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Abstract
Level set models combine a low-level volumetric representation, the mathematics of deformable implicit surfaces
and powerful, robust numerical techniques to produce a novel approach to shape design. While these models
offer many benefits, their large-scale representation and numerical requirements create significant challenges
when developing an interactive system. This paper describes the collection of techniques and algorithms (some
new, some pre-existing) needed to overcome these challenges and to create an interactive editing system for
this new type of geometric model. We summarize the algorithms for producing level set input models and, more
importantly, for localizing/minimizing computation during the editing process. These algorithms include distance
calculations, scan conversion, closest point determination, fast marching methods, bounding box creation, fast
and incremental mesh extraction, numerical integration and narrow band techniques. Together these algorithms
provide the capabilities required for interactive editing of level set models.
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1. Introduction

Level set models are a new type of geometric model for cre-
ating complex, closed objects. They combine a low-level vol-
umetric representation, the mathematics of deformable im-
plicit surfaces and powerful, robust numerical techniques to
produce a novel approach to shape design. During an editing
session, a user focuses on and conceptually interacts with
the shape of a level set surface, while the level set methods
‘under the hood’ calculate the appropriate voxel values for a
particular editing operation, completely hiding the volumet-
ric representation of the surface from the user.

More specifically, level set models are defined as an iso-
surface, i.e. a level set, of some implicit function φ. The
surface is deformed by solving a partial differential equation
(PDE) on a regular sampling of φ, i.e. a volume data set
[1]. Thus, it should be emphasized that level set methods
do not manipulate an explicit closed form representation of

φ, but only a sampling of it. Level set methods provide the
techniques needed to change the voxel values of the volume
in a way that moves the embedded iso-surface to meet a user-
defined goal.

Defining a surface with a volume data set may seem un-
usual and inefficient, but level set models do offer numerous
benefits in comparison to other types of geometric surface
representations. They are guaranteed to define simple (non-
self-intersecting) and closed surfaces. Thus level set edit-
ing operations will always produce a physically realizable
(and therefore manufacturable) object. Level set models eas-
ily change topological genus, making them ideal for repre-
senting complex structures of unknown genus. They are free
of the edge connectivity and mesh quality problems common
in surface mesh models. Additionally, they provide the ad-
vantages of implicit models, e.g. supporting straightforward
solid modeling operations and calculations, while offering a
powerful surface modeling paradigm.
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Figure 1: Level set modeling system modules. The system
consists of input models (blue), pre-processing (yellow), CSG
operations (orange), local LS operators (red), global LS op-
erators (purple) and rendering (green).

1.1. Level Set Model Editing System

We have developed an interactive system for editing level set
models. The modules and the data flow of the system is di-
agrammed in Figure 1. The blue modules contain the types
of models that may be imported into the system. The yel-
low modules contain the algorithms for converting the input
models into level set models. The orange, red and purple
modules are the editing operations that can be performed on
the models. The final (green) module renders the model for
interactive viewing.

In a previous paper [2], Museth et al. described the mathe-
matical details of the editing operators, some of which were
based on concepts proposed in [3]. The cut-and-paste (or-
ange) operators give the user the ability to copy, remove and
merge level set models (using volumetric CSG operations)
and automatically blend the intersection regions (1st red mod-
ule). Our smoothing operator (2nd red module) allows a user
to define a region of interest and smooths the enclosed surface
to a user-defined curvature value. We have also developed a
point-attraction operator. A regionally constrained portion of
a level set surface may be attracted to a set of points to produce
a surface embossing operator (3rd red operator). As noted
by others, the opening and closing morphological (purple)
operators [4] may be implemented efficiently in a level set
framework [5,6]. We have also found them useful for global
blending (closing) and smoothing (opening).

1.2. Challenges and Solutions

The volumetric representation and the mathematics of level
set models create numerous challenges when developing an
interactive level set editing system. Together they indicate
the need for a massive amount of computation on large-scale
data sets, in order to numerically solve the level set equation
at each voxel in the volume. In this paper, we address these
issues, focusing on the implementation details of our level
set editing work and describing the collection of algorithms

(some new, some pre-existing) needed to create an interactive
level set model editing system.

The first challenge encountered when editing level set
models is converting conventional surface representations
into the volumetric format needed for processing with level
set methods. Our goal has been to connect level set editing
with other forms of geometric modeling. The user may uti-
lize pre-existing modeling tools to create a variety of models.
Developing a suite of model conversion tools allows those
models to be imported into our system for additional modi-
fications using editing operations unique to level set models.
We therefore have implemented several 3D scan conversion
algorithms. The essential computation for most of these al-
gorithms involves calculating a closest point (and therefore
the shortest distance) from a point to the model.

The second major challenge of interactive level set model
editing is minimizing the amount of computation needed to
perform the individual operations. The mathematics of level
set models is defined globally, but in practice most level set
operators only modify a small portion of the model. We there-
fore employ a variety of techniques to localize the level set
computations in order to make the editing system interactive.
Since we are only interested in one level set (the zero iso-
surface) in the volume, narrow-band techniques [7–9] may
be used to make the computation proportional to the sur-
face area of the model. Additionally, the extensive use of
bounding boxes further limits the region of computation on
the surface. Some of our operators require a closest-point-in-
set calculation. Here K–D trees [10,11] are utilized. Finally,
interactive viewing is made possible by an incremental, op-
timized mesh extraction algorithm. Brought together, all of
these techniques and data structures allow us to import a
variety of models and interactively edit them with level set
surface editing operators.

1.3. Related Work

Two areas of research are closely related to our level set sur-
face editing work: volumetric sculpting and implicit mod-
eling. Volumetric sculpting provides methods for directly
manipulating the voxels of a volumetric model. Construc-
tive Solid Geometry (CSG) Boolean operations [12,13] are
commonly found in volume sculpting systems, providing a
straightforward way to create complex solid objects by com-
bining simpler primitives. One of the first volume sculpting
systems is presented in [14]. Incremental improvements to
the concept of volume sculpting soon followed. Wang and
Kaufman [15] introduced tools for carving and sawing, [16]
developed a haptic interface for sculpting, [17] introduced
new sculpting tools and improved interactive rendering and
[18] provides procedural methods for defining volumetric
models. Physical behavior has been added to the underly-
ing volumetric model in order to produce virtual clay [19].
McDonnell et al. [20] improved upon this work by repre-
senting the virtual clay with subdivision solids [21]. More
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recently sculpting systems [22,23] have been based on octree
representations [24,25], allowing for volumetric models with
adaptive resolution.

There exists a large body of surface editing work based
on implicit models [26]. This approach uses implicit surface
representations of analytic primitives or skeletal offsets. The
implicit modeling work most closely related to ours is found
in [27]. They describe techniques for performing blending,
warping and boolean operations on skeletal implicit surfaces.
An interesting variation of implicit modeling is presented in
[28], which uses a forest of trivariate functions [29] evaluated
on an octree to create a multiresolution sculpting capability.

Level set methods have been successfully applied in
computer graphics, computer vision and visualization [30–
33], for example medical image segmentation [34–36],
shape morphing [37,38], 3D reconstruction [8,39,40], vol-
ume sculpting [41], and the animation of liquids [42].

Our work stands apart from previous work in several ways.
We have not developed volumetric modeling tools. Our edit-
ing system acts on surfaces that happen to have an underlying
volumetric representation, but are based on the mathematics
of deforming implicit surfaces. In our system, voxels are not
directly modified by the user, instead voxel values are deter-
mined numerically by solving the level set equation, based
on user input. Since level set models are not tied to any spe-
cific implicit basis functions, they easily represent complex
models to within the resolution of the sampling. Our work
is the first to utilize level set methods to perform a vari-
ety of interactive editing operations on complex geometric
models.

It should also be noted that several of the algorithms de-
scribed in this paper have been implemented in graphics hard-
ware, e.g. solving level set equations [43,44], evaluating other
types of differential equations [45–47], morphological oper-
ators [48,49], and voxelization [50,51]. This work predomi-
nantly focuses on coping with the issues that arise from map-
ping general algorithms onto hardware-specific GPUs with
restrictive memory sizes, data types and instruction sets in
order to shorten computation times.

2. Level Set Models

Level set models implicitly represent a deforming surface as
an iso-surface (or level set),

S = {x| φ(x) = k} , (1)

where k ∈ R is the iso-value, x ∈ R
3 is a point in space on the

iso-surface and φ : R
3 → R is an arbitrary scalar function.

To allow for deformations of the level set surface, we assume
that S can change over time. Introducing time dependence
into the right-hand side of Equation (1) produces two distinct
types of level set surface representations. In the first, the iso-
value k can be considered time-dependent and the level set

function φ is only implicitly time-dependent, leading to the
static level set formulation,

S(t) = {x(t) | φ(x(t)) = k(t)} . (2)

In the second, the iso-value k is fixed in time and the level set
function explicitly depends on time, leading to the dynamic
level set formulation,

S(t) = {x(t) | φ(x(t), t) = k} . (3)

These two level set formulations are not equivalent and of-
fer very distinct advantages and disadvantages. A detailed
discussion of level set methods is beyond the scope of this
paper, but since both formulations play important roles in our
work each is briefly described. For more details we refer the
interested reader to [30,32].

2.1. Equation Formulations

The static formulation of Equation (2) describes the deform-
ing surface as a family of level sets, S(t), of a static func-
tion φ(x), that evolves according to a time-dependent iso-
function, k(t). Without loss of generality, we can limit our-
selves to the simple cases k(t) = ±t as this leads to intuitive
interpretations of φ(x) as the forward or backward time of
arrival of the level set surface at a point x. The corresponding
equation of motion for a point, x(t), on the surface is easily
derived by differentiating both sides of φ(x(t)) = ±t with
respect to time t, and applying the chain rule giving:

∇φ(x(t)) · dx(t)

dt
= ±1. (4)

Before interpreting this equation, it is first necessary to define
the term level set speed function. Throughout this paper, we
assume a positive-inside/negative-outside sign convention for
φ, i.e. normal vectors, n, of any level set of φ point outwards
and are simply given by n ≡ −∇φ/|∇φ|. This allows us to
define the following speed function:

F(x, n, φ, . . .) ≡ n · dx
dt

= − ∇φ

|∇φ| · dx
dt

(5)

which in general is a user-defined scalar function that can
depend on any number of variables including x, n, φ and its
derivatives evaluated at x, as well as a variety of external
data inputs. The geometric interpretation of this function is
straightforward; since dx/dt denotes the velocity vectors of
a point x on a level set surface, the speed function F defines
the projection of this vector onto the local surface normal.
In other words, F is a signed scalar function that defines the
motion (i.e. speed) of the level set surface in the direction of
the local normal n at a point x on a level set S.

Using the definition of a speed function in Equation (5),
Equation (4) may be simplified to

|∇φ|F = ±1 (6)

which only depends implicitly on time, and therefore
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describes a simple boundary value problem. Equation (6)
is known as the fundamental stationary level set equation
and can be efficiently solved using fast marching methods
(FMMs) [52,53], which will be described in detail in Sec-
tion 3.1.6 We point out that the Eikonal equation

|∇φ| = 1 (7)

which produces a signed distance field to an initial surface
S0, can be considered a special case of the stationary level
set equation (Equation (6)) with a unit speed function and the
boundary condition {x ∈ S | φ(x) = 0}. Therefore, FMMs
may be used to efficiently compute the signed distance field
to an arbitrary (closed and orientable) surface.

The stationary level set representation has a significant lim-
itation, however. It follows directly from Equation (6) that
the speed functions, F , has to be strictly positive or neg-
ative depending on the sign of the right-hand side. Conse-
quently, surface deformations are limited to strict monotonic
motions— always inwards or outwards, similar to the layers
of an onion. This limitation stems from the fact that φ(x)
by definition has to be single-valued (time-of-arrival), i.e.
the level set surface resulting from the stationary formula-
tion cannot self-intersect over time. The inherit limitation of
the static formulation can be overcome by adding an explicit
time-dependence to φ, which leads to the dynamic level set
Equation (3).

Following the same steps as the stationary case, the dy-
namic equation of motion may be derived by differentiat-
ing the right-hand side of Equation (3) with respect to time
and applying the speed function definition (Equation (5)),
giving

∂φ

∂t
= −∇φ · dx

dt
(8a)

= |∇φ| F(x, n, φ, . . .). (8b)

These so-called Hamilton-Jacobi equations are often re-
ferred to as ‘the level set equations’ in the literature, even
though they are strictly speaking the dynamic counterpart to
the stationary level set Equation (6). The RHS of Equation
(8a) and (8b) is collectively called Hamiltonians of the level
set equation. Note that in contrast to the stationary form, the
dynamic surface representation of Equation (8b) does not
limit the sign of the speed function, F , and therefore al-
lows for arbitrary surface deformations. The speed function
is usually based on a set of geometric measures of the im-
plicit level set surface and data inputs. The challenge when
working with level set methods is determining how to com-
bine these components to produce a local motion that creates
a desired global or regional surface structure. Museth et al.
[2] define several such speed functions that may be used to
edit geometric objects.

2.2. Geometric Properties

The speed function, F , introduced in the previous section
typically depends on different geometric properties of the
level set surface. These properties can conveniently be ex-
pressed as zero, first or second order derivatives of φ. Exam-
ples include the shortest distance from an arbitrary point to
the surface, the local surface normal and different curvature
measures. Assuming φ is properly normalized, i.e. satisfies
Equation (7), the distance is simply the numerical value of φ,
and as indicated above the normal vector is just a normalized
gradient of φ. The latter is easily proved by noting that all
directional derivatives in the tangent plane of the level set
function by definition vanish, i.e.

dφ

dT
≡ T · ∇φ = 0 (9)

where T is an arbitrary unit vector in the tangent plane of the
level set surface.

There are many different curvature measures for surfaces,
but as we will see (at the end of this section) geometric flow
based on the mean curvature is very useful since it can be
proven to minimize surface area, i.e. equivalent to smooth-
ing. From the definition of the mean curvature in differential
geometry [54], we have

K ≡ (K1 + K2)/2 ≡ (Dive1 [n] + Dive2 [n])/2 (10a)

= (e1(e1 · ∇) · n + e2(e2 · ∇) · n) /2 (10b)

where {K 1, K 2} are the principle curvatures, and Dive1 [n]
denotes the divergence of the normal vector n in the princi-
ple direction e1. Next, resolving the gradient operator in the
orthonormal frame of the principle directions {e1, e2} in the
tangent plane and the normal vector n gives

∇ = e1(e1 · ∇) + e2(e2 · ∇) + n(n · ∇). (11)

Equation (10b) simplifies to

K = (∇ · n − n(n · ∇) · n)/2 (12a)

= 1

2
∇ · n = 1

2
∇ · ∇φ

|∇φ| (12b)

where we have also made use of the fact that n(n · ∇) · n = 0
which follows from the relation∑

j

n j

∑
i

ni∇i n j =
∑

i j

ni
1

2
∇i

[
n2

j

] = 0 (13)

since the normal vector is always normalized to one. Note that
the factor one-half in Equation (12b) is often (but incorrectly)
ignored in the level set literature. In Section 3.2.2, we will
discuss two different numerical techniques to compute the
mean curvature, as well as other types of surface curvature,
directly from Equation (12b).
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Finally, we note that global properties such as volume, V ,
and area, A, of level set surfaces, φ, can easily be computed
as

V =
∫

�

H (φ(x)) dx (14a)

A =
∫

�

δ(φ(x))|∇φ(x)| dx (14b)

where � denotes the domain of definition, H(x) is a Heaviside
function and δ(x) ≡ dH(x)/dx is a Dirac’s delta function.
For numerical implementations it is convenient to use the
following ‘smeared-out’ and continuous approximations

H (φ) ∼




0 if φ < −ε

1
2 + φ

2ε
+ 1

2π
sin

(
πφ

ε

)
if |φ| ≤ ε

1 if φ > ε

(15a)

δ(φ) ∼
{

0 if |φ| > ε
1
2ε

+ 1
2ε

cos
(

πφ

ε

)
if |φ| ≤ ε.

(15b)

From calculus of variation, we have the following funda-
mental Euler–Lagrange equation that minimizes a functional∫

�
f (x, φ, ∇φ)dx(

∂φ

∂t
− ∇ ·

[
∂

∂φx
,

∂

∂φy
,

∂

∂φz

])
f = 0. (16)

Along the same lines as [55], we can then apply Equation (16)
to Equation (14), replace δ(φ) with |∇φ| and equate the re-
sulting Euler–Lagrange equation with ∂φ

∂t to get the gradient
decent expressions. This leads to the following fundamental
level set equations

∂φ

∂t
= |∇φ| (17a)

∂φ

∂t
= ∇ · ∇φ

|∇φ| |∇φ|. (17b)

Equation (17a), which corresponds to minimization of vol-
ume, is a dynamic level set equation with a unit speed func-
tion, i.e. erosion of the level set surface. Equation (17b) states
that surface area is minimized by mean curvature flow, i.e.
F = K . The last observation is especially important since
our blending operators correspond to localized mean curva-
ture flow, i.e. surface smoothing by area minimization.

3. Types of Computation

The main algorithms employed by our level set modeling
system may be placed in three categories: distance compu-
tations; level set evolutions and efficient mesh extractions.

3.1. Distance Computations

A level set model is represented by a distance volume, a
volume data set where each voxel stores the shortest distance

Figure 2: A slice through a narrow-band distance volume.

to the surface of the object being represented by the volume.
The inside–outside status of the point is defined by its sign,
positive for inside and negative for outside. Since we are
only interested in one level set (iso-surface) embedded in
the volume, distance information is only maintained around
one level set (usually of iso-value zero). Depending on the
accuracy of the spatial discretization schemes, this ‘narrow
band’ is typically only a few voxels wide. For the results
presented in this paper, a width of five voxels was sufficient
(two voxels on each side of the zero level set) (see Figure 2).

Before an object can be edited in our system, it must first
be converted into a narrow-band distance volume. Currently,
we are able to convert polygonal, NURBS, implicit and CSG
models, as well as general volumetric models into the ap-
propriate volumetric format. The fundamental operation per-
formed in the conversion process is the calculation of the
shortest distance from an arbitrary point to the geometric
model being scan converted. Since the calculation is per-
formed repeatedly, efficient computation is essential to min-
imizing the time needed for conversion.

3.1.1. Narrow Bands and Re-Normalization

All of our level set editing operators assume that our models
are represented as ‘narrow-band’ distance volumes. Unfortu-
nately, our operators do not necessarily produce this represen-
tation, signed distance in a narrow band and constant values
outside of the band.† The level set equation (Equation (8))
contains no explicit constraints that maintain φ as a signed
distance function as time evolves. This is, however, a seri-
ous problem since stability of the finite difference schemes is
only guaranteed if |∇φ| is (approximately) one at all times.
We address this problem with a technique known as velocity
extension [55]. Here, the speed function off of the interface is
defined as the speed function at the closest-point-transform
(CPT) on the surface

Fext(x) ≡ F(CPT[x]) = F(x − φ(x)∇φ(x)). (18)

†They do properly produce the correct zero crossings in the
resulting volumes.
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We can now show that the corresponding level set propaga-
tion, ∂φ

∂t = Fext|∇φ|, is in fact norm-conserving

∂

∂t
|∇φ|2 = 2∇φ · ∇∂

t
φ (19a)

= 2∇φ · [∇Fext |∇φ| + Fext∇ |∇φ|] (19b)

= 2∇φ · ∇F(x − φ∇φ) (19c)

= 2∇φ · ∇F[1 − |∇φ|2 + φ∇∇φ] (19d)

= 2∇φ · ∇Fφ∇∇φ (19e)

= ∇Fφ∇|∇φ|2 = 0 (19f)

where we have assumed that φ is initialized as an Euclidean
distance function (i.e. |∇φ| = 1) in Equations (19b), (19d)
and (19f). This is used in our interactive (but approximate)
level set solver to avoid costly explicit re-normalization at
each iteration.

However, the CSG operations used extensively in our edit-
ing system are also known not to produce true distance values
for all circumstances [22,56]. We must therefore re-set the
volumetric representation of our models after each editing
operation in order to ensure that φ is approximately equal to
the shortest distance to the zero level set in the narrow band.

Such re-normalization after each editing operation can be
implemented in a number of ways. One option is to directly
solve the Eikonal equation, |∇φ| = 1 using algorithms such
as the FMM [52,53] or the Fast Sweeping Method of [57].
The former has a computational complexity of O(N log N ),
where N denotes the number of voxels in the narrow band,
whereas the latter scales asO(N ). Alternatively, one can solve
the following time-dependent Hamilton–Jacobi equation un-
til it reaches a steady state.

∂φ

∂t
= S(φ)(1 − |∇φ|) (20)

where S(φ) returns the sign of φ [9]. This technique also
has a computational complexity of O(N ). Although linear
complexity is optimal, these direct approaches are still it-
erative and thus too slow in the context of our interactive
editing framework. Instead we use a faster but approximate
solution where points on the zero level set (iso-surface) of
the embedded surface are found by linearly interpolating the
voxel values along grid edges that span the zero crossings.
These ‘zero-crossing’ edges have end-points (voxels) whose
associated φ values have opposite signs. The first step in
rebuilding φ in the narrow band after an editing operation
consists of creating the list of ‘active’ voxels, those adjacent
to a zero crossing. Euclidean distance values are computed
for these active voxels and an approximate distance metric
is then used for the remaining voxels. If x1 denotes an off-
surface point and x0 the corresponding closest point on the

level set, CPT[x1] ≡ x0 then the Taylor expansion around x0

reads as

φ(x1) = φ(x0) + h
dφ

dn

∣∣∣∣
x0

+ h2

2

d2φ

dn2

∣∣∣∣
x0

+ · · · (21a)

= φ(x0) + h (n · ∇φ)|x0
+ O(h2) (21b)

∼φ(x0) + h |∇φ|x0
= h |∇φ|x0

(21c)

where dkφ

dnk |x0
denotes the kth order directional derivative of φ

evaluated at x0. Hence for the active voxels we can approxi-
mate

φnew(x) = φold(x)/|∇φold(x)|, (22)

which is clearly most accurate near the zero level set.

The φ values of the next N layers of voxels that form
a narrow band on either side of the active list voxels are
approximated by a simple city block distance metric. First,
all of the voxels that are adjacent to the active list voxels are
found. They are assigned aφ value that is one plus the smallest
φ value of their 6-connected neighbors in the active list. Next,
all of the voxels that are adjacent to the first layer, but not in
the active list, are identified and their φ values are set to be
one plus the smallest value of their 6-connected neighbors.
This process continues until a narrow-band � voxels thick has
been created.

3.1.2. Polygonal Mesh Models

This section describes an algorithm for calculating a dis-
tance volume from a 3D closed, orientable polygonal mesh
composed of triangular faces, edges, vertices and normals
pointing outwards. The algorithm computes the closest point
on and shortest signed distance to the mesh by solving
the Eikonal equation by the method of characteristics. The
method of characteristics is implemented‡ efficiently with the
aid of computational geometry and polyhedron scan conver-
sion producing an algorithm with computational complexity
that is linear in the number of faces, edges, vertices and voxels
[58,59].

Let ξ be the closest point on a manifold to the point x. The
distance to the manifold is |x − ξ| . x and ξ are the endpoints
of the line segment that is a characteristic of the solution of
the Eikonal equation. If the manifold is smooth, then the line
connecting x to ξ is orthogonal to the manifold. If the mani-
fold is not smooth atξ, then the line lies ‘between’ the normals
of the smooth parts of the manifold surrounding ξ.

Based on this observation, a 3D Voronoi diagram is built for
the faces, edges and vertices of the mesh, with each Voronoi
cell defined by a polyhedron. Scan conversion is then utilized
to determine which voxels of the distance volume lie in each

‡http://www.acm.caltech.edu/∼seanm/projects/cpt/cpt.html
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Figure 3: Strips containing points with negative (left) and
positive (right) distance to edges.

Figure 4: Wedges containing points with negative (left) and
positive (right) distance to vertices.

Voronoi cell. By definition the face, edge or vertex associated
with the Voronoi cell is the closest element on the mesh to
the voxels in the cell. The closest point/shortest distance to
the element is then calculated for each voxel.

Suppose that the closest point ξ to a grid point x lies on a
triangular face. The vector from ξ to x is orthogonal to the
face. Thus, the closest points to a given face must lie within
a triangular prism defined by the edges and normal vector of
the face. Faces produce prisms of both positive and negative
distance depending on their relationship to the face’s normal
vector. The sign of the distance value in the prism in the
direction of the normal (outside the mesh) is negative and is
positive opposite the normal (inside the mesh). A 2D example
is presented in Figure 3. In two dimensions, the Voronoi cells
are defined as strips with negative and positive distance.

Consider a grid point x whose closest point ξ is on an edge.
Each edge in the mesh is shared by two faces. The closest
points to an edge must lie in a wedge defined by the edge
and the normals of the two adjacent faces. We define only
one Voronoi cell for each edge in the direction where the
angle between the faces is greater than π . Finally, consider a
grid point x whose closest point ξ is on a vertex. Each vertex
in the mesh is shared by three or more faces. The closest
points to a vertex must lie in a faceted cone defined by the
normals to the adjacent faces. Similar to the edge Voronoi
cells, we only define one polyhedron for each vertex. The
cone will point outwards and contain negative distance if the
surface is convex at the vertex. The cone will point inwards
and contain positive distance if the surface is concave at the
vertex. Figure 4 may be thought of as a 2D cross-section of an
edge or a vertex Voronoi cell and demonstrates the conditions

Figure 5: (a) The polyhedron for a single edge. (b) The poly-
hedra for the vertices.

Figure 6: Scan conversion of a polygon in 2D. Slicing a
polyhedron to form polygons.

for defining one positive or negative polyhedron. Figure 5a
shows a Voronoi cell (polyhedron) for a single edge. Figure 5b
shows all of the vertex polyhedra of an icosahedron.

Once the Voronoi diagram is constructed, the polyhedra
associated with each cell is scan converted in order to asso-
ciate the closest face, edge or vertex with each voxel for the
shortest distance calculation. Each polyhedron is intersected
with the planes that coincide with the grid rows to form poly-
gons. This reduces the problem to polygon scan conversion
(see Figure 6). For each grid row that intersects the resulting
polygon, we find the left and right intersection points and
mark each grid point in between as being inside the polygon.
The polyhedra that define the Voronoi cells must be enlarged
slightly to make sure that grid points are not missed due to
finite precision arithmetic. Therefore, some grid points may
be scan converted more than once. In this case, the smaller
distance, i.e. the closer point, is chosen to produce the cor-
rect weak solution to the Eikonal equation. Thus, we use a
set of ‘generalized’ Voronoi cells that are fast to construct but
do overlap—unlike true Voronoi cells. This leads to a scan
conversion algorithm with an optimal linear computational
complexity in the size of the polygonal mesh.

3.1.3. Superellipsoids

Superellipsoids are used as modeling primitives and region-
of-influence (ROI) primitives for some of our operators. In
both cases, a scan-converted representation is needed. The
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parametric equation for a superellipsoid is

S(η, ω) =




a1cosε1(η)cosε2(ω)

a2 cosε1(η)sinε2(ω)

a3 sinε1(η)


 (23)

where η ∈ [−π/2, π/2] and ω ∈ [−π , π ] are the longitudinal
and latitudinal parameters of the surface, a1, a2, a3 are the
scaling factors in the X, Y and Z directions, and ε1 and ε2
define the shape in the longitudinal and latitudinal directions
[60].

The distance to a point on the surface of a superellipsoid
defined at [η, ω] from an arbitrary point P is

d(η, ω) = ||S(η, ω) − P||. (24)

Squaring and expanding Equation (24) give

d̂(η, ω) =
(

a1cosε1(η)cosε2(ω) − Px

)2

+
(

a2 cosε1(η)sinε2(ω) − Py

)2

+
(

a3 sinε1(η) − Pz

)2
. (25)

The closest point to the superellipsoid from an arbitrary point
P can then be calculated by determining the values of [η, ω]
which minimize Equation (25). In general, Equation (25) is
minimized with a gradient descent technique utilizing vari-
able step-sizes. The values of [η, ω] may then be plugged
into Equation (23) to give the closest point on the surface of
the superellipsoid, which in turn may be used to calculate the
shortest distance.

Finding the values of η and ω at the closest point with a
gradient descent technique involves calculating the gradient
of Equation (25),

∇d̂ = [∂ d̂/∂η, ∂ d̂/∂ω]. (26)

Unfortunately, superellipsoids have a tangent vector singular-
ity near [η, ω] values that are multiples of π /2. To overcome
this problem, we re-parameterize S by arc length [54]. Once
our steepest descent (on d̂) is redefined so that it is steepest
with respect to the normalized parameters (α, β) we can use
the gradient of the re-parameterized d̂,

∇d ′ = [∂ d̂/∂α, ∂ d̂/∂β], (27)

to find the closest point with greater stability. For more details,
see [56].

The general formulation of Equation (27) significantly
simplifies for values of η and ω near multiples of π/2. In-
stead of deriving and implementing these simplifications for
all regions of the superellipsoid, the calculation is only per-
formed in the first octant (0 ≤ η ≤ π/2, 0 ≤ ω ≤ π/2).
Since a superellipsoid is 8-way symmetric, point P may be
reflected into the first octant, the minimization performed and
the solution point reflected back into P’s original octant.

Figure 7: A trimmed NURBS teapot model. The trimming
curves remove portions of each surface’s domain and main-
tain topological connectivity between adjacent surfaces.

It should be noted that for certain values of ε1 and ε2 the
normals of a superellipsoid become discontinuous, produc-
ing special degenerate primitives that must be dealt with sep-
arately. The most common cases are the cuboid (ε1 = ε2 =
0), and the cylinder (ε1 = 0, ε2 = 1). The shortest distance to
these primitives may be determined by calculating the short-
est to each individual face (6 for the cuboid, 3 for the cylinder),
and choosing the smallest value.

A faster, but less accurate, alternative for scan-converting
any implicit primitive involves utilizing the approximation
from Section 3.1.1 at the voxels adjacent to the primitive’s
surface. Given these voxel values, the distance values at the
remaining voxels may be calculated with an FMM [52,53].
(see Section 3.1.6). Also, once shortest distance can be cal-
culated for any closed primitive, distance to a CSG model
consisting of combinations of the primitive may also be com-
puted [56].

3.1.4. Trimmed NURBS models

A trimmed NURBS model has portions of its domain, and
thus portions of the surface, trimmed away [61,62]. The trim-
ming data structure is commonly a piecewise linear curve
in the parameter space and a companion piecewise curve
in the space of the surface. A set of trimmed surfaces may
be joined together into a solid model with topological con-
nectivity maintained by the trimming curves (Figure 7). Our
approach to converting a trimmed NURBS model consists
of three stages: 1) compute the minimum distance to the
Euclidean trimming curves, 2) compute local distance min-
ima to the NURBS surface patches, discarding solutions
that lie outside the trimmed domain and 3) perform an in-
side/outside test on the resulting closest point.

3.1.4.1. Distance to Trimming Curves Models typically
contain thousands of trimming segments and computing the
closest point on these segments is very similar to finding the
minimum distance to polygonal models, except the primitives
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are line segments instead of triangles. We have modified the
publically available PQP package§, which computes swept
sphere volume hierarchies around triangulated models, to use
line segments. This reduces the query time for the distance
to trimming loops from O(N ) closer to O(log N ).

3.1.4.2. Local Distance to NURBS Surfaces Similar to a
superquadric, the distance between a point and parametric
surface is described by

D2(u, v) = ||S(u, v) − P||2. (28)

Minimizing Equation (28) corresponds to finding the param-
eter values of the local closest point on that surface and can be
done by finding the simultaneous roots of the partial deriva-
tives of D2 (u, v),

(S(u, v) − P) · Su = 0 (29)

(S(u, v) − P) · Sv = 0. (30)

We search for local minima in distance until the closest
local minimum inside the trimmed domain is found. Multi-
dimensional Newton’s method can quickly find a local mini-
mum when given a reasonable starting point. However, New-
ton’s method does not always converge. For robustness, we
use Newton’s method at multiple starting locations around
a potential local minimum. As a preprocess, each original
polynomial span of the model’s original surfaces are refined
into new sub-surfaces. These refined sub-surfaces provide
multiple starting locations for each potential minimum.

The algorithm initializes Newton’s method by projecting
the query point onto the control polygon of the tested sur-
face. This projection is used to compute a surface point using
nodal mapping. Nodal mapping associates a parameter value
(the node) to each control point of that surface piece, and
then linearly interpolates between node values using the pro-
jection onto the control mesh. Evaluating the surface at this
interpolated value produces a first order approximation to the
closest point on the surface and a reasonable starting value
for Newton’s method to improve.

The closest point returned by Newton’s method may be
outside of the trimmed domain. Again, a modified PQP al-
gorithm for planar line segments is used to find the closest
point on the parametric trimming segments of that surface.
Valid parametric solutions are to the right of the closest trim-
ming line segment. Average normals are stored at the vertices
of the trimming curve in order to correctly perform the in-
side/outside domain test.

The closest valid point on the surface is compared with the
distance to the spatial representation of the trimming loops,
and the closest is used as the closest point on the model. If the
closest point is on a surface patch, the inside/outside status
of the query is determined by dotting the vector from the
query point to the closest point with the surface normal at the

§ http://www.cs.unc.edu/∼geom/SSV/

Figure 8: A slice through a 232 × 156 × 124 distance vol-
ume of the Utah teapot. The zero level set is highlighted in
red.

closest point. The sign of the dot product gives the sign of
the distance. If the closest point is on a trimming loop, we
use a classic ray shooting algorithm and count the number
of model crossings to determine whether the query point is
inside or outside.

3.1.4.3. Acceleration Techniques NURBS surfaces have a
local convex hull property when the homogeneous coordi-
nate of the control points have positive values. These convex
hulls provide a natural means of computing a lower bound on
the minimum distance from the query point to the contained
portion of surface. We use the GJK package¶ as a robust
implementation of Gilbert’s algorithm [63,64] to efficiently
compute a lower bound on distance. Refined surfaces with a
lower distance bound larger than the current minimum dis-
tance cannot contribute a closer point, so they can be ignored.

We note that the minimum distance from one query to the
next cannot vary more than the distance between the two
query points. We therefore initialize the minimum distance
for a new query as the last minimum distance plus the space
between query points. This helps to quickly remove surfaces
to be tested using the convex hull technique. Finally, the ray
intersection inside/outside test can be accelerated by noting
that if the last query point was outside, then the new query
cannot be inside if the last minimum distance was larger than
distance between query points, and vice versa when the last
query was inside. This efficiently removes the need to test the
sign of many queries. Figure 8 presents a slice from a signed
distance volume produced from a trimmed NURBS models
containing 20 patches and four trimming curves.

3.1.5. Point sets

Some level set editing operators need to determine the closest
member in a point set to another arbitrary point. This capa-
bility is used during level set blending (when calculating the
distance to an intersection ‘curve’, see Figure 15) and em-
bossing (moving a level set surface toward a point set; see

¶ URL: http://web.comlab.ox.ac.uk/oucl/work/stephen.cameron/
distances/
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Figure 9: An embossed level set teapot model.

Figure 9). We utilize the ANN library of Mount and Arya.||

The library calculates closest point queries of a point set in
O(log N ) time by first storing the point set in a hierarchical
data structure that partitions the space around the point set
into non-overlapping cells. Given an input point, the hierar-
chical structure is traversed and candidate cells are identified
and sorted [11]. A priority search technique is then utilized
to find the closest point (within some tolerance ε) in the list
of candidate cells [65]. When the points are uniformly dis-
tributed, we have found that storing the point set in a K-D tree
[10] provides the best performance. For clustered points, stor-
ing the point set in the balanced box decomposition (BBD)
tree described in [11] produces the fastest result.

3.1.6. Fast Marching Method

We utilize an FMM to generate distance volumes when given
distance values only at voxels immediately adjacent to the
zero level set. This can occur when scan-converting implicit
primitives, and generating distance volumes from a level set
segmentation [35]. The FMM is also used to calculate the
distance values needed for our morphological operators.

The solution of the Eikonal Equation (7) with the boundary
condition φ|S = 0 (a zero level set) is the distance from the
manifold S. The characteristics of the solution are straight
lines which are orthogonal to S. We call the direction in which
the characteristics propagate the downwind direction. More
than one characteristic may reach a given point. In this case,
the solution is multi-valued. One can obtain a single-valued
weak solution by choosing the smallest of the multi-valued
solutions at each point. This is a weak solution because φ is
continuous, but not everywhere differentiable. The equation
may be efficiently and directly solved by ordering the grid
points of the volume, so that information is always propagated
in the direction of increasing distance. This is FMM [53]. It
achieves a computational complexity of O(N log N ).

|| URL: http://www.cs.umd.edu/∼mount/ANN

The FMM is similar to Dijkstra’s algorithm [66,67] for
computing the single-source shortest paths in a weighted,
directed graph. In solving this problem, each vertex is as-
signed a distance, which is the sum of the edge weights
along the minimum-weight path from the source vertex. As
Dijkstra’s algorithm progresses, the status of each vertex is
either known, labeled or unknown. Initially, the source vertex
in the graph has known status and zero distance. All other ver-
tices have unknown status and infinite distance. The source
vertex labels each of its adjacent neighbors. A known ver-
tex labels an adjacent vertex by setting its status to labeled
if it is unknown and setting its distance to be the minimum
of its current distance and the sum of the known vertices’
weight and the connecting edge weight. It can be shown that
the labeled vertex with minimum distance has the correct
value. Thus the status of this vertex is set to known, and it
labels its neighbors. This process is repeated until no labeled
vertices remain. At this point, all the vertices that are reach-
able from the source have the correct shortest path distance.
The performance of Dijkstra’s algorithm depends on quickly
determining the labeled vertex with minimum distance. One
can efficiently implement the algorithm by storing the labeled
vertices in a binary heap. Then the minimum labeled vertex
can be determined in O(log n) time where n is the number of
labeled vertices.

Sethian’s FMM differs from Dijkstra’s algorithm in that a
finite difference scheme (see Equation (36)) is used to label
the adjacent neighbors when a grid point becomes known.
If there are N grid points, the labeling operations have a
computational cost of O(N ). Since there may be at most N
labeled grid points, maintaining the binary heap and choos-
ing the minimum labeled vertices make the total complexity
O(N log N ).

3.2. Solving the Level Set Equation

Several editing operators modify geometric objects, repre-
sented by volume data sets (a 3D grid), by evolving the
level set PDE (Equation (8)). As was first noted by Os-
her and Sethian [1] this PDE can be solved effectively us-
ing finite difference (FD) schemes originally developed for
Hamilton–Jacobi type equations. The strategy involves dis-
cretizing Equation (8) on a regular 3D spatial grid and an
adaptive 1D temporal grid. The use of such grids raises a
number of numerical and computational issues that are im-
portant to the stability, accuracy and efficiency of the imple-
mentation. The central issues are the proper choice of a time
integration scheme, the spatial discretization of the Hamilto-
nian (e.g. F |∇φ|) and finally the development of an appro-
priate narrow band algorithm for localizing computation in
the spatial dimensions.

There exists a large number of implicit and explicit in-
tegration schemes that can be used to propagate Equation
(8) forward in time [68]. The implicit schemes have the ad-
vantage of being unconditionally stable with respect to the
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time discretization, but typically at the cost of large truncation
errors. They also require massive matrix manipulations which
make them hard to implement and more importantly increase
the computation time per time step. This is in strong contrast
to explicit methods like forward Euler or the more accurate
TVD Runge-Kutta scheme [69] that are relatively simple to
set up and program. Unfortunately, explicit schemes often
have stability constraints on their time discretization given
a certain space discretization. One exception to this rule is
the semi-Lagrangian integration scheme that can be consid-
ered an unconditionally stable explicit scheme. However, the
semi-Lagrangian scheme is developed specifically for trans-
port (i.e. advection) equations and as such it is unclear how to
generalize it to diffusion problems like mean curvature flow
used extensively in our level set framework.

It is our experience that for the level set problems con-
sidered in this paper, the stability constraints associated with
a simple explicit integration scheme like the ‘forward Euler
method’

um+1
i, j,k = um

i, j,k + �t�um
i, j,k (31)

offer a good balance of speed, fast update times and simplic-
ity. In this equation, um denotes the approximation of φ(x, t)
at the mth discrete time step, �t is a time-increment that is
chosen to ensure stability and �um

i, j,k is the discrete approx-
imation to ∂φ/∂t evaluated at grid point xi, j,k and time-step
tn. We shall assume, without a loss in generality, that the grid
spacing is unity. The initial conditions u0 are established by
the scan conversion algorithms discussed in the previous sec-
tions and the boundary conditions produce zero derivatives
toward the outside of the grid (Neumann type).

The next step expresses the time-increment, �um
i, j,k

of Equation (31), in terms of the fundamental level set
Equation (8b)

�um
i, j,k = Fi, j,k

∣∣∇um
i, j,k

∣∣ (32a)

≈ Fi, j,k

√ ∑
w∈x,y,z

(
δwum

i, j,k

)2
(32b)

where δw um
i, j,k approximates ∂um

i, j,k/∂w, i.e. the discretiza-
tion of the partial derivative of u with respect to the spatial
coordinate w ∈ x , y, z. The final step expresses these spatial
derivatives as well as the speed function, Fi, j,k , in terms of
finite differences (FD) on the spatial 3D grid. Many different
FD schemes with varying stencil and truncation error exist.
For accurate level set simulations, the ENO [70] or WENO
[71] schemes are very popular, but we are more concerned
with computational efficiently in which case the following
simple FD schemes are preferred:

∂um
i, j,k

∂w
= δ+

w um
i, j,k + O(�w) (33a)

= δ−
w um

i, j,k + O(�w) (33b)

= δ±
w um

i, j,k + O(�w2) (33c)

where short-hand notations are defined for the following FD
expressions:

δ+
x um

i, j,k = um
i+1, j,k − um

i, j,k

�x
(34a)

δ−
x um

i, j,k = um
i, j,k − um

i−1, j,k

�x
(34b)

δ±
x um

i, j,k = um
i+1, j,k − um

i−1, j,k

2�x
. (34c)

It is very important to note that the explicit choice of the
FD scheme used to discretize the Hamiltonian, F |∇φ|, is
highly dependent on the actual functional expression of F .
This is a consequence of the fact that the corresponding so-
lutions to the level set PDE with different speed-functions
can exhibit very different mathematical behavior. This is for-
mulated more precisely by the CFL condition for the two
important classes of level set PDEs, namely hyperbolic and
parabolic.

3.2.1. Upwind Schemes for Hyperbolic Advection

Two versions of the fundamental level set equation, Equation
(8), are

∂φ

∂t
= V · ∇φ = a|∇φ| (35)

which correspond to advection (i.e. transport) of a level set
surface by a vector field, V , or by a scalar, a, in the nor-
mal direction of the surface. Advection examples are the em-
bossing operator described in [2,72] or constant normal flow
when performing surface dilation or erosion. In the case of
embossing the level set surface is advected in a flow field
generated by attraction forces to other geometry like a sur-
face or a set of points. Such advection problems are also
common in computational fluid dynamics, and the corre-
sponding hyperbolic PDEs have the mathematical property
of propagating information in certain characteristic direc-
tions. The explicit finite difference scheme used for solv-
ing the corresponding hyperbolic level set equations should
be consistent with the information flow direction. Indeed,
this is nothing more than requiring the numerical scheme
to obey the underlying ‘physics’ of the level set surface
deformation.

The Courant–Friedrichs–Lewy (CFL) stability condition
[73] states that the domain of dependence of the discretized
FD problem has to include the domain of dependence of
the differential equation in the limit as the length of the FD
steps goes to zero. Loosely speaking, this means the stencil
used for the FD approximation of the spatial derivatives in
Equation (32a) should only include sample points (or more
correctly information) from the domain of dependence of the
differential equation, i.e. from the side of the zero-crossing
opposite to the direction in which it moves— or simply
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up-wind to the level set surface. This amounts to using an
up-wind scheme that employs anisotropic FD like the single-
sided derivatives in Equations (34a) and (34b). The partial
derivatives in the term |∇φ| of Equation (32b) are computed
using only those derivatives that are up-wind relative to the
movement of the level set. In our initial work, we used the
upwind scheme described in [8], but we now use the more
accurate Godunov’s method [73] which can be expressed in
the following compact form:(

δwum
)2

= Max
(
S(F)δ+

w um, −S(F)δ−
w um, 0

)2
(36)

where the grid indices (i , j , k) have been omitted for simplic-
ity and S(F) denotes the sign of F . Note that Equation (36)
assumes F |∇φ| to be a convex function.

Another consequence of the CFL condition is that for the
numerical FD scheme to be stable, the corresponding nu-
merical wave has to propagate at least as fast as the level
set surface. Since the maximum surface motion is defined
by the speed-function Fi, j,k and the FD scheme (by defini-
tion) propagates the numerical information exactly one grid
cell (defined by {�x , �y, �z)}) per time iteration, an upper
bound is effectively imposed on the numerical time steps,
�t in Equation (31). This can be expressed in a conservative
time step restriction

�t <
Min(�x, �y, �z)

supi, j,k∈S |Fi, j,k | (37)

which can be derived by Von Neumann stability analysis [74]
assuming F can be approximated as a linear function in φ.

3.2.2. Central-Difference for Parabolic Diffusion

Another fundamental level set equation is the geometric heat
equation

∂φ

∂t
= αK |∇φ| ≈ α∇2φ, (38)

where α is a scaling parameter and K is mean curvature, Equa-
tion (10b). As discussed in Section 2.2, mean curvature flow
corresponds to minimization of surface area, Equation (17b).
In our level set framework [2,72], such curvature based flow
is used extensively in the blending and smoothing/sharpening
operators. If the level set function is normalized to a signed
distance function, i.e. |∇φ| = 1, the geometric heat equation
simplifies to the regular (thermo-dynamic) heat equation as
indicated in Equation (38). Thus, the physical interpretation
of Equation (38) is diffusion, and the corresponding parabolic
PDE has a mathematical behavior that is very different
from the hyperbolic transport equations in Equation (35).
In contrast to the latter, Equation (38) does not propagate in-
formation in any particular direction. More specifically, the
parabolic PDE has no real characteristics associated with it
and hence the corresponding solution at a particular time and
position depends (in principle) on the previous global solu-

tions. Consequently, parabolic PDEs have infinite domain of
dependence and one needs to use ordinary central finite dif-
ference schemes to discretize the spatial derivatives. So, for
the first-order partial derivatives in Equation (32b), we sim-
ply use Equation (34c). Discretization of the mean curvature
will be the topic of the next section.

Since parabolic PDEs have infinite mathematical domain
of dependence, the propagation speed is also infinite and the
CFL stability condition described in the previous section does
not apply — or more correctly is not sufficient. Instead, one
has to perform a Von Neumann stability analysis [74] on
the FD scheme described above. This is an error analysis in
Fourier space which leads to the following stability constraint
on the time steps,

�t <

(
2α

�x2
+ 2α

�y2
+ 2α

�z2

)−1

= �x2

6α
. (39)

Hence, we conclude that when discretizing the parabolic
Equation (38), on a uniform grid, �t scales asO(�x2) which
is significantly more stringent than the hyperbolic Equation
(37) where �t scales as O(�x). This is a consequence of
the fact that the CFL condition is a necessary, but not always
sufficient stability, condition for a numerical FD scheme.

3.2.3. Computing Mean Curvature

According to Equation (12b), the mean curvature, appearing
in Equation (38), can be expressed as

K = 1

2
∇ · ∇φ

|∇φ| = φ2
x (φyy + φzz) − 2φyφzφyz

2
(
φ2

x + φ2
y + φ2

z

)3/2

+ φ2
y (φxx + φzz) − 2φxφzφxz

2
(
φ2

x + φ2
y + φ2

z

)3/2

+ φ2
z (φxx + φyy) − 2φxφyφxy

2
(
φ2

x + φ2
y + φ2

z

)3/2

(40)

using the short-hand notation φ xy ≡ ∂2φ/∂x∂ y. For the dis-
cretization, we can use the following second-order central
difference schemes

∂2um
i, j,k

∂x2
= um

i+1, j,k − 2um
i, j,k + um

i−1, j,k

�x2
+ O(�x2)

(41a)

∂2um
i, j,k

∂x∂ y
= um

i+1, j+1,k − um
i+1, j−1,k

4�x�y

+ um
i−1, j−1,k − um

i−1, j+1,k

4�x�y
+ O(�x2, �y2).

(41b)

We found this direct discretization of mean curvature by
central FD to occasionally produced instabilities and small
oscillations. As an alternative, we developed a different FD
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Figure 10: The normal derivative matrix N, defined in Equa-
tion (42), is computed by using the central finite differences of
staggered (i.e. not grid-centered) normals. For instance, the
normal vector centered at the green triangle is approximated
using Equations (44a–c).

scheme based on staggered normals that proved more stable
and also had the added benefit of easily allowing for the com-
putation of other types of curvature. The principle curvatures
and principle directions are the eigenvalues and eigenvectors
of the shape matrix [54]. For an implicit surface, the shape
matrix is the derivative of the normalized gradient (surface
normals) projected onto the tangent plane of the surface. If
we let the normals be n = ∇φ/|∇φ|, the derivative of this is
the 3 × 3 matrix

N ≡ ∇ ⊗ n =
[

∂n
∂x

∂n
∂ y

∂n
∂z

]T

(42)

where ⊗ is the exterior (tensor) product. The projection of
this derivative matrix onto the tangent plane gives the shape
matrix B = N(I − n ⊗ n). The eigenvalues of the matrix B
are k 1, k 2 and zero, and the eigenvectors are the principle
directions and the normal, respectively. Because the third
eigenvalue is zero, we can express mean curvature as Tr[�]/2
where ∆ denotes the diagonalization of the shape matrix,
B. However, since the trace of a matrix is invariant under
orthogonal transformations we also have

K = 1

2
Tr[B] = 1

2
Tr [∇ ⊗ n(I − n ⊗ n)] . (43)

We directly compute Eq. (43) by the method of differences of
normals [75,76] in lieu of central differences. This approach
computes normalized gradients at staggered grid points and
takes the difference of these staggered normals to get cen-
trally located approximations to N. (see Figure 10). The shape

matrix B is computed with gradient estimates based on cen-
tral differences. The resulting curvatures are treated as speed
functions (motion in the normal direction), and the associated
gradient magnitude is computed using central-difference (i.e.
Equation (34c)). For instance, the normal vector centered at
the green triangle in Figure 10 is approximated using the
following first-order difference expressions

∂um
i+ 1

2 , j,k

∂x
= δ+

x um
i, j,k + O(�x) (44a)

∂um
i+ 1

2 , j,k

∂ y
= 1

2

(
δyum

i+1, j,k + δyum
i, j,k

) + O(�y) (44b)

∂um
i+ 1

2 , j,k

∂z
= 1

2

(
δzu

m
i+1, j,k + δzu

m
i, j,k

) + O(�z) (44c)

which involve the six nearest neighbors (18 in 3D).

3.2.4. Sparse-Field Narrow Band Method

In the original level set formulation of [1], the fundamental
PDE, Eq. (8), is solved in the full embedding space of the sur-
face leading to a computational complexity of O(n3), where
n is the side length of a bounding volume. This sub-optimal
computational complexity was improved with the introduc-
tion of a narrow band method in [7] which restricted (most)
computations to a thin band of active voxels immediately sur-
rounding the interface, thus reducing the time complexity to
O(n2). This work was later followed up with more advanced
narrow band methods like the accurate scheme of [9] and the
fast but approximate sparse fields method of [8]. These nar-
row band methods all rely on the assumption that only one
level set solution (typically the zero level set) is of interest,
which is exactly the case in our editing framework. Since
our focus is on interactivity rather then accuracy, we found
the latter sparse fields method to be most useful. Below we
briefly outline the main ideas behind this narrow band method
and refer the reader to [8] for more details and experimental
validations. We will present the sparse field algorithm in 2D
and simply note that the generalization to 3D (or higher) is
trivial.

Figure 11 illustrates the discrete sampling of a level set,
ui, j , for a closed (black) curve on a uniform 2D grid. If we
assume the grid size to be one, we can define layers, Ln, of
grid points embedding the curve

Ln =
{

(i, j)

∣∣∣∣ui, j ∈
[

n − 1

2
, n + 1

2

]}
(45)

where we have made use of the fact that ui, j is (initially)
defined as a signed Euclidean distance function to the curve.
Convenient data structures for these layers are linked lists.
This is illustrated in Figure 11 for the zero crossing layer, L0,
and the first inner layer, L −1, shaded, respectively, green and
red. It then follows that the set of 2N + 1 layers, Ln, n = 0,
±1, ±2, . . . , ±N effectively defines a narrow band of grid
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Figure 11: Linked-list data structures provide efficient ac-
cess to those grid points with values and status that must be
updated.

points with values [−N − 1
2 , N + 1

2 ] embedding the curve.
The number of layers in the narrow band should be deter-
mined by the footprint of the finite difference stencils used
to calculate derivatives. Since our editing framework exten-
sively uses mean curvature, it follows from the discussion in
Section 3.2.3 that at least five layers are necessary (2 inside
layers, 2 outside layers and the zero crossing layer).

The sparse field method approximately solves the level set
equation, Equation (8), only in the narrow band of 2N + 1
layers in a self-consistent way, i.e. Equation (45) should re-
main valid after each iteration of the time integration. In fact,
to improve speed and preserve normalization (i.e. |∇φ| = 1),
the sparse field method only explicitly solves Equation (8)
in L0 using velocity extension, Equation (18), and then uses
simple ‘city-block’ distances to update φ in the remaining
layers. To improve accuracy, it further employs the first-order
accurate distance approximation in Equation (22). (See dis-
cussions related to Equations 19 and 21). For the temporal
and spatial discretizations, we use Equations (36) and (37)
with advection (hyperbolic speed functions) whereas Equa-
tions (34c) and (39) are used for diffusion (e.g. parabolic
mean curvature flow). As grid points in a layer Ln pass out of
the range [n − 1

2 , n + 1
2 ], they are removed and other neigh-

boring grid points are added. The overall structure of the
sparse field method is outlined in Algorithm 1.

3.2.5. Level Set Subvolumes

One of the most effective techniques for increasing interactiv-
ity in our level set editing system involves restricting compu-
tations to a subregion of the volume data set. This is feasible
because many of the editing operators by their very nature
are local. The selection of the proper subvolume during the
editing process is implemented with grid-aligned bounding
boxes. Having the bounding boxes axis-aligned makes them
straightforward to compute and manipulate, and having them
grid-aligned guarantees that intersections directly correspond
to valid subvolumes. The bounding box position and size are

Algorithm 1: Pseudo-code for the sparse-fields method of
[8]. As illustrated in Figure 11, Ln denotes linked lists of
grid points in the nth layer of the narrow band and Sn are
simply auxiliary lists of grid points that change layer. An
implementation of this algorithm is available in the VISPACK
library at http://www.cs.utah.edu/∼whitaker/vispack.

based on the geometric primitive, e.g. superellipsoid, triangle
mesh or point set, utilized by a particular operator.

Employing bounding boxes within the local level set edit-
ing operators (blending, smoothing, sharpening and emboss-
ing) significantly lessens the computation time during the
editing process. These operators are defined by speed func-
tions (F()) that specify the speed of the deformation on the
surface. For the smoothing, sharpening and embossing op-
erators, the user specifies the portion of the model to be
edited by positioning a region-of-influence (ROI) primitive.
The speed function is defined to be zero outside of the ROI
primitive. During a blending operation, a set of intersection
voxels (those containing both surfaces being blended) are
identified and blending only occurs within a user-specified
distance of these voxels. The speed function is zero beyond
this distance. In both cases, no level set computation is needed
in the outer regions. Given the ROI primitive and the dis-
tance information from the set of intersection voxels, a grid/
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Figure 12: Volume renderings (left & center) of a winged, two-headed dragon created by merging pieces from a griffin and
dragon model. A physical model (right) manufactured from the level set model.

Figure 13: Applying a morphological opening to a laser scan reconstruction of a human head (left). The opening performs
global smoothing by removing protruding structures smaller than a user-defined value d. First, an offset surface a distance d
inwards (erosion) is created (center). Then the signed distance is computed to this d level set using the Fast Marching Method
[53] and next it is used to define an offset surface distance d outwards (dilation) to produce the smoothed result (right).

Figure 14: Scan conversion errors near the teapot spout (left). These errors were produced by an early pre-debugged version of
our software. Placing a (red) superellipsoid around the errors (middle). The errors are smoothed away with a level set smoothing
operator (right).

axis-aligned bounding box that contains only those regions
where the speed function is non-zero can be defined. A sub-
volume is ‘carved’ out from the complete model by perform-
ing a CSG intersection operation with the signed distance

field associated with the bounding box and the model’s vol-
ume. The resulting subvolume is then passed to the level
set solver, and inserted back into the model’s volume after
processing.
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Figure 15: Repairing a Greek bust. The right cheek is first copied, mirrored, pasted and blended back onto the left side of the
bust. Next a nose is copied from a human head model, scaled and blended onto the broken nose of the Greek bust. Finally the
hair of the bust is chiseled by a localized sharpening operation.

3.3. Efficient Mesh Extraction

As indicated by the green box in Figure 1, level set surfaces
may be rendered either directly by means of ray casting or in-

directly by a simple two-step procedure (a polygonal mesh is
extracted from the volume data set and displayed on graphics
hardware). We have successfully tested both (see Figures 12
and 15) and found the latter to perform and scale better with
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the size of our volumes. Implementing a few straightforward
mesh extraction procedures makes the overhead of the indi-
rect rendering approach insignificant. Conventional graphics
hardware is then capable of providing interactive frame-rates
for all of the models presented in this paper.

3.3.1. Fast Marching Cubes

Much work has been presented over the years on improv-
ing the quality of the triangle meshes extracted from volume
data sets, the fundamental data structure of level set models
[77–79]. However, these improvements come at a cost, and
sacrifice speed for improved mesh structure. Fortunately, the
simplicity of the original Marching Cubes (MC) algorithm
[80] allows us to easily optimize mesh extraction in the level
set editing system.

The first optimization relies on the fact that level set models
are represented by a signed distance field. This allows us to
easily leap-frog through the volume as opposed to marching
through the entire volume. An effective implementation of
this idea increments the innermost loop in the triple-nested
for-loop of the MC algorithm by the distance of the cur-
rent voxel value (i.e. floor |ui, j,k |). While more sophisticated
space-pruning schemes can certainly be designed, we found
this straightforward step balances the potential complexity of
leap-frogging and the relatively fast triangulation table look-
up of the MC algorithm.

Another variation of the MC algorithm that works effec-
tively with our level set models utilizes the sparse-field rep-
resentation presented in Section 3.2.4. Since the sparse-field
method implements a narrow-banded distance field with a
linked list of active voxels, we know at each step which
voxels contain the level set of interest. The list is traversed
and only those voxels needed to generate the MC mesh are
processed.

3.3.2. Incremental Mesh Extraction

Even though the procedures described so far significantly
improve the original MC algorithm, they still do not make
our indirect rendering approach truly interactive. Fortunately,
there are other algorithms that can be employed to achieve
the goal of interactive rendering of the deforming level set
surfaces. Mesh extraction can be significantly accelerated by
incrementally updating the mesh only in regions where the
level set surface changes.

We start by making the following observations about the
bounding boxes introduced in Section 3.2.5. First, the def-
inition of the speed functions that utilize bounding boxes
guarantees that the mesh outside of the bounding boxes is un-
changed after a local editing operation. Second, the bounding
boxes are by definition grid-aligned and all vertices of an MC
mesh lie, by construction, on grid edges. These observations
lead to the following incremental mesh extraction algorithm.

Table 1: Distribution of algorithms used in each module in
our interactive level set model editing system.

Given a complete global mesh, we first trim away all triangles
with vertices inside a bounding box. Next, for each subse-
quent iteration of the level set calculation, new triangles are
only extracted from the sub-volume defined by the bound-
ing box. The resulting new triangles are then incrementally
added to the trimmed mesh, which by construction properly
connect without the need for additional triangle clipping.

Given the collection of these procedures, the mesh of the
deforming level set surface may be interactively displayed
while the level set equation is being iteratively solved, al-
lowing the user to view the evolving surface and terminate
processing once a desired result is achieved.

4. System Modules

Table 1 identifies the specific algorithms utilized in each of
the modules in our interactive level set model editing system.
Since a wide variety of geometric models may be imported
into our system, many algorithms are needed to perform the
necessary conversions, including shortest distance calcula-
tions (Sections 3.1.3, 3.1.4), scan conversion (Section 3.1.2)
and the Fast Marching Method (Section 3.1.6). All of the
level set deformation operators (blending, smoothing, sharp-
ening and embossing) use bounding boxes (Section 3.2.5),
numerical integration (Section 3.2) and the sparse-field tech-
niques (Section 3.2.4). The blending and embossing oper-
ators use K–D trees (Section 3.1.5) to quickly find closest
points. The smoothing, sharpening and embossing operators
utilize shortest distance calculations (Section 3.1.3) for lo-
calizing computation. The morphological operators employ
the Fast Marching Method (Section 3.1.6) to calculate the
needed distance information. Our mesh extraction algorithm
also extensively utilizes bounding boxes and the active list of
the level set solver to implement an incremental version of the
Marching Cubes algorithm [80]. All of the modules use some
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kind of narrow band calculation to either limit computation to
only those voxels near the level set of interest (Section 3.2.4),
or to re-establish proper distance information in the narrow
band after performing its operation (Section 3.1.1).

5. Results

We have produced numerous models with our level set editing
system. The teapot (NURBS surface), dragon (scanned vol-
ume), human head and bust (polygonal surfaces) and eyelet
on the winged dragon’s back (superquadric) in Figures 9, 12,
13, 15 demonstrate that we are able to import several types
of models into our system. The CSG operators with blending
were utilized to produce the winged, double-headed dragon
and repaired bust in Figures 12 and 15. The images of the
dragon are volume rendered and were interactively produced
by VTK’s Volview program utilizing TeraRecon’s Volume-
Pro 1000 volume rendering hardware. The smoothing oper-
ator is used to fix problems in a model produced by an early,
unfinished version of the NURBS scan conversion code in
Figure 14. The embossing operator produced the result in
Figure 9. The results of our morphological operators [4] are
presented in Figure 13. It should be noted that the images
in Figure 15 are screen shots from an interactive editing ses-
sion with our system, running on a Linux PC with an AMD
Athlon 1.7 GHz processors. All of the following timing in-
formation is produced on this computer.

A level set editing session, as illustrated in Figure 15, be-
gins by first importing a level set model into our system. The
process of generating an initial level set model, e.g. with scan
conversion, is not incorporated into the system. It is consid-
ered a separate preprocessing step. Once a model∗∗ is brought
into the system, it and the tools to modify it may be inter-
actively (at ∼30Hz) manipulated and viewed. Once a level
set editing operation (e.g. blending, smoothing, embossing
and opening) is invoked, an iterative computational process
modifies the model. After each iteration, the current state of
the model is displayed, allowing the user to stop the opera-
tion, once a desired result is produced. We have found that
most operations need approximately 10 iterations to produce
a satisfactory result. Each iteration takes approximately 1/2
to 1 second on an AMD Athlon 1.7 GHz – this includes level
set evolution, mesh extraction and display. Therefore most
level set operations take 5 – 10 seconds to complete. The
CSG operations are not iterative and require less than 1 sec-
ond of computation time. These computation times provide
an environment that allows a user to quickly specify an oper-
ation, and then wait just a few seconds for it to complete. Our
system includes an undo facility, giving the user the ability to
rapidly try numerous editing operations until the best result
is found.

∗∗ The models in this paper are represented by volume data sets
with a resolution of approximately 2563.

6. Conclusions

This paper has described the collection of techniques and al-
gorithms (some new, some pre-existing) needed to create an
interactive editing system for level set models. It has sum-
marized the algorithms for producing level set input models
and, more importantly, for localizing/minimizing computa-
tion during the editing process. These algorithms include dis-
tance calculations, scan conversion, closest point determina-
tion, fast marching methods, bounding box creation, incre-
mental and fast mesh extraction, numerical integration and
narrow band techniques. Together, these algorithms provide
the capabilities required for the interactive editing of level set
models.

In the near future, we plan to implement our editing frame-
work with the advanced and compact level set data structure
of Nielsen and Museth [81]. This will allow us for the first
time to edit high-resolution level set surfaces.

Acknowledgments

We would like to thank Alan Barr and the other members of
the Caltech Computer Graphics Group for their assistance and
support. Additional thanks to Katrine Museth and Santiago
Lombeyda for assistance with the figures and Jason Wood for
developing useful visualization tools. The teapot model and
the manufactured dragon figurine were provided by the Uni-
versity of Utah’s Geometric Design and Computation Group.
The Greek bust and human head models were provided by
Cyberware, Inc. The dragon and griffin models were provided
by the Stanford Computer Graphics Laboratory and Caltech’s
Multires Modeling Group. This work was financially sup-
ported by National Science Foundation grants ASC-8920219,
ACI-9982273, ACI-0083287 and ACI-0089915, and subcon-
tract B341492 under DOE contract W-7405-ENG-48 as well
as the Swedish Research Council (Grant# 617-2004-5017).
Finally, we would like to thank the anonymous reviewers of
this paper.

References
1. S. Osher and J. Sethian. Fronts propagating with

curvature-dependent speed: Algorithms based on
Hamilton-Jacobi formulations. Journal of Computa-
tional Physics, 79, pp. 12–49, 1988.

2. R. Whitaker and D. Breen. Level-set models for the
deformation of solid objects. In The Third Interna-
tional Workshop on Implicit Surfaces, Eurographics,
pp. 19–35, 1998.

3. R. Courant, K. O. Friedrichs and H. Lewy. Uber die
partiellen differenzengleichungen der mathematisches
physik. Math. Ann., 100, pp. 32–74, 1928.

4. J. Serra. Image Analysis and Mathematical Morphology.
Academic Press, New York, 1982.

c© The Eurographics Association and Blackwell Publishing Ltd 2005



K. Museth et al. / Level Set Algorithms 839

5. G. Sapiro and A. Tannenbaum. Affine invariant scale
space. International Journal of Computer Vision, 11, pp.
25–44, 1993.

6. P. Maragos. Differential morphology and image process-
ing. IEEE Trans. on Image Processing 5(6):922–937,
June 1996.

7. D. Adalsteinsson and J. Sethian. A fast level set method
for propagating interfaces. Journal of Computational
Physics, pp. 269–277, 1995.

8. R. Whitaker. A level-set approach to 3D reconstruc-
tion from range data. International Journal of Computer
Vision, 29(3):203–231, 1998.

9. D. Peng, B. Merriman, S. Osher, H.-K. Zhao and
M. Kang. A PDE-based fast local level set method.
Journal of Computational Physics, 155, pp. 410–
438, 1999.

10. M. de Berg, M. van Kreveld, M. Overmars and O.
Schwarzkopf. Computational Geometry: Algorithms
and Applications. Springer, Berlin, 1997.

11. S. Arya, D. Mount, N. Netanyahu, R. Silverman and
A. Wu. An optimal algorithm for approximate nearest
neighbor searching. Journal of the ACM, 45, pp. 891–
923, 1998.

12. C. Hoffmann. Geometric and Solid Modeling. Morgan
Kaufmann, 1989.

13. S. Wang and A. Kaufman. Volume-sampled 3D mod-
eling. IEEE Computer Graphics and Applications,
14(5):26–32, September 1994.

14. T. Galyean and J. Hughes. Sculpting: An interactive vol-
umetric modeling technique. In Proc. SIGGRAPH ’91,
pp. 267–274, July 1991.

15. S. Wang and A. Kaufman. Volume sculpting. In 1995
Symposium on Interactive 3D Graphics, pp. 151–156,
1995.

16. R. Avila and L. Sobierajski. A haptic interaction method
for volume visualization. In Proc. IEEE Visualization
’96, pp. 197–204, 1996.

17. E. Ferley, M.-P. Cani and J.-D. Gascuel. Practical volu-
metric sculpting. The Visual Computer, 16(8):469–480,
2000.

18. B. Cutler, J. Dorsey, L. McMillan, M. Müller and
R. Jagnow. A procedural approach to authoring solid
models. ACM Trans. on Graphics (Proc. SIGGRAPH),
21(3):302–311, July 2002.

19. H. Arata, Y. Takai, N. Takai and T. Yamamoto. Free-form
shape modeling by 3D cellular automata. In Proc. Shape
Modeling International Conference, pp. 242–247, 1999.

20. K. McDonnell, H. Qin and R. Wlodarczyk. Virtual clay:
A real-time sculpting system with haptic toolkits. In
Proc. Symposium on Interactive 3D Graphics, pp. 179–
190, 2001.

21. R. MacCracken and K. Roy. Free-form deformations
with lattices of arbitrary topology. In Proc. SIGGRAPH
’96, pp. 181–188, 1996.

22. R. Perry and S. Frisken. Kizamu: A system for sculpting
digital characters. In Proc. SIGGRAPH, 2001, pp. 47–
56, August 2001.

23. E. Ferley, M.-P. Cani and J.-D. Gascuel. Resolution adap-
tive volume sculpting. Graphical Models, 63(6):459–
478, November 2001.

24. D. Meagher. Geometric modeling using octree encoding.
Computer Graphics and Image Processing, 19(2):129–
147, June 1982.

25. S. Frisken, R. Perry, A. Rockwood and T. Jones. Adap-
tively sampled distance fields: A general representation
of shape for computer graphics. In Proc. SIGGRAPH
2000, pp. 249–254, 2000.

26. J. Bloomenthal et al. (Eds.). Introduction to Implicit Sur-
faces. Morgan Kaufmann, 1997.

27. B. Wyvill, E. Galin and A. Guy. Extending the CSG tree.
warping, blending and boolean operations in an implicit
surface modeling system. Computer Graphics Forum,
18(2):149–158, June 1999.

28. A. Raviv and G. Elber. Three-dimensional freeform
sculpting via zero sets of scalar trivariate functions.
Computer-Aided Design, 32, pp. 513–526, August
2000.

29. M. Casale and E. Stanton. An overview of analytic solid
modeling. IEEE Computer Graphics and Applications,
5(2):45–56, February 1985.

30. J. Sethian. Level Set Methods and Fast Marching Meth-
ods, second ed. Cambridge University Press, Cambridge,
UK, 1999.

31. G. Sapiro. Geometric Partial Differential Equations
and Image Analysis. Cambridge University Press,
Cambridge, UK, 2001.

32. S. Osher and R. Fedkiw. Level Set Methods and Dynamic
Implicit Surfaces. Springer, Berlin, 2002.

c© The Eurographics Association and Blackwell Publishing Ltd 2005



840 K. Museth et al. / Level Set Algorithms

33. S. Osher and N. Paragios (Eds.). Geometric Level Set
Methods in Imaging, Vision and Graphics. Springer,
New York, 2003.

34. R. Malladi, J. Sethian and B. Vemuri. Shape modeling
with front propagation. IEEE Trans. PAMI, 17(2):158–
175, 1995.

35. R. Whitaker, D. Breen, K. Museth and N. Soni. Segmen-
tation of biological datasets using a level-set framework.
In Volume Graphics 2001, Chen M., Kaufman A., (Eds.).
Springer, Vienna, 2001, pp. 249–263.

36. D. Breen, R. Whitaker, K. Museth and L. Zhukov. Level
set segmentation of biological volume datasets. In Hand-
book of Medical Image Analysis, Volume I: Segmentation
Part A, Suri J., (Ed.). Kluwer, New York, 2005, ch. 8,
pp. 415–478.

37. M. Desbrun and M.-P. Cani. Active implicit surface for
animation. In Proc. Graphics Interface, pp. 143–150,
June 1998.

38. D. Breen and R. Whitaker. A level set approach for the
metamorphosis of solid models. IEEE Trans. Visualiza-
tion and Computer Graphics, 7(2):173–192, 2001.

39. K. Museth, D. Breen, L. Zhukov, R. Whitaker. Level
set segmentation from multiple non-uniform volume
datasets. In Proc. IEEE Visualization 2002, pp. 179–186,
October 2002.

40. H.-K. Zhao, S. Osher and R. Fedkiw. Fast surface re-
construction using the level set method. In Proc. 1st
IEEE Workshop on Variational and Level Set Methods,
pp. 194–202, 2001.

41. J. Baerentzen and N. Christensen. Volume sculpting us-
ing the level-set method. In Proc. Shape Modeling Inter-
national Conference, pp. 175–182, 2002.

42. D. Enright, S. Marschner and R. Fedkiw. Animation
and rendering of complex water surfaces. ACM Trans.
on Graphics (Proc. SIGGRAPH), 21(3):736–744, July
2002.

43. M. Rumpf and R. Strzodka. Level set segmentation in
graphics hardware. In Proc. ICIP ’01, vol. 3, pp. 1103–
1106, 2001.

44. A. Lefohn, J. Kniss, C. Hansen and R. Whitaker. Interac-
tive deformation and visualization of level set surfaces
using graphics hardware. In Proc. IEEE Visualization
2003, pp. 75–82, 2003.

45. M. Rumpf and R. Strzodka. Nonlinear diffusion in graph-
ics hardware. In Proc. EG/IEEE TCVG Symposium on
Visualization, pp. 75–84, 2001.

46. Z. Bolz, I. Farmer, E. Grinspun and P. Schröder. Sparse
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