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Abstract

This paper discusses the problem of visualizing data wineretare underlying constraints that must be preserved.
For example, we may know that the data is inherently positMe show how the Modified Quadratic Shepard
method, which interpolates scattered data of any dimemdityncan be constrained to preserve positivity. We do
this by forcing the quadratic basis functions to be positiMee method can be extended to handle other types of
constraints, including lower bound of 0 and upper bound o4& eccurs with fractional data. A further extension
allows general range restrictions, creating an interpdldhat lies between any two specified functions as the

lower and upper bounds.

Categories and Subject Descript¢ascording to ACM CCS)

1.3.5 [Computer Graphics]: Computational Geometry

and Object Modelling G.1.1 [Numerical Analysis]: Interptibn G.1.6 [Numerical Analysis]: Optimization

1. Introduction

Visualization can be seen as a process of visual reconstruc-
tion. We create a representation of the overall behaviour of
the entity we are interested in, from a limited set of sam-
pled information. This reconstruction is achieved by inter
polation. However we often have some additional informa-
tion that we wish to build into the reconstruction: the gntit
may be subject to certain physical laws which constrain its
behaviour - for example, we know densities are always posi-
tive and any credible visualization must honour this. Aeoth
common constraint occurs with data values that are speci-
fied as fractions of a whole - here the reconstruction must
lie within the range [0,1] to be realistic. In this paper we
examine one particular interpolation approach - the Shiepar
family of interpolants - and show how this can be adapted to
handle constraints on the range of the interpolant.

The problem we are addressing is the interpolation of
scattered data. This problem occurs in very many practical
situations where data is gathered experimentally (for exam
ple, we shall look later at rainfall measurements gathetrad a
set of recording stations) or is computed in a simulation pro

to this general problem - a good review of the whole area is
given by Lodha and Franke [LFOOQ].

Some methods are based on an initial triangulation of the
data points (or equivalent in higher dimensions), followed
by a piecewise construction of the interpolant - one piece
per triangle. A very simple technique of this type is piece-
wise linear interpolation. This has a nice property of remai
ing within the bounds of the data, and thus preserving for
example positivity in the data. However it is orﬂ;? con-
tinuous. Smoother interpolants over triangulations wyitlit
cally fail to remain within the bounds of the data, but selvera
have been modified to incorporate constraints. For example,
Asim [AsiO0] modifies the Barnhilet al [BBG73] blend-
ing method (constrained cubics as suggested by Asim and
Brodlie [ABO3] are created along triangle edges and blended
in the interior); Ong and Wong [OW96] createCa inter-
polant by blending constrained rational cubics along giian
edges using the Nielson [Nie79] side-vertex method. Mulan-
sky and Schmidt [MS94] construct a constrair@dinter-
polant using quadratic splines on a Powell-Sabin refinement

cess using an unstructured grid. There are many approachesof the original triangulation. Chan and Ong [COO01] create a
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2 Brodlie et al / Constrained Visualization

constrained! interpolant as a combination of cubic Bezier
triangles.

All these approaches, however, require the points to be

triangulated. Another major class of methods for scattered
data interpolation do not involve any prior triangulatioes

be concerned with imposing constraints on the behaviour of
F(x), but to start with we consider the unconstrained case.

A popular approach to the problem emerged in the 1960s
amongst the contour plotting community, and is now as-
sociated with the name of one of its proponents, Shepard

and can be thought of as ‘meshless’. The two main types are [She68]. In its basic form, it involves an inverse distance-

radial basis functions (RBFs), which include multiquasric
and thin-plate splines, and Shepard-type methods, which in

clude the modified quadratic Shepard approach and also the
moving least squares technique. Both types, RBFs and Shep-

ard, are widely used in practice.

However there has been relatively little work done on the

imposition of constraints for these meshless methods. For

RBFs, in the special case of thin-plate splines for 2D data,
Utreras [Utr85] has shown how positivity can be imposed as
a constraint, but the computational cost is rather highyireq
ing a global optimization problem to be solved at each step
of an iteration. Xiao and Woodbury [XW99] look at a num-
ber of meshless methods for constrained scattered data inte
polation for 3D data. In areas where the entity is known to
have a particular value, say, zero, extra data points aredadd
in order to ‘encourage’ the interpolant to take values close
to zero in these areas. If a physical constraint additignall
tells us that the entity is non-negative, then the intenmmiola
is simply clamped at zero. A difficulty with this approach
is that the resulting interpolant will have derivative ding-
nuity where the clamping is applied. Our aim is to generate
a constrained interpolant which is computationally effitie
and which incorporates the constraint as part of the interpo
lation process, rather than asaposterioriprocess such as
clamping.

We shall adapt the Shepard family of interpolants. Sec-
tion 2 describes these in detail - a Shepard interpolantis es
sentially a weighted mean of basis functions. By constrain-
ing each basis function to be positive, we immediately ob-
tain a positive interpolant. Section 3 explains how we can
impose the positivity constraint in an efficient manner,levhi
section 4 generalises the work from simple positivity td-arb
trary upper and lower bound constraints. Section 5 dissusse
the quality of the constrained interpolant, and finally sec-
tion 6 concludes and suggests further work.

There is one important word to add on terminology. We
shall use the term ‘positivity’ to refer to ‘greater than or
equal to zero’, rather than the more rigorous but some-
what awkward ‘non-negativity’. When we mean ‘greater
than zero’, we use the term ‘strictly positive’.

2. Shepard Family of Interpolants

The general problem we are addressing is the following.
Given a set ofN data pointsxj,i = 1,2,...,N, wherex =
(x,¥,z,...), with associated data valués we seek an inter-
polating functionF (x) such that~(x;) = f;. Later we shall

weighted average of the data values, construdtifig as:

N
FO9= Y w00t &

where the normalised weight function(x) has the form:

oy Gi(X)
o) 3)L105(0)

with di = ||X —Xi]|2

)

wheregj(x) = d?i%x)

The weightsw;(x) satisfy:

LoyNiwi) =1
2. wi(x) >0
3. wi(xj) = &jj.

Notice that we have been able to specify the method for
arbitrary dimension of the space; we have not had to specify
any connectivity between data points; and we have not had
to solve any linear system of equations (as is needed in the
radial basis function approach).

In practice however this method does not work particu-
larly well, for two reasons:

1. The functionF (x) has zero derivative at the data points,
exhibiting as ‘flat spots’ in the interpolating curve or sur-
face in 1D or 2D respectively. This led to the suggestion
by Franke and Nielson [FN80] of replacing the constant
fi in the averaging process by a local best-fit quadratic
approximationQ; (x).

2. The method is global in the sense that any interpolation
involves a computation involving all data points. This is
computationally inefficient. This led to the suggestion by
Franke and Little (reported in [Bar77]) that the weighting
functionsao; be subjected to a damping facfoto reduce
them to zero outside a certain radius of the data point.

When these two modifications are taken together, we have
the modified quadratic Shepard method (as proposed by
Franke and Nielson [FN80] and further discussed by Niel-
son [Nie93]). We create an interpolantx) as:

N
F(x)= _Ziwi (¥)Qi(x) ?3)

where the normalised weight functien(x) has the form:
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Original Shepard Method — Coal Data
25 T T T

Gi(x)
Wi (X) = —g—t— 4)
I Z’j\lzl 0] (X) 20 B
where g;(x) = diz%x)(li dir(;))i with d; = ||x — xi||, and

wherery is a constant defining an area of interest around
the interpolation poink, outside of which basis functions
have zero weight.

% of oxygen in flue gas

Qi(x) is the best inverse distance weighted least squares
approximation by a quadratic function to the data points. st 1
The least-squares calculation is again restricted to ttiate
points within a specified radius, say, of x;, in order that
the method is local. We writ@); as:

1 T T
Qi (X) = E (X - Xi) A(X - Xi) +9 (X - Xi) + fi (5) o 5 10 15 2 2 3 35
Time (minutes)
(For simplicity of notation, the subscriptis omitted from
the termsA, g on the RHS.) Figure 1: One-dimensional coal burning data - Flat-spots

from the Original Shepard Method

The modified quadratic Shepard method is now widely
used, and an implementation of the ACM algorithm of
Renka [Ren883],[Ren88b] Is avallable |n the NAG L|' 2 uncons&ramedModifiedQuadra(ic‘ShepardfCoa\Da&a

brary [NAGO5]. The original Shepard method of equa-
tion (1) is rarely, if ever, seen in practice. However theyori
inal method does have one useful property which we lose in
the modified quadratic version. As explained by Gordon and
Wixom [GW?78], the original Shepard method satisfies the s
following Maximum Principle:

20

Theorem 1 (Maximum Principle for Shepard’s Method)
LetM = max fi} andm= min{ f;}. ThenF (x) satisfies:

m<F(X) <M (6) :

% of oxygen in flue gas

Thus the interpolant lies within the range of the data, and
one consequence for example is that a positive interpddanti = o
guaranteed if the data values are positive.

We illustrate this with a very simple example, in 1D. The - ‘ ‘ ‘ ‘ ‘ ‘

0 5 10 15 20 25 30 35

data setin Table 1 shows the percentage of oxygen in the flue Time (mintes)

gas, as coal burns in a furnace. The oxygen percentage is in-giq re 2: One-dimensional coal burning data - Modified
herently positive, and we therefore require the interpolan Quadratic Shepard Method loses positivity
to preserve this property (we have used this data set previ-

ously to demonstrate positive curve drawing by piecewise
cubics - see [AB03]). Figure 1 shows the original Shepard
interpolant - the ‘flat spots’ are very evident, and indeesl th  is far superior, but the curve now goes beyond the range of
appearance is in general unsatisfactory. However note thatthe data values and indeed the positivity constraint is vio-
the curve does remain positive. As we extrapolate to infinity lated. We see the same behaviour when the method is applied
the value of the curve tends to the average of the data values.to surface interpolation in 2D, or volumetric interpolatim

3D, or indeed higher dimensions.

Time (mins) 0 2 4 10 28 30 32 This motivates our work. We would like to retain the im-
proved interpolation behaviour of the modified quadratic ap
oxygen (%) 208 88 42 05 39 62 96 proach, but we would like to be able to impose constraints.
Rather than the Maximum Principle of Theorem 1 and the
original Shepard method, we would like to express the con-
straint in a way which is detached from the data. In the first
Figure 2 shows the modified quadratic Shepard inter- instance we shall consider positivity, and so we seek an in-
polant, applied to the same data set. Generally the behaviou terpolantF (x) which will satisfy the constraint

Table 1: Percentage of oxygen in flue gas
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Quadratic Basis Functions: unconstrained Q3 and constrained R3

50

% of oxygen in flue gas

5 20w
Time (minutes)

Figure 3: Quadratic basis function @has negative values

while the constrained basis functiors Rdiscussed in sec-

tion 3.2) is entirely positive.

F(x)=>0 @)

3. Constrained Modified Quadratic Shepard Method
3.1. How Positivity is Lost

We can gain useful insight into the problem through examin-
ing the 1D example of the previous section. In Figure 3, we
show the quadratic basis functi@s(x) that is generated,
interpolating at(xs,ys) = (4.0,4.2) and approximating the
other data in a weighted least-squares sense. It clearky goe
negative within the range of interpolation, and contrilsute
to the loss of positivity exhibited in the overall modified
quadratic Shepard, or MQS, interpolant shown in Figure 2.

Remember thaF is a positive linear combination of the
Qi values ai. Therefore, we can ensure positivity if we can
constrain each basis function to be positive within the eang
of the interpolation. This sufficient condition is a key poin
of our approach.

3.2. Positive Quadratic Basis Functions

Our objective then is to constrain the quadratic basis func-
tions to be positive within the region where they are active.
For the modified quadratic version, this means thatithe
basis function must be positive within a region:

[IX =Xill2 < rw

(©)

We are therefore interested in solving the problem: mini-
mize
1
Qi(x) = 5(x = %) TAX =) +g" (X)) + f

subject to the constraint (8).

9)

If the minimum is positive, then obviousig; (x) is pos-
itive everywhere it is active in the interpolation calcidat
and no action need be taken. If the minimum is negative,
however, then it is possible that the basis function could co
tribute a negative component in the evaluationFgk) in
equation (3). In this case we modify.

Inspection of Figure 3 lets us motivate the modification.
The range 0fQs is too great, and thus we are led to apply
a positive scaling factoq say, wheren < 1. The factora
must compress the range of data val{@§"", f3] (where
Q"M is the minimum 0fQs) to the rang€o, f3]. This scal-
ing will destroy the interpolation conditioQs; = f3, and so
we also apply a shiffy = (1— a)fs, in order to retain in-
terpolation. In this way we construct a constrained quédrat
basis functionRs, which is a scaled and shifted transform of
Q3, compressing the range @, while making sure it still
passes through the data point. The constraRets shown
alongside the unconstrain€¥ in Figure 3.

In general, then, we construct for aQy which goes neg-
ative, a revised basis functid®, which is a linear transfor-
mation ofQ;:

Ri(x) =aQi(x) +B (10)

where we apply a scale factare [0, 1] to reduce the range
of Q; and a shift factof to maintain interpolation. Specifi-
cally,

fi
GZW’B:(l_G)fi (11)
whereQ™" is the minimum ofQ; within the region it is ac-

tive.
There are two points to note at this stage:

e If fi =0 for anyi, that is, the data value equals the con-
straint, then we hava = 0 andf3 = f;. ThusR;(x) = fj,
and the basis function reverts to the constant value used in
the original Shepard method 1.
o If we want to construct an interpolant that is strictly posi-
tive, then we need to choosesuch that:
fi
O<a< fio Qimm

The smaller the value a, the less is the range &.

This simple ‘scale-then-shift’ operation has some nice
properties in addition to raising the minimum to zero, and
preserving the interpolation condition. First we rewriggia-
tion (9) in terms of the unique stationary point@f, sayxs,
as:

Q)= 30— x) AKX+ Qs (12)
whereQ:s is the value ofQ; atxs. Then we have:
R(x) = aQi(x)+p
= ST @A -x)ty (13
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wherey = 3+ aQs. From equation (13), it is clear th&
has the same stationary poirg, asQ; and moreover, since
the Hessian matriR is scaled by € [0, 1], the eigenvectors

of the new Hessian are unchanged, and the eigenvalues are

scaled by a uniform positive constamt This implies that

the essential nature of the function, in terms of convex and
concave regions, is unchanged by the linear transformation
toR.

Specifically, we have the following property:

Property 1 Supposea andxg are any two points such that

Qi(xa) < Qi(xs) (14)
Then it follows from equation (10) that
Ri(xa) < Ri(xg) (15)

In the next subsection, we look at how this works for the
one-dimensional case, as a simple illustration of the ntetho
For higher dimensions, the solution of the constrained min-
imization problem (given by (9)) requires some discussion,
as the approach will only be feasible if this can be solved
efficiently - so this is described in the following subsec-
tion (3.4). We then show how the method works in practice
on 2D and 3D interpolation problems.

3.3. One-dimensional Positive MQS

In the one-dimensional case, the problem (9) reduces to:
minimize
(16)

Qi(x) = %a(X—Xi)z-i-g(X_Xi)-F fi

subject to the constraimt — x| < rw.

If a< 0, that is,Q; is concave, then the minimummin,
will lie at an end-point of the interval; i& > 0, thenQ; is
convex andkmin may lie in the interior (ifXmin = % — 3 €
[Xi — rw, X +rw]) or at an end-point otherwise. Whatever the
case, it is straightforward to calculate the linear tramsgp
tion:

Ri(x) = aQi(x) +B (17)
with a and chosen according to equation (11).

As mentioned earlier, Figure 3 shows the revised
quadratic basis functioRs for our simple example, with
the originalQs alongside. Notice how the new basis func-

tion is positive, and retains the same shape except for being

‘squashed’. In Figure 4, we show the resulting ‘constrained
MQS’ interpolant when the revised basis functions are com-
bined in the style of equation (1).

3.4. Solving the Constrained Minimization Problem

In the one-dimensional case, the constrained minimization

Constrained Modified Quadratic Shepard - Coal Data
25 T T T T

20 q

15+ q

% of oxygen in flue gas

-5 I I I .
15 20
Time (minutes)

30 35

Figure 4: One-dimensional coal burning data - Constrained
Modified Quadratic Shepard Method

interpolant depends on being able to solve this efficiently.
Fortunately, just such an efficient solution is providedHoy t
Levenberg-Marquardt algorithm.

Recall that the problem to be solved is the following: min-
imize
Qx) =3
subject to the constraint (8). The following theorem (see
Theorem 5.2.1 of Fletcher [Fle87] for proof) gives the so-

lution to minimizing a quadratic function within a sphere of
given radiusrw, about a given poin; :

1

(x—x) Ax—x)+g" (x—x))+ T (18)

Theorem 2 (Levenberg-Marquardt) The point
X(V) =X — (A—i—vl)’l(—g)

is the solution of the problem (18), if and only if there egist
v > 0 such that

(19)

e A4Vl is positive semi-definite
o if v>0,then|x—Xi|l2=rw

If such av exists, it is unique.

Levenberg-Marquardt algorithms typically proceed as fol-
lows. Equation (19) defines a trajectorv), and we seek

the value ofv such that
(V) = Xil[2 = rw (20)

This is a nonlinear equation in one variable,and is rela-
tively straightforward to solve.

Insight into the calculation is provided in Figure 5. Here
we see the contours of a two-dimensional quadr&icas-

problem (9) was easy to solve. For higher dimensions the sociated with data poing. The unconstrained minimum of
situation is less trivial, and the success of the constdaine Q; is shown, and this is the solution of the problem (19), for
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circle of radius r,

minimum of Q;
subject to constraint

unconstrained
minimum of Q;

Figure 5: Levenberg-Marquardt algorithm: The dotted line
shows the trajectory of(v) asv varies. Each point on this
trajectory is the solution of a constrained minimizatior(pf
for some value ofw. One instance ofy is shown in the di-
agram. For iy = 0, the minimum is a%; and as fy increases
the minimum follows the trajectory shown, until eventually
the unconstrained minimum is reached. Increasiggfur-
ther does not alter the minimum.

sufficiently largerw. However as we reducgy, the trajec-
tory x(v) follows the path shown in the dotted line towards
Xi, which it reaches asy tends to zero. For any given, the
point where the trajectory intersects the cirge- x; ||2 = rw

is the required minimum point.

This example also gives us insight into what happens
when we replac€); by its modified formR;. Figure 6 shows
the contours oR; corresponding to th&; of Figure 5. No-
tice that the contours are identical in shape, in fact it ig on
the values attached to contours that change. The conteur lin
throughy; is unique in being unchanged, those below are in-

Brodlie et al / Constrained Visualization

circle of radius r,,

minimum of R;
subject to constraint

contours
of R,

zero contour
of R

Figure 6: Transformation from @Qto R: The diagram shows
the contours for Rwhich is a scaled and shifted transform
of the Q of Figure 5, the factorsi,3 chosen to achieve
positivity using equation (11). Notice that the contours ar
unchanged in shape. Their values however are transformed:
those abovejfare reduced in value; those below dre in-
creased in value; the; tontour line is unchanged in value.
The dotted line shows the zero value contour;aftRis line,
which passes through the constrained minimum point pf R
has had its value increased fron{'tJ to zero.

but zooming in on a region at the north part of New Zealand’s
South Island, Farewell Spit. The contour map shows the in-
terpolant generating negative values, which are clearly un
real. By contrast, Figure 8 shows the constrained method,
with all areas showing positive rainfall values. The sma ¢
cles indicate data points.

Figures 9 and 10 show similar contrasting behaviour in a
region near Arthur’'s Pass on South Island.

creased, those above are decreased. The zero contour goes These examples are both two-dimensional. In order to il-

through the intersection between the trajectory and the con
straining circle.

Although the figures describe the two-dimensional case,
note that the Levenberg-Marquardt algorithm applies to any
dimensionality.

3.5. Practical Examples in 2D and 3D

As noted earlier, there are many examples where positive in-
terpolants are important. The case we use here to illustrate
the method is rainfall data from sites in New Zealand, sup-
plied by the New Zealand National Institute of Water and
Atmospheric Research [NIWO05]. The data was collected at

lustrate the method in 3D, we included the heights of the
weather stations as well as the latitude and longitude, and
created a 3D Shepard interpolant. To display the rainfall in
the Arthur’s Pass region, we used the unconstrained MQS to
create a surface approximating the terrain, and then evalu-
ated the 3D rainfall interpolant over this surface - firshgsi

the 3D unconstrained interpolant (shown in Figure 11) and
second using the 3D constrained interpolant (shown in Fig-
ure 12). As expected, negative rainfall values occur with th
unconstrained, but not the constrained version.

4. General Constraints

some 133 stations throughout New Zealand, and representsOnce we know how to achieve a positivity constraint, we are

the measurement of total rainfall in millimetres, for 2ndyMa
2002. Figure 7 shows interpolation using the normal, uncon-
strained MQS method, using all the data for the interpafatio

able to applyany constraint on the value of the interpolant,
provided the constraint is satisfied by the data. We consider
variety of cases in turn, and then illustrate with an example
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Unconstrained MQS - Rainfall levels at Farewell Spit Unconstrained MQS - Rainfall levels at Arthurs Pass

-41.5 -44
172 1722 1724 1726 1728 173 1732 1734 1736 1738 174 171 1711 1712 1713 1714 1715 1716 1717 1718 1719 172

Figure 7: Unconstrained MQS Interpolation of Rainfall ~ Figure 9: Unconstrained MQS Interpolation of Rainfall
Levels near Farewell Spit, New Zealand Levels near Arthur's Pass, New Zealand.

Constrained MQS - Rainfall levels at Farewell Spit Constrained MQS - Rainfall levels at Arthurs Pass

-39.5

- -44
A8 1722 1724 1726 1728 173 1732 1734 1736 1738 174 171 1711 1712 1713 1714 1715 1716 170L7 1718 1719 172

Figure 8: Constrained MQS Interpolation of Rainfall Levels ~ Figure 10: Constrained MQS Interpolation of Rainfall Lev-
near Farewell Spit, New Zealand els near Arthur’s Pass, New Zealand

interpolantF (x) as:
F(x) =T(x)+B(x) (23)

4.1. Arbitrary Lower Bound

Suppose we wish to construct an interpol(ix) such that

F(x) > B(x) (21) This has important applications where one wants to con-

struct one surface above another. This would occur for exam-
ple with borehole measurements, where one wanted to show
one strata of rock above another. The case of an arbitrary
fi > B(xi),i=1,2,...N. (22) upper bound follows similarly.

whereB(x) is any function ofx. Suppose the data valués
satisfy the constraints

A simple approach (as suggested by Chan and Ong
[COO01] and Asim and Brodlie [AB03]) is to convert this into
an equivalent positivity problem. Using the techniques jus
described, we construct a positive interpoldr{x) to the Suppose we want to constrain the interpolant to the range
positive data valueg§ = f; — B(x;), and form the required [0,1] - for example, the data might be expressed as fractions.

4.2. Upper and Lower Bounds - the[0, 1]-constraint
problem

submitted to COMPUTER GRAPHICBbrum(8/2005).
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Unconstrained 3D MQS Rainfall- Draped over 2D Unconstrained MQS Terrain

Figure 11: Unconstrained MQS Rainfall Draped over Un-
constrained MQS Terrain. Note the white area indicates neg-
ative values of rainfall.

Constrained 3D MQS Rainfall- Draped over 2D Unconstrained MQS Terrain

Figure 12: Constrained MQS Rainfall Draped over Uncon-
strained MQS Terrain

We apply exactly the same approach as for positivity, sgalin
Qi to make its range fit withif0, 1], and then shifting so that
interpolation is preserved. Specifically, we construct & ne
basis functiorR; as:

Ri(x) =aQi(x)+pB

where we apply a scale factare [0, 1] to reduce the range
of Q; and a shift facto to maintain interpolation. The re-
quired scale factoa is the smaller of the scale factors re-
quired to achieve lower bound of 0 and upper bound of 1,
namely

(24)

a = min{djower, Aupper}

where

1-f

fi
Alower = m , Oupper = Qmax_f;
1 1

where Q"™ QMM are the maximum and minimum of

Qi within the region it is active. Again the Levenberg-
Marquardt method is used to identify the maximum and min-
imum values. Note that using the smaller of the twealues
means thabothconstraints are satisfied: choosing a lower
than required to satisfy a constraint will simply ‘flattehet
function R, more than is actually required, af will lie
well within the corresponding bound. As in section 3.2, if
any f; equals 0 or 1, the correspondifyx) will be a con-
stant (0 or 1 respectively). As befofe= (1— a) f;.

We illustrate this technique on a test example from Lan-
caster and Salkauskas [LS86]. A functiBfx,y) is defined
as:

1.0 if y—x)>0.5

2(y—x) if0.5> (y—x) > 0.0
Sxy) = cos(4£u’)+1 if r < 211

0 otherwise

wherer = /(x—15)2 4 (y—0.5)2.

The functionS(x,y) is shown in Figure 13. Notice that it
has areas where it is exactly zero, and a peak and upper shelf
where it has a value of 1.0. A contour representation is also
shown, as Figure 14, where we additionally show the 40 data
points that were used to construct the test data.

We construct g0, 1]-constraint test problem by evaluating
S(x,y) at a random set of 40 points, and requiring the inter-
polation scheme to reconstruct the function in such a way
that it remains within th€0, 1] limits. A sequence of figures
shows how the new method performs. In Figure 15, we show
the surface recreated by the unconstrained MQS technique.
Itis clear that it goes below zero and above one, and this is
confirmed very clearly in the contour representation, shown
in Figure 16.

By contrast, in Figure 17, we show the surface generated
by the constrained method. It lies within t@e1] limits, as is
confirmed by the contour representation shown in Figure 18.
Notice that the flat plane with zero height, where many of the
data values equal the constraint, is reproduced quite well b
the algorithm. In this area, many of tiRe functions will be
constant, equal to zero, and this enables a good reconstruc-
tion of the base plane.

4.3. Arbitrary Upper and Lower Bounds

Having solved thg0, 1] constraint problem, it is then easy
to solve the general problem of constructing an interpolant
F (x) subject to upper and lower bounds, that is,

A(X) > F(x) > B(x). (25)
To achieve this we create a new set of data values
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Figure 13: Lancaster and Salkauskas functiofxy) - Sur-
face View
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Figure 14: Lancaster and Salkauskas functiofx¥) - Con-
tour Map

fi — B(xi)

= Alxi) — B(xi)

(26)

We construct g0, 1]-constrained interpolarnik (x) to the
data pointgx;,t;), and then construét(x) as:

F(x) = T(X)(AX) —B(x)) +B(x) (27)

Note that everything in this constrained section would ap-

ply to any interpolation method for which positivity, {, 1]
constraint, can be proved.

y oo

Figure 15: Unconstrained reconstruction of Lancaster and
Salkauskas function(8y) - Surface View

Figure 16: Unconstrained reconstruction of Lancaster and
Salkauskas function($y) - Contour Map

polant to be created that keeps within the limits imposed by
the bowls. The result is shown in Figure 19.

5. Interpolation Quality

An important issue concerns the quality of the new inter-
polant, in comparison with the original, unconstraineeint
polant. In the original method, a quadratic basis funct®n i
computed as interpolating the associated data point, and as
the best weighted least-squares approximation to the other
data points. In the constrained interpolant, we keep tlgg-int
polation property, and we keep the same shape - but we lose

To illustrate the method we show a rather contrived ex- the best least-squares property when we apply the transfor-
ample where we have defined data values randomly betweenmation. Moreover, in order to ensure positivity of the over-
upper and lower quadratic ‘bowls’, and required an inter- all interpolant, we make sure each basis function is pe@sitiv
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Figure 19: Surface between Surfaces. In this figure, we show
lower and upper bound quadratic surfaces as a wireframe
mesh, and the constructed interpolant as a shaded surface.
The interpolant is constructed from data that is randomly
located, with random values in the range between the lower

Figure 17: Constrained reconstruction of Lancaster and
Salkauskas function($y) - Surface View

1 T T T
ol ] ;L g | and upper bounds.
08 é’o |
o7 7 Noof UnconRMS ConRMS Blend RMS
o5 Data Points (con fails)
0.6 & B
(S\ ] 20 1.04(211) 0.90 0.82
L 055/ 8 40 1.53 (259) 0.35 0.50
0-4/ o 1 60 0.40 (211) 0.41 0.40
03 i 80 0.90 (214) 0.39 0.38
& 100 0.34 (190) 0.35 0.30
O.Z*Q‘o i
150 0.37 (197) 0.20 0.18
o 1 200 0.13 (170) 0.19 0.13
% o‘.z 014 0.‘6 0‘.8 ‘1 1.‘2 1‘.4 1‘.6 1.‘8 2 250 0.09 (149) 0.14 0.10
300 0.08 (171) 0.12 0.09
Figure 18: Constrained reconstruction of Lancaster and 350 0.08 (133) 0.10 0.08
Salkauskas function($y) - Contour Map 400 0.07 (133) 0.11 0.08

Table 2: Interpolation Quality for Original Unconstrained
MQS, Constrained MQS and Blended MQS
within its region of influence - a sufficient rather than neces
sary condition. Thus we may modify basis functions, losing
the least-squares property, when it is not strictly neagssa
It is reasonable to ask therefore how much we sacrifice the the RMS error followed in parentheses by the number of
quality of interpolation in order to preserve positivity. evaluated points which fail thi®, 1] constraint out of a total
of 625. The column headed ‘Con RMS’ shows the RMS er-
ror for the constrained interpolant, where of course these a
no evaluated points which fail the constraint.

We evaluate the quality of the new interpolant by the fol-
lowing experiment. For the Lancaster and Salkauskas func-
tion we construct the unconstrained and constrained inter-
polants, based on a series of datasets where the number of Consider the first three columns of the table. It is clear
randomly chosen points progressively increases. We mea- that for a small number of points, that is, relatively sparse
sure the quality by evaluating the interpolants on a 25x25 data, the constrained interpolant is superior using RMS er-
grid of points, and calculating the RMS error between the ror as the criterion. We can see from the images in Figure 15
exact and calculated values. The results are shown in Ta- and Figure 17, that there are some points where the con-
ble 2. The column headed ‘Uncon RMS (con fails)’ shows straints are exceeded by a wide margin (these figures corre-
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spond to 40 data points). We find that for up to 150 points, and lower bound visualizations that lie entirely above and
the gain in overall quality from imposing the constraintage  entirely below the predicted ‘surface’. If the error bourfois
erally offsets the loss from transforming the basis funtdio each data point are uniform, that is, the value at each data
However as the number of data points increases, then thepoint x;,i = 1,2,...,N is within the range[f; — , fi + 9],
quality of the unconstrained interpolant is better, and we then for any interpolant we can form upper and lower er-
can infer that the loss of the least squares property starts ror surfaces aB (x) + 6. A more interesting case, especially
to penalise the constrained version. (However note that the relevant to this paper, is when the error is expressed aa-a rel
unconstrained method still creates an unsatisfactory-inte tive quantity. Suppose for positive dafg,there is a uniform
polant, in the sense that over 20% of evaluated points fail relative error bound, that is, the value is within the range
the constraints, in all the experiments we ran.) [(1.0—-9)fi, (1.0+ d)fi]. In this case the values always lie
in a positive range. If we use the methods described in this
paper to construct a positive interpoldnt then the ‘error’
surfaces(1+ 6)F are also positive and lie entirely above
and belowF. In Figure 20, we show these surfaces for the
Arthur’'s Pass rainfall data (shown earlier in Figure 10 as a
contour plot), where there is a 10% error bound associated
with the data values. Further work is needed to improve the
visual representation of error surfaces.

The above analysis motivates a modified approach in
which we retain more of the least-squares fitting property
of the basis functions. Consider the, 1] constraint case
which we have here (the other constraint cases are handled
similarly). When the Levenberg-Marquardt algorithm deter
mines that a basis function goes outside ] interval,
rather than use the transformed functRrdirectly, we cre-
ate a basis function which is a blend of the unconstrained
Qi and the constrainelg;. The blend is computed as a linear
combination:

(1.0—-86)Qi(x) +6Ri(x) (28)

Here® is chosen so that the unconstrained interpo@nt
is selectedq = 0) for values ofx where 025 < Q; < 0.75
and the constrained interpolaRt is progressively blended
in (with B increasing from 0 to 1) for.0 < Q; < 0.25 and
0.75 < @ < 1.0, with finally 8 = 1.0 for Q; < 0.0 and
Qi > 1.0. In this way we use the unconstrained basis function N
in regions where it comfortably satisfies the constraints; w S ‘%\%§§§§s§\f‘
use the constrained basis function where the unconstrained X
one fails; and we blend smoothly in the intermediate re-
gion. The final column of the table shows the success of the
strategy: we achieve consistently good interpolationityual
while still maintaining the constraints. Visually therditte
perceptible difference in the two interpolants.

Figure 20: Error Surfaces: Arthur’'s Pass Rainfall Data with
10% Upper and Lower Error Bound Surfaces
6. Conclusions and Future Work

We have shown how the modified quadratic Shepard method
for interpolation of scattered data of any dimension, can be
constrained to preserve positivity of the data. This hasibee

demonstrated in examples in 1D, 2D and 3D. The method
has also been adapted in order to constrain the interpolant

within [0, 1] limits, so that it can be used to interpolate frac-  Ken Brodlie carried out much of this work during two sab-
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