for quantitative evaluation. The first experiment consisted
of tracking the face of a native American sign language
(ASL) storyteller during a narration. We obtained a video
sequence featuring Dr. Benjamin Bahan from the National
Center for Sign Language and Gesture Resources (data col-
lected from native signers at Boston University under the su-
pervision of Carol Neidle and Stan Sclaroff. Available online
at http://www.bu.edu/asllrp/ncslgr.html) captured
in full color at a resolution of 640 x 480 at 60 frames per
second. Tracking such videos is close to being as difficult as
face tracking can ever get, because of fast movements and fre-
quent occlusions of the face by the hands. Successful tracking
requires a detailed model, and thus provides an ideal test bed
for adaptive deformable models. Figure 7 shows some snap-
shots from tracking this sequence with the contour-refined
model from Figure 5.

The second experiment consisted of quantitative valida-
tion. We collected a special sequence of images, where using
makeup, we drew markers (black dots) on the face of the
subject before capture. Later, using a semi-automated pro-
cedure, we determined the 2D position of these markers on
every frame of the sequence. The sequence was a bit longer
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Figure 9: Accuracy comparison of tracking with different refinements against the ground truth.

than 30 s (3600 frames), and was captured at 60 Hz. In or-
der to make these experiments closer to what we can expect
from web cam images, we downsampled the image to a reso-
lution of 320 x 240, and used only one in every four frames
(effectively tracking at a frame rate of 15 Hz).

In the tracking validation, we disallowed the selection of
any points by the low-level vision algorithms that were too
close to the markers, so that the markers would not affect the
tracking process. We also specified the points on the model
that corresponded to each marker, and projected them into
image space at every frame, so as to estimate the 2D positions
of the markers. The distance between our estimate and the
real 2D position of the markers determined the error of the
tracking.

In Figure 8, we show three snapshots of tracking this se-
quence, and in Figure 9, we compare the accuracy of the
tracking process against ground truth. We show the error plot
across the sequence of the tracking using the base model,
using the normal-based refinement, using the contour-based
refinement and using the unconditional refinement.

The results in Figure 9 clearly show that the base mesh
has the worst behavior. This is explained by the small num-
ber of vertices of the model. Tracking with a mesh obtained
through the normal-based refinement yields a smaller error
than the base mesh, and tracking using a mesh obtained with
the contour-based refinement yields an even smaller error.

The contour-based refinement mesh is as good as the mesh
obtained with an unconditional refinement, showing that the
extra details are not necessary for good tracking.

Thus, intelligent refinement of the model improves the
accuracy of the tracking, while still saving a large amount
of computation time compared to unconditional refinement.
Generally, the fewer nodes, the faster is the tracking. On an
AMD Opteron 246 system normals-based refinement (1200
nodes, 2289 triangles) took 0.4—0.5 s per frame, and contour-
based refinement (1900 nodes, 3600 triangles) took 0.5—
0.6 seconds per frame. In contrast, unconditional refine-
ment (4400 nodes, 8400 triangles) took more than twice as
long.

9. Conclusions and Future Work

In this paper, we have described a unified approach for adap-
tive deformable models, with human faces as a case study.
This approach is based on representing the model geometry
in a normalized u, v space, and defining deformations via
deformation maps and vector fields operating on this space.
This method is sufficiently powerful to make the definition
of models and deformations both resolution independent and
retargetable.

The framework for mesh adaptation described in this paper
is easy to use. The logic for when to refine and simplify the
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mesh can be encapsulated in just two functions. We have
shown by way of three different refinement strategies that it
is easy to obtain just the right level of detail for the application.

The quality of the refined models is closely related to the
underlying structure of the coarsest level of the mesh. Con-
structing this base mesh is not a straightforward task. The
model has to be simple, while characterizing important land-
marks. In addition, all neighboring triangles should have sim-
ilar sizes. In this paper, we have built the base mesh manu-
ally, and an automated method for doing so remains an open
problem.

Applying these techniques to computer vision tracking al-
lows us to strike a good balance between tracking accuracy
and computational cost. Future work will consist of making
the face adaptive across frames during the tracking, so that at
all times the best image features can be chosen and closely
matched to model points. Doing so will require a working set
of view-based and texture-based adaptation criteria. We are
also investigating possible techniques to learn deformations
from real data in an automated manner.

Appendix A: Solving the Nonlinear Optimization

Deformable model tracking is the inverse of our computer
graphics application. Instead of manipulating the model ver-
tices via the parameters ¢, we would like to estimate ¢ such
that the model best fits the observations from the video im-
ages. Because the F; in Equation (1) are highly nonlinear, we
cannot solve for g directly. Instead, we find the solution iter-
atively through a gradient descent optimization procedure.

This optimization is based on estimating the 2D displace-
ments between selected points of the projection of the model
into the current image, and where these points should be.
These displacements f,-, also called image forces, can be es-
timated from frame to frame through 2D image processing
algorithms, such as point tracking edge tracking, and optical
flow, and are described in more detail in [ 14]. Note that for the
fitting problem described in Section 6, the image forces are
the individual displacements in Equation (8). The optimiza-
tion then consists of finding the g that minimizes ), || f, [].

The first step is to project all image forces into a single
contribution in parameter space, called the generalized force.

fe=Y_B'f, ©)
where
dProj
B =22 (10)
ap i

is the projection of the Jacobian matrix J; of a model ver-
tex p; into image space. This Jacobian matrix is defined as

follows:

> dpi 3pi 3pi b
Ji(CI)=£= 9 9 e |- (D

Using the generalized force f[:,, we solve the dynamical sys-
tem

G=Kj+f, 12)

(where K is a stiffness matrix, which can be zero) via small
Euler steps:

g ="G+8) B/, 1 (13)

where § is the Euler step size. Choosing § properly is highly
application dependent; in our case, we use a value of 1073,
Conceptually, Euler integration of this system is equivalent to
gradient descent. It typically converges within 600 iterations.

In its basic form, this system is vulnerable to outliers in the
image forces. We therefore insert an extra step before calcu-
lating the fl; in Equation (9), which gets rid of any outlying
f; This step, described in [33], projects the image forces in-
dividually into parameter space via calculating B, f,-, then
computes their mean and covariance via the robust minimum
covariance determinant statistical estimator [25], and rejects
all forces whose Mahalanobis distance to the robust mean
falls above a threshold.
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