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Abstract

This paper describes a method to obtain a closed surface that approximates a general
3D data point set with non-uniform density. Excluding the initial data points, any other
previous information is not used (as, for example, the topological relations amongst the
points or the normal surface at the data points). The reconstructed surface does not
exactly interpolate the initial data points, but approximates them with a bounded max-
imum distance. The method allows to reconstruct closed surfaces with genus > 1 and
closed surfaces with disconnected shells.

Keywords: Scattered data points, surface approximation, voxelization, discrete ge-
ometry.

1 Introduction

Scattered data points obtained from real objects with optical, ultrasonic, tactile or other
sensors are frequently used as data sources. Geometric modeling applications must process
these scattered data points to obtain a surface that approximates the data point set. In this
way,

e The generated surface will be more compact than the initial data point set.
e A more realistic visualization can be obtained from the surface.
e Standard geometric modeling operations (surface evaluation and editing, surface-surface

intersection, etc.) will be feasible.

A large diversity of algorithms that approximate scattered data points have been published.
There are many valid solutions approximating a cloud of points and each algorithm provides
a solution with its own “aesthetic”.

Being impossible to detail all published papers dealing with this problem, the reader can
consult some of the existing State-of-the-Art reports like [1]. Some papers are mentioned
below. They are classified in four blocks according to the taxonomy used in [1]:

e Spatial subdivision. The space is decomposed in cells, then the cells that are stabbed
by the final surface (surface oriented algorithms) or the cells that do not belong to the



volume bounded by the surface (oriented to volume) are determined and, from them, the
final surface is computed. Some surface oriented algorithms use a regular voxelization
([2] and [3]), others decompose the space in tetrahedrals ([4] and a-shapes([5]). Examples
of volume oriented algorithms are [6], [7] and [8] (their strategy is based on computing
a Delaunay tetrahedrization of the convex-hull of the data point set and eliminating
successively the tetrahedrals carrying out some properties).

e Distance function. The distance function calculates the minimum distance between
any point of the space to the final surface. The distance function can give positive or
negative values if the surface is closed. The final surface is implicitly determined by the
distance function. Examples of algorithms using a distance function are [3], [9] and [4].

e Deformation techniques or Warping. An initial surface is deformed progressively
to obtain a better approximation to the initial data points. In this kind of algorithm it
is convenient to start with a surface that is a coarse approximation of the data point
set. Examples are the “blobby model” [10] and the mass and spring model built from a
triangular mesh [2]. Also the algorithms based on 3D snakes (energy-minimizing spline
which is attracted toward the initial point set) can be classified in this category ([11]
and [12]).

e Incremental construction. The surface is constructed in an incremental way from the
properties of the initial data points. Normally, from an initial element (edge, triangle),
the algorithm works by successively adding new elements (typically triangles) in his
neighborhood enlarging the surface. This is the idea of the surface oriented algorithm
of Boissonnat [7].

This taxonomy has several drawbacks. Some algorithms can be included in more that one
category. For example, some spatial subdivision algorithms use a distance function to find
out which cells are stabbed by the surface ([3], [4]). Also our algorithm can be classified in
two different categories. Notice that this taxonomy classifies the algorithms by the method
being used, not by the obtained result. For example, spatial subdivision algorithms can get
a mesh of triangles ([2], [3]), tri-variate implicit Bernstein-Bezier patches [4] or polytopes
(sets of points, edges, triangles and tetrahedrals not necessarily defining a closed and regular
surface) in the a-shapes algorithm [5].

Our algorithm can be included in the first category: It uses a regular voxelization as spatial
subdivision and it is oriented to volume since it eliminates progressively those voxels not
belonging to the volume bounded by the surface. It does not use any type of distance function,
and does not have to calculate distances among points or find the neighbour points as it is
usually done by most of the previous algorithms. This strategy provides robustness and
efficiency to the algorithm.

The main goal is the construction of a closed surface that approximates a non uniform data
point set in the 3D space which is known to approximate a closed solid (Figure 19(a)). To
achieve it, our algorithm uses a regular spatial subdivision and proceeds in the following way:

1 Voxelization of the space that contains the data point set. The voxels are labeled
according to have points in its inside (hard voxels) or not (soft voxels) (Figure 19(b)).

2 Obtaining a discrete closed membrane: a set of 6-connected (face-connected) voxels set
that contain the final surface. This voxel set is formed by 6-connected hard and soft
voxels and divide the remaining voxels in inside and outside. It is like a discrete rubber



band. Initially a discrete membrane composed by the voxels of the 6 exterior faces of the
voxelization is constructed (Figure 21(a)). Later this discrete membrane is contracted
at the locations where there are soft voxels (Figures 21(b), 21(c), 21(d) and 21(e)). The
hard voxels stop the shrinking. When this membrane can not be further contracted,
the final 6-connected discrete membrane has been found (Figure 21(f)).

3 Relaxation of the discrete membrane to obtain a smoother surface. The soft voxels of
the discrete membrane are displaced lightly to reduce the local curvature (Figure 18).

4 Construction of the final surface from the discrete membrane obtained in the previous
step (see Figure 20).

Our algorithm could also be classified into the deformation techniques category, since it starts
with an initial discrete membrane that it is deformed progressively by contractions. We will
also describe an improved version of the algorithm that allows to deal with a set of isolated
discrete membranes to obtain a set of closed surfaces with disconnected shells.

In some aspects our algorithm is similar to the algorithm of a-shapes [5]. This method starts
with a Delaunay tetrahedrization and a sphere of a given radius a. The algorithm moves
the sphere around without going through data vertices, erasing the tetrahedrals, triangles
and edges that it encounters. Polytopes are obtained (sets of points, edges, triangles and
tetrahedrals not necessarily defining a closed and regular surface). The success depends on
the selection of the parameter a. The main differences between the two algorithms are the
object used to perform the contraction/elimination (a square plate vs. a sphere of radius «)
and that our method performs a sequence of contractions with plates of decreasing size to get
a unique solution vs. a-shapes, which calculates a family of solutions each of them the result
of eroding with a sphere of certain radius.

Most of the existing algorithms construct a surface stabbing exactly all or almost all initial
points. Rather, our algorithm constructs a surface such that the initial points are located
as maximum to a distance d from it, being d the diagonal of the used voxel. Any surface
stabbing the discrete membrane constructed in the second and third step will be a closed
surface that approximates the initial data points with a tolerance equal to the diagonal voxel
d. The surface approximating the data points with a tolerance d is named d — error surface.

The fact that the final surface approximates the initial data points is usually not a major
problem, since most of the data point sets are the result of 3D scanners and, therefore, it exists
a margin of error in the acquired data. Voxels whose size has the same order of magnitude
as the maximum error produced in the data acquisition can be used. The approximating
algorithm has the advantage of filtering the noise and obtaining a smoother final surface.

Some of the main advantages and contributions of the proposed algorithm are:

e Reconstruction of surfaces although the initial data point set does not have an uniform
density.

Reconstruction of objects with genus > 1 and/or objects with disconnected closed
shells.

A final closed object is guaranteed.

Error-bounded approximation supporting a final fairing.

Explicit conditions on the genus of the final object.



e Robust and efficient algorithm.

In Section 2 the main part of the algorithm is discussed: the voxelization of the space and
the membrane shrinking. Section 3 describes the relaxation of the membrane and section
4 the construction of the final surface. The results are explained in section 5 and the final
conclusions are pointed out in section 6.

2 The discrete membrane shrinking

2.1 Basic concepts involved in our algorithm

The algorithm works in a spatial division (voxelization) of a parallelepiped containing the
cloud of points with cubes of the same size. The cubes of the voxelization are named voxels.
In our problem the voxels are classified in hard (those that have one or more initial data
points inside) and soft (those that do not have any data points).

Some voxels of the voxelization belong to a discrete membrane (DM). The DM is a set of
face-connected voxels (6-connected) that divides the remaining voxels in inside and outside !.
Figure 1(a) shows a 2D voxelization with one DM (red voxels): The white voxels are outside
and the green ones are inside in relation to the DM.

(a) Discrete Membrane (b) Discrete Membrane Set
(DM) (DMS)

Figure 1: Examples of 2D Discrete Membranes

To deal with objects with disconnected shells is allowed to have several membranes inside the
voxelization. Therefore we will work with a set of isolated DM (named Discrete Membrane
Set or DMS). Any voxel of the voxelization can be classified according to:

e HARDNESS: Hard, soft.

e POSITION: Inside (the voxel is inside one DM), Outside (the voxel is outside to all
DM), Boundary (the voxel belongs to a DM).

!There is no face-connected, edge-connected or vertex-connected path (26-connected path) that allows to
go from an inside voxel to an outside voxel that does not include any voxel of the DM




Figure 1(b) illustrates a 2D voxelization with 2 DM: The red voxels are boundary, the white
ones are outside and the green ones are inside in relation to the DMS.

Some definitions are introduced now to help understanding the ideas used in the algorithm.

Plate of size n: Set of n x n contiguous voxels that form a square parallel to a co-ordinate
plane (all plate’s voxels are face-connected). We will define the orientation of the plate as
a perpendicular vector p to the plate that allows to distinguish its front and back side. See
Figure 2(a).
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(a) Plate with its ori- (b) Front and Back Side (c) Lateral Front and Back Side
entation

Figure 2: Plate of size n = 4

The Front Side (Back Side) of a plate of size n are the n x n voxels localized in front (behind)
of the plate according to its orientation. See Figure 2(b).

The Lateral Side of a plate of size n are the 4 x (n + 1) voxels localized around the plate.

The Lateral Front Side (Lateral Back Side) of a plate of size n are the 4 x (n + 1) voxels
localized around the front side (back side) of the plate. See Figure 2(c).

Material Volume: It is the sum of the number of inside voxels plus boundary voxels within
the voxelization.

2.2 DMS operations

Three different internal operations will be used to modify locally the DMS: CONTRACTION
(the interior volume is shrunk), UNDO CONTRACTION (a contraction is reversed) and
FREEZING (conversion of boundary soft voxels to hard voxels).

The CONTRACTION operation modifies the DMS with a plate of size n that satisfies the

following conditions:

1 It is composed uniquely of one or more boundary soft voxels and outside voxels (i. e.
does not contain hard voxels or inside voxels).



2 The back side of the plate is composed only of outside voxels.
The operation modifies the DMS as follows:

1 The boundary soft voxels that belong to the plate are converted to outside voxels.

2 The front, lateral and lateral front voxels of the plate (n x n+ 8 x (n + 1) voxels) that
were inside are converted to boundary voxels preserving their hardness.

(a) Before (b) After

Figure 3: CONTRACTION operation with a plate of size n = 4. The hard voxels are painted
in red and the boundary soft voxels in yellow.

Figure 3 shows how the CONTRACTION operation is applied in a 2D voxelization. The
plate of size n = 4 (blue color) in the 2D case is one-dimensional. Observe how the boundary
voxels overlapped with the plate are converted to outside voxels and the interior front, lateral
and front lateral voxels are converted to boundary voxels preserving their hardness.

The properties of the CONTRACTION operation are:

1 Reduction of the material volume, since the plate must be located on one or more
boundary voxels and these are converted to outside voxels.

2 It is an internal operation: The DMS is transformed to another DMS. The result are
sets of face-connected voxels that divide the rest of the voxels in inside and outside.
This is because the voxels of the plate are replaced by the front, lateral and lateral front
side of the plate. Notice that the front, lateral and lateral front side of the plate are
face-connected voxels and completely separate any interior voxels from the voxels of the
plate (Final DM = Initial DM — plate + front + lateral + lateral front).

3 The hard voxels never are converted to outside ones, since only the boundary soft voxels
overlapped with the plate are converted to outside ones.

Note: Not only a DM is contracted when the CONTRACTION operation is applied; also the
cardinality of the DMS can be incremented: the topology of the DMS may change, which
is crucial for the ability of our algorithm to deal with models with holes and for several
connected components. See Subsection 2.6 and Figure 12 for more details.

The UNDO CONTRACTION operation reverses the last CONTRACTION operation



performed, recovering the previous state. From the properties of CONTRACTION it is
obvious that UNDO CONTRACTION increases the material volume and yields an DMS.

The FREEZING operation converts the boundary soft voxels that are overlapped with a
plate of size n in frozen soft voxels which behave as hard voxels in all further tests, except
where indicated. Obviously this operation does not alter the material volume and yields an
DMS (as no voxels have been added or removed from it).

The three previous operations depend on the size of the plate n used. As discussed in the
next Subsection, the algorithm works with diminishing plate’s sizes to obtain successive DMS
generations, each of them more contracted due to the smaller size of the plate. A counter
of the different plate’s sizes n used by the algorithm allows to know the current generation.
We define the generation as a property of the outside voxels. We therefore know in which
generation each of these voxels was converted to outside (what plate’s size n caused the
conversion from boundary voxel to outside voxel). See in Figure 4 how the outside voxels are
labeled with the 1, 2, 3 and 4 generations that correspond to the plate’s sizes n = 12, n = 6,
n = 3 and n = 2 respectively.
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Figure 4: Labeling the outside voxels with its generation

The main differences between our algorithm and a-shapes algorithm|[5] are the object used
to perform the contraction/elimination (a square plate of size n vs. a sphere of radius «) and
that our method performs a sequence of contractions with plates of decreasing size to get a
unique solution vs. a-shapes, which calculates a family of solutions each of them the result
of eroding with a sphere of certain radius.

An incursion test must be defined to detect when the interior of a DM is invaded by a plate of
size n. This incursion test detects when the plate of size n reaches the interior face of the DM
boundary (see Figure 7). The incursion test definition is based on the Local-Arc Connectivity
concept.

Local-Arc Connectivity: Two voxels in the 26-neighborhood? of the voxel V are local-arc
connected when there exists a face-connected path of outside voxels that connects them in
this neighborhood of the voxel V. Observe, for example, the highlighted hard voxel at bottom
right of Figure 4. The outside voxels localized above and below of the highlighted voxel are
local-arc connected.

Incursion Test: An incursion is detected when two outside voxels of different generations

2The 26-neighborhood of a voxel V is the set of 26 voxels that share a vertex, edge or face with V



at the opposed faces of a boundary hard voxel are not local-arc connected between them.
Observe Figure 5(a): No incursion has happened here in the highlighted hard voxel since
the voxels localized at the opposed faces, though not local-arc connected, have the same
generation. Instead, in Figure 5(b), an incursion has been detected since the voxels localized
at the opposed faces have different generation.
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Figure 5: Incursion

As is explained below, the algorithm, after applying the CONTRACTION operation, will
check if an incursion has been produced in the hard voxels of the front, lateral and lateral
front side of the plate to decide the convenience of applying the UNDO CONTRACTION
and FREEZING operations.

2.3 Algorithm

The first step builds the voxelization from the initial data point set. This step is immediate
if the edge’s length of the voxel [ is known: We must divide the lengths (l;,1,,1,) of the
parallelepiped sides that contains the data point set by the edge’s length of the voxel to
obtain the sizes of the voxelization (n, = lz/l,ny = ly/l,n, = 1,/l). When we build the
voxelization, the voxels that contain one or more points of the initial set are labeled as hard
voxels and the others as soft voxels. In Figure 19(b) the hard voxels of the voxelization of
the data points of Figure 19(a) have been displayed.

If the length [ is not known, it can be estimated as

Lo \/2 (oly + Lyl, + L,1y) W
np

being np the number of the initial data points. This expression considers that the data point
set defines a surface of similar extension as the 6 faces of the parallelepiped that contains it
and its density is more or less uniform. In all examples shown in Section 5 this formula has
been used getting satisfactory results.

When the data point set has a very irregular sampling density, it is convenient to calculate



. vozels containing 2 or more points . . I . .
the ratio vozels confaining 1 point after the voxelization and if its value is too high we can

recalculate the voxelization decreasing the edge’s length of the voxel .

The second step constructs the initial discrete membrane with the voxels belonging to the
exterior faces of the voxelization. Thereafter the algorithm applies the 3 defined operations
(CONTRACTION, UNDO CONTRACTION, FREEZING) to contract gradually the DMS
until it is adapted to the hard voxels. Concretely:

o It applies the CONTRACTION operation with a plate of size n ~ Vozxelization Size
and the plate’s size is reduced progressively until n = 1. Each reduction of n defines a
new generation.

e From a fixed value of n, it searches in all boundary soft voxels the locations where a
CONTRACTION operation with a plate of size n can be applied. The locations found
are the starting points to apply recursively the CONTRACTION operation.

Figure 6 illustrates the two previous points in a main algorithm.

main() {
vox = Voxelization( cloud_of_points );
DMS = InitialDiscreteMembrane( vox );
n = max( vox.size.x, vox.size.y, vox.size.z );
do {
n = (n+1)/2;

FindContractionPlace( DMS, n, placeOk, place );

while (placeOk) {
incursion = FALSE;
NewStack( ContractionStack );
RecursiveContraction( DMS, n, place, ContractionStack, incursion );
FindContractionPlace( DMS, n, placeOk, place );

}

} while (n > 1);
}

Figure 6: Main algorithm scheme

The algorithm results depend on the choice of the initial plate’s size and how it is reduced
progressively. The best solution, though with more computational cost, is to start with a
plate’s size the biggest of the 3 voxelization sizes n = maz(nz,ny,nz) and decreasing the
plate’s size 1 by 1. However, with data point sets obtained from 3D scanners, normally it is
sufficient to divide the size of the plate by 2 in each iteration n = (n + 1)/2. This obviously
reduces considerably the algorithm run-time. The results shown in Section 5 show that this
choice is reasonable under widely varying conditions. The algorithm can be sped up even
more with a pre-process consisting in shrinking the initial DM to get the exterior silhouette
of the hard voxels in the X, Y and Z directions (Figure 21(b)).

From a fixed value n and a particular location where the CONTRACTION operation can
be applied, the CONTRACTION operation is applied recursively at the front, up, down, left



and right directions in relation to the plate orientation (always with a plate of size n). Every
time the CONTRACTION operation is applied, it is checked for incursion in the hard voxels
of the front, lateral and lateral front side of the plate. If an incursion is detected (Figure
7(b)), the UNDO CONTRACTION operation is applied as many times as CONTRACTION
operations were performed. Thereafter a FREEZING operation is applied (Figure 7(c)). This
cancels an undesired expansion of the plate inside the solid.
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(a) Before of initiate the (b) Shrinking with n = 2. In- (c) Backtracking and freezing
shrinking cursion detection

Figure 7: Incursion detection

Figure 8 shows the implementation of the recursive contraction. The stack ContractionStack
saves the CONTRACTION operations performed to undo them in inverse order if an incursion
is detected. A global Boolean variable Incursion is used to indicate the fact that an incursion
has been detected and avoid doing more CONTRACTION operations into the remaining calls
to the RecursiveContraction action.

2.4 Algorithm properties

In this section we shall establish the following four fundamental properties of our algorithm:

e The algorithm always finishes.

e The result is a DMS (the voxels are face-connected and they divide the remaining voxels
in outside and inside).

e The boundary voxels that has an outside voxel in its 6-neighborhood® are necessarily
hard or frozen soft voxels.

e All outside voxels are soft.
The algorithm always finishes because it decreases the material volume and the number of

voxels of the initial voxelization is finite. The material volume is reduced because a recursive
sequence of CONTRACTION operations is applied which result can be:

3The 6-neighborhood of a voxel V is the set of 6 voxels sharing a face with V'
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RecursiveContraction( DMS, n, place, ContractionStack, incursion ) {

if (incursion) return;
¢ = CONTRACTION( DMS, n, place );
PushStack( ContractionStack, c );
if (IncursionTest( ¢ )) {
while (!EmptyStack( ContractionStack ) {
¢ = TopStack( ContractionStack );
PopStack( ContractionStack );
UNDO_CONTRACTION( DMS, n, c );
}
FREEZING( DMS, n, place );
incursion = TRUE;
return;

for (direction={front, up, down, right, leftl}) {
place2 = place + direction;
if ContractionOk( DMS, n, place2 ) {
RecursiveContraction( DMS, n, place2, ContractionStack, incursion );
}
}

Figure 8: Scheme of the contraction recursive action

1 An incursion is never detected. It would suppose a reduction of the material volume
since only CONTRACTION operations have been applied.

2 An incursion is detected. This means the maintenance of the material volume, since the
sequence of UNDO CONTRACTION operations recover the material volume that the
sequence of CONTRACTION operations had reduced and the FREEZING operation
keeps the material volume. This sequence of CONTRACTION, UNDO CONTRAC-
TION and FREEZING operations is never again repeated because of converting soft
voxels to frozen soft voxels by the FREEZING operation.

The algorithm’s result is a DMS because of starting with an initial DM and applying internal
operations (the 3 operations transform the DMS to other DMS; the CONTRACTION opera-
tion can increase the cardinality of the DMS, see section 2.6). Therefore each DM of the final
set is face-connected and divides the remaining voxels in outside and inside.

The boundary voxels having an outside voxel in their 6-neighborhood are hard or frozen
soft voxels, never regular soft voxels. The reason is the algorithm works with plates of
diminishing size arriving to a size of n = 1. When the plate’s size is n = 1, any boundary
soft voxel having an outside voxel in its 6-neighborhood is a suitable location to initiate a
sequence of CONTRACTION operations. If an incursion is not detected, this soft voxel has
been converted to outside. In other case a backtracking and a freezing would have happened

11



converting the soft voxel to a frozen soft voxel.

The outside voxels are always soft, since the unique operation producing outside voxels is
CONTRACTION and this operation only converts to outside voxels the soft ones.

2.5 Incursion detection

The surface reconstruction from a data point set is a complex problem. Also, given an
Algorithm A, one can always find a data point set that causes A to produce a surface different
from “the expected” result. Furthermore, the problem is more complex when more flexible
the initial conditions and the final results are, such as in our case (the initial data point set
has no requirement about its density distribution and the final result can be a set of closed
surfaces with genus > 1).

To observe how the algorithm works and see the consequences of the incursion detection we
will simplify the complexity problem.

Property 1. If these two propositions are true:

1 The data point density is homogeneous obtaining in the voxelization step a set of hard
voxels forming themselves a DM (the hard voxels are face-connected and divide the
remaining voxels in inside and outside).

2 All hard voxels have at least one inside voxel in their 26-neighborhood.

Then no incursion arises in the execution of our algorithm.

Proof: The case of having two outside voxels at the opposed faces of a hard voxel is not
possible. In the 26-neighborhood of the hard voxel there must be at least an inside voxel and
this inside voxel must be separated from the outside voxels by boundary voxels.

Since an incursion is never detected, the algorithm will contract the DM with plates of dimin-
ishing size arriving to a size of n = 1 without doing any UNDO CONTRACTION operation.
Therefore the DM is shrunk until it coincides with the set of existing hard voxels. Under
the precondition of the property 1 we can affirm that the algorithm always produces the ex-
pected result since, as the hard voxels form a face-connected closed set, it was not necessary
to perform any UNDO CONTRACTION operation during the algorithm.

If the second precondition of the property 1 is eliminated there can be situations where incur-
sions are detected and UNDO CONTRACTION operations are applied. All these operations
are not necessary because of having a set of face-connected closed hard voxels. Figures 9 and
10 show some of these situations: Protuberances a voxel thick and DM pieces overlapped. In
these cases the final result and the expected result can differ.

The properties of the incursion test are:

e Property 2. Acceptation of protuberances composed by a unique voxel (checking if
there is local-arc connectivity between the two outside voxels localized at the opposed
faces of a boundary hard voxel). Observe the highlighted hard voxel localized at left of
Figure 11: An incursion is not detected because there is local-arc connectivity between
the two outside voxels localized at the opposed faces of the highlighted hard voxel.

e Property 3. Acceptation of some isolated protuberances (checking if the two outside
voxels localized at the opposed faces of a boundary hard voxel have different gener-

12
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Figure 9: Undesirable incursion: Protuberance a voxel thick
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Figure 10: Undesirable incursion: DM pieces overlapped

ations). See the highlighted hard voxel at bottom right of Figure 11: An incursion
has not been detected because the two outside voxels sharing the opposed faces of the
highlighted hard voxel have the same generation.

These two properties allow the incursion test to accept the more common protuberances.
It is difficult to accept other types of protuberances without losing the capability to detect
incursions when the data point density is no longer homogeneous. Some of the reasons of
detecting an incursion are the protuberances a voxel thick (Figure 9), the overlapping of DM
pieces at some place (Figure 10) or the contraction at zones of low data point density where
the plate can be introduced towards the interior of the surface (Figure 7). The question is the
difficulty to distinguish if a protuberance a voxel thick is due to the own shape of the surface
to reconstruct or to a low data point density nearby.

13
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Figure 11: Discrete membrane with protuberances a voxel thick

2.6 Mitosis and increase of the genus

If the incursion test is applied in the boundary hard voxels but not in the soft ones, it will be
possible the removal of DM pieces formed only by soft voxels. This produces a mitosis of the
DM (increase of the cardinality of the DMS) or, in the 3D case, it may result in an increase
of the genus of the DM instead. Figure 12 illustrates a mitosis and Figure 21(c),(d) (at the
handle) an increase of the genus.

tlafafafafefefafafafa]a 1 1 1
1 1)1 1 1 1
1 1 1 1 1
1 1)1 1 4 BE 1)1
13 1)1 13 4 1)1 1)1
13 + 1)1 1]34|4(4a]a]4 1)1 1)1
13 1)1 1]34|4]a]a]4 1)1 1)1
13 1)1 13 1)1 1)1
1 1)1 1 1)1 1)1
1)1 1)1 1)1 1)1 1)1
1]1]1 1]1]1 1]11 1]1]1 1)1
tlrefafafefefafafafa|1 tlrfefafafefefafafafa|1 1)1
(a) Before of starting the (b) Shrinking with n = 2 (c) End of the shrinking
shrinking

Figure 12: Shrinking in a tunnel of size 2 producing a mitosis

A Tunnel of size n exists in the DMS when, applying a sequence of CONTRACTION opera-
tions with a plate of size n from a particular location, two or more sets of boundary soft voxels
are eliminated and an incursion is not detected. The two or more sets of boundary soft voxels
must not be face-connected before of applying the sequence of CONTRACTION operations.
In the example of Figure 12(a) there is a tunnel of size 2: The set of highlighted boundary
soft voxels in 12(a) and the highlighted in 12(b) are not face-connected and a sequence of
CONTRACTION operations with a plate of size 2 has eliminated them without detecting an
incursion.
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Property 4. The algorithm only is capable to produce mitosis or increases of the genus when
the DMS has a tunnel of a certain size n.

We will study two examples that the DMS does not have tunnels due to the detection of an
incursion.
e The data point density (hard voxels density) around of the possible tunnel is not suffi-
ciently big in relation to the size of the tunnel. See Figure 13.

e At the ends of the tunnel there are one-voxel thick protuberances. Figure 14 shows one
of these cases.

tfafafafafafafafa]a]a]e 1 1
1 11 1 1
1 1 1 1
1 11 11 11
13 3311 11 11
13 3 33|11 1)1 1)1
E 3311 1)1 1)1
13 11 11 11
1 1)1 1)1 1)1
11 11 11 11
111 111 1)1 1)1
tlafafafafafafafafa]a]a 11 11
(a) Before of starting the (b) Shrinking with n = 2. In- (c) Backtracking and freezing
shrinking cursion detection
Figure 13: Mitosis not performed due to a low data point density

afafafafafafafafa]a]2]s 1 1
1 11 1 1
1 1 1 1
1 11 11 11
13 1)1 11 11
1|3 3 1)1 1)1 1)1
13 11 11 11
13 1)1 1)1 1)1
1 11 11 11
1)1 1)1 11 1)1
111 111 11 11
tfafafafafafafafafa]a]s 1)1 1)1
(a) Before of starting the (b) Shrinking with n = 2. In- (c) Backtracking and freezing
shrinking cursion detection

Figure 14: Mitosis not performed due to a one-voxel thick protuberance

The last CONTRACTION operation causing a mitosis/increase of the genus (see the evolution
of Figure 12(b) to the 12(c)) also produces a reduction of the material volume: Though the
number of inside voxels is the same, the number of boundary voxels is reduced.
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3 The discrete membrane relaxation

The results obtained in the previous Section are influenced by the shape of the object (the
plate) used in the successive contractions. In our case, due to the flat shape of the plates, the
final DMS shows flat regions or strongly stepping in those zones where the initial data point
density was low (observe the upper left zone of Figure 15).

Figure 15: Planar regions in the final DMS

It is convenient to relax the DMS before obtaining the final surface. The goal is keep the hard
voxels and possibly displace the soft voxels to smooth the local curvature on the boundary
voxels. We define a measure of the discrete local curvature that will give a magnitude of the
curvature on a boundary voxel from the configuration of the neighbors voxels. The relaxing
process will attempt to decrease the discrete local curvature on the whole DMS by performing
local moves of the boundary soft voxels.

Discrete Local Curvature: The discrete local curvature of a boundary voxel is the dif-
ference between the number of outside voxels less the number of inside voxels in its 26-
neighborhood. The discrete local curvature of a voxel V' will be named DLC(V'). The DLC
values are in the interval [-25, 25]. Figure 16 shows the DLC values of the boundary voxels
in the 2D case (the 2D DLC values are in this case in the interval [-7, 7]).

Figure 16: Discrete Local Curvature (DLC) of the boundary voxels
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The relaxing process first selects the boundary soft voxels V' with DLC(V) < —13. It starts
to process the most negative ones and finishes with those soft voxels having DLC(V) = —13.
To each selected voxel V' the following steps are applied:

1 The voxel V is converted to inside voxel (Figure 17(a)).

2 The outside voxels of the 26-neighborhood of V' are converted to boundary (Figure
17(b)).

3 Recalculate the DLC on the boundary voxels in the 124-neighborhood* of the voxel V/
(Figure 17(c)). Thus we assure that all boundary voxels that could be affected by the
changes in the steps 1 and 2 have the DLC updated. The voxels with DLC(V) < —13
are added to the selected voxel list.

Figure 17 illustrates the steps described previously applied on the highlighted voxel of Figure
16.

(a) Elimination of the se- (b) Outside to boundary (c) DLC recalculation
lected voxel voxel conversion

Figure 17: 2D Relaxing

Afterwards the simetrical above steps are applied to soft voxels with DLC(V') > 0 starting
from the higher value to DLC(V) = 13.

When the DLC of the selected voxel V is sufficiently high, this method achieves a decrease of
the curvature in the nearby zone. It has been observed in the performed 3D tests that the best
results are obtained if the relaxing algorithm only selects the voxels V with |[DLC(V)| > 13
(in the 2D case |[DLC(V')| > 4). Threshold values of the DLC less than 13 causes the final
DMS to present flat zones parallel to the co-ordinates planes or at 45 degrees. Moreover it
causes the relaxing process performed on voxels V' with DLC(V) > 0 to destroy the previous
relaxation done on voxels V7 with DLC(V7) < 0. Applying the relaxing steps described
previously on some voxel configurations with DLC(V') = 12 generates other boundary voxel
V1 with DLC(V1) = —12 and vice-versa.

“The 124-neighborhood of a voxel V' is the set of the 5 x 5 x 5 — 1 neighbors voxels of V localizing V" at the
center
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Figure 18 shows the teapot of Figure 21(f) after applying the relaxing process on the boundary
voxels.

Figure 18: 3D Relaxing

4 Final surface construction

The last step must build a surface stabbing the DMS obtained in previous steps. For example,
the discrete marching cubes algorithm [13] can be used to obtain a mesh of triangles, the
algorithm described in [14] to obtain a smooth surface (a piecewise algebraic surface defined
as a cubic Bspline isosurface) or, simply, using the outside faces of the 6-connected boundary
voxel sets to obtain a cuberille model.

We have improved the conversion to a piecewise algebraic surface (see [15]). The construction
of the piecewise algebraic surface stabbing the DMS uses anti-aliasing techniques to achieve
smoother surfaces and takes advantage of the knowledge of the initial data points lie in the
hard voxel to approximate better the final surface. First an initial isosurface is calculated
setting positive or negative weights to the vertexes of the DMS depending on if the neighbor
voxels are exterior or interior. Later a battery of filters ([15]) are applied to fair the surface and
to fit it to the central point of the hard voxels (in order to work with pre-calculated filters
getting faster algorithms). From this surface, a multiresolution model can be constructed
using the techniques that we describe in [16).

Figure 20 shows the final surface obtained with a discrete marching cubes algorithm and
with the piecewise algebraic surface fitting and fairing algorithm from the relaxed discrete
membrane of the teapot.

A triangle mesh can also be obtained from the piecewise algebraic surface. The vertex values
and normals of the voxelization are calculated from the piecewise algebraic surface and a
triangle mesh is computed with a marching cubes algorithm [17].
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5 Results

The first example is the approximation of a data point set obtained from a teapot. It is the
same that has been used to illustrate the explanations in the previous sections.

A voxelization of size 164 x 104 x 82 has been built from a set of 35910 points (Figure 19).
There are 19143 hard voxels in the voxelization since 16767 points have coincided in voxels
where already there were points. Then the initial DM has been built, a previous silhouette
shrinking has been performed and the DM has been contracted with plates of sizes 41, 21,
11, 6, 3, 2 and 1 (Figure 21). The table 1 shows the evolution of the DM shrinking. In the
table, for each size of the plate, the number of soft voxels not frozen in the DMS just before
beginning the shrinking, the number of initiated contractions with this plate’s size (number
of different locations in the DMS where a recursive sequence of CONTRACTION operations
has been started to apply) and the number of performed backtrackings (number of times
that a recursive sequence of CONTRACTION operations has been canceled and undone), are
shown.

Table 1: Teapot gradual shrinking

Size | Number soft Number of Number of
of the voxels in started | backtrackings
plate the DM | contractions made
41 26105 3480 0

21 21276 53 0

11 20353 105 0

6 19172 112 0

3 18432 336 108

2 16913 987 718

1 12405 8850 8699

The final DM is composed of 17202 hard voxels (painted in red) and 27491 soft voxels (painted
in blue). Inside the DM 356639 soft voxels and 327 hard voxels remain. Hence a little
percentage of hard voxels stay inside the DM (1.9%). Most of the data points (98.1%) are
within the bounded distance to the surface. In all cases a post-process can be performed to
connect the remaining inside hard voxels with the DM at the locations more nearby. The
run-time of the whole shrinking process is 5 minutes and 25 seconds in a PC with a 350Mhz
AMD-K6-2 CPU and 128Mb of main memory. Figure 20 shows the final surface obtained
from the DM with two different algorithms.

The second example uses a set of 100461 points modeling a bird. The voxelization has a size
of 153 x 209 x 203 with 73156 hard voxels (27305 points are within hard voxels that already
contained other data points). The final DM (Figure 22(a)) is composed of 64130 hard voxels
and 68869 soft voxels. Inside the DM 1228510 soft voxels and 1766 hard voxels (a 2.7% of
the total of hard voxels) remain. The final surface, a cubic Bspline isosurface displayed with
a raycasting algorithm, appears in Figure 22(b). The table 2 shows the evolution of the DM
shrinking of the bird.

The third example uses a set of 56306 points modeling a dinosaur. The voxelization has a size
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Table 2: Bird gradual shrinking

Size | Number soft | Number of Number of
of the voxels in started | backtrackings
plate the DM | contractions made
76 103134 8326 0
38 123733 1162 0
19 71648 1423 1
10 46274 842 9

5 33818 445 19

3 27013 310 31

2 24567 597 47

1 22327 13181 12307

of 201 x 170 x 70 with 31088 hard voxels (25218 points are within hard voxels that already
contained other data points). The final DM (Figure 24(a)) is composed of 25269 hard voxels
and 17052 soft voxels. Inside the DM 90855 soft voxels and 22 hard voxels (a 0.09% of the
total of hard voxels) remain. The run-time is 9 minutes and 2 seconds. The final surface, a
cubic Bspline isosurface displayed with a raycasting algorithm, appears in Figure 24(b). The
table 3 shows the evolution of the DM shrinking of the dinosaur.

Table 3: Dinosaur gradual shrinking

Size | Number soft | Number of Number of
of the voxels in started | backtrackings
plate the DM | contractions made
35 43025 2503 0

18 27934 600 0

9 14780 330 0

5 9060 250 0

3 5791 289 0

2 3185 316 2

1 1469 639 192

Finally Figure 23 shows the DM and the final surface obtained from a cloud of points modeling
an oil pump. All these examples illustrate a correct and robust operation of the gradual DM
shrinking algorithm.

6 Conclusions

An algorithm that obtains one or more closed surfaces approximating a data point set in the
3D space has been presented. The algorithm does not require to know the topological relations
among the points or other additional information. The obtained surface approximates and
does not stab exactly the points: The approximation error has a certain tolerance d in relation
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to the initial data point set. By using a shrinking plate of diminishing size, the algorithm
allows to reconstruct surfaces from initial data points not having a uniform density. Surfaces
with genus > 1 and/or surfaces with disconnected shells can be reconstructed due to the way
of detecting the incursions to the interior of the surface. The algorithm is robust and efficient
since it works only with discrete values (voxels) and does not need to calculate distances among
points or find the neighbour points (as normally done by most of the existing algorithms).

The algorithm could be improved with the employment of hierarchical structures like octrees.
But it is important to remark that the algorithm success is based on displacing the plate one
voxel every time.

A post process to relax the final membranes has been introduced to get better results in zones
where the initial data point density was low. Different types of surfaces can be obtained from
the final membranes like meshes of triangles or piecewise algebraic surfaces.

The construction of a piecewise algebraic surface stabbing the final discrete membrane includes
a constrained fairing algorithm [15] to achieve smoother surfaces and to approximate better
the final surface to the initial data points.
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(a) Initial data point set (b) Voxelization

Figure 19: Voxelization of a cloud of points

(a) Cubic Bspline isosurface obtained by the al- (b) Mesh of triangles obtained by marching-cubes
gorithm described in [14] [17] (displayed with a Gouraud smoothing)

Figure 20: Construction of the surface stabbing the final DMS
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(a) Initial discrete membrane

(c) Shrinking with n = 41 (d) Shrinking with n =6

(e) Shrinking with n = 3 (f) n = 1: Final discrete membrane

Figure 21: Discrete membrane shrinking
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Figure 22: Bird: Discrete membrane and final surface

Figure 23: Oil pump: Discrete membrane and final surface
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Figure 24: Dinosaur: Discrete membrane and final surface
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