
A Weighted Error Metric and Optimization Method for
Antialiasing Patterns

Samuli Laine and Timo Aila

Helsinki University of Technology, Telecommunications Software and Multimedia Laboratory
Hybrid Graphics Ltd.

Abstract

Displaying a synthetic image on a computer display requires determining the colors of individual pixels. To avoid
aliasing, multiple samples of the image can be taken per pixel, after which the color of a pixel may be computed
as a weighted sum of the samples. The positions and weights of the samples play a major role in the resulting
image quality, especially in real-time applications where usually only a handful of samples can be afforded per
pixel. This paper presents a new error metric and an optimization method for antialiasing patterns used in image
reconstruction. The metric is based on comparing the pattern against a given reference reconstruction filter in
spatial domain and it takes into account psychovisually measured angle-specific acuities for sharp features.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation
– Antialiasing

1. Introduction

In supersampling or multisampling algorithms the process of
image synthesis is divided into two stages: sampling and re-
construction. The choice of sampling positions plays a criti-
cal role in the resulting antialiasing quality. This is especially
true when only few samples can be afforded for each pixel,
which is often the case in real-time rendering.

In this paper, we consider only linear reconstruction fil-
ters. A linear reconstruction filter computes the final color
of a pixel as a weighted sum of the samples. In high-quality
systems the support of the filter typically extends beyond the
boundaries of a single pixel, and thus the same samples are
used for reconstruction of several pixels. This is commonly
referred to as sample sharing.

Usually sampling is the dominating cost compared to re-
construction, thus making it critical to maximize the qual-
ity resulting from a given number of samples. Optimally the
sampling positions should be selected so that the perceived
aliasing artifacts are minimized in the resulting image. This
is a somewhat of a fuzzy goal, and numerous sampling pat-
terns have been introduced, along with a few techniques for
analyzing the patterns [CA87, Shi91, DEM96].

It is known that visually more pleasing results are ob-
tained by employing a different pattern for adjacent pix-
els [KH01, DN02], as it further converts aliasing artifacts to
less disturbing noise.

Sampling and filtering In supersampling or multisampling
algorithms, the image is first sampled at the sampling points
of the sampling pattern. The final color of a pixel is then
computed as a weighted sum of the sampled colors. How-
ever, this is only an approximation of the mathematically
correct procedure, which would first filter the image analyt-
ically with the desired reconstruction filter and sample the
result at the centers of pixels.

Overview of contributions Our error metric evaluates the
perceptual difference between sampling and filtering, com-
paring a given sampling pattern to an arbitrary reference re-
construction filter. We take into account the fact that the
observed amount of aliasing depends on the screen-space
slope of a sharp feature [Nai98]. We also present an effi-
cient optimization method for generating patterns with good
characteristics. The analysis is equally applicable to modern
hardware-friendly sample sharing patterns that take as few as
1.25 samples per pixels [AM03], and to high-quality offline
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patterns that consist of dozens of samples per pixel [Coo86].
As the number of samples per pixel increases, the impor-
tance of carefully choosing the positions and weights of the
sampling points diminishes. Therefore, the presented metric
is primarily useful for evaluating and optimizing low-cost
antialiasing patterns.

The rest of this paper is organized as follows. The related
techniques are briefly reviewed in Section 2. Section 3 in-
troduces a classification scheme for antialiasing patterns in
order to simplify the discussion. The new error metric is de-
rived in Section 4, and the related optimization method in
Section 5. Test results and discussion are provided in Sec-
tion 6. Finally, conclusions and future work are offered in
Section 7.

2. Related Work

The four major sources that contribute to aliasing in ren-
dered images are discontinuity edges, shader undersampling,
intersecting surfaces and objects falling between sampling
points [Cro77]. Supersampling is a general technique that
reduces all aliasing artifacts by increasing the sampling rate.
Multisampling differs from supersampling in that the shader
is not evaluated separately in all sampling points, and thus
multisampling cannot reduce aliasing due to shader under-
sampling. Programmable shaders can band-limit themselves
(texture fetches already do), and in most cases this should be
a more efficient way fo solving the shader aliasing problem
than supersampling.

We focus on reconstruction of images from samples, and
thus the sampling strategies for higher-dimensional inte-
grals, global light transport, soft shadows, and other such
phenomena are outside the scope of this article.

Psychovisual results Mitchell and Netravali [MN88] ob-
serve that the theoretically optimal sinc is not a good recon-
struction filter in practice, and define a family of bi-cubic
filters that are parameterized by two parameters. Optimal
values for these parameters are then determined by conduct-
ing psychovisual tests. The ( 1

3 , 1
3 ) filter is found to produce

good overall image quality, whereas the ( 3
2 ,− 1

4 ) notch fil-
ter strongly suppresses postaliasing patterns but results in
blurry images. The resulting filters have been recently im-
plemented in high-end graphics hardware [DN02]. We use
the ( 1

3 , 1
3 ) filter as the reference reconstruction filter in our

test measurements in Section 6.

Naiman [Nai98] observes that jaggedness is more disturb-
ing in some orientations of edges or features. He provides a
table of psychovisual acuities for each direction. For exam-
ple, almost vertical or horizontal features require the most
antialiasing efforts.

Bouville et al. [BTB91] utilize psychovisual results that
resemble Naiman’s acuity factors. They argue that sampling

density can be halved by replacing a regular sampling grid
with a Quincunx pattern (Figure 1d).

Spectral analysis of sampling patterns Several authors
[DW85, Coo86, Mit87, HDK01] have studied the spectral
characteristics of sampling patterns. Human eye rarely
aliases even though the density of cones in extrafoveal re-
gions is relatively low. Yellott [Yel83] observes that the
cones (sampling points) are organized into a Poisson disk
distribution, i.e., the points are spread randomly so that no
two points are closer to each other than a specified distance.
He further argues that such sampling patterns are very good
in converting aliasing to less disturbing noise.

The power spectrum of a Poisson disk pattern roughly cor-
responds to blue noise, which implies two criteria. First, the
spectrum is noisy and lacks high spikes of energy that could
result in coherent aliasing artifacts. Second, the energy is
concentrated in high frequencies, corresponding to irregular
noise. While the spectral analysis clearly correlates with the
quality of a sampling pattern, quality estimation of a pat-
tern is somewhat ambiguous, and the technique does not suit
that well to repetitive patterns that have only a few samples
per pixel [AM03]. Also, psychovisual acuities are difficult
to take into account.

Analysis using discrepancy Discrepancy is a quantity that
measures the ability of a sampling pattern to estimate areas
of subregions inside a pixel. Shirley [Shi91] computes dis-
crepancy by sampling the area with rectangles of different
sizes and aspect ratios, and Dobkin et al. [DM93] measure
discrepancy based on arbitrary edges through a pixel. Ma-
tousek [Mat99] offers a more complete discussion on differ-
ent types of discrepancy.

Quasi Monte Carlo methods [Kel01] typically use deter-
ministic low-discrepancy sequences (e.g. [Hal70]) for gen-
erating the sampling patterns. Dobkin et al. [DEM96] use
simulated annealing for creating low-discrepancy sampling
patterns.

Glassner [Gla95] points out that commonly used simple
discrepancy metrics do not directly correlate with the qual-
ity of images generated with the patterns. Also, discrepancy
does not take reconstruction filters into account. In a com-
ment on Cook’s work [Coo86], Pavlidis [Pav90] emphasizes
that errors arising from reconstruction can be more signif-
icant than the ones resulting from sampling. Our method
takes reconstruction filters explicitly into account.

Other analysis methods Chen and Allebach [CA87] ana-
lyze sampling patterns for estimation of band-limited sig-
nals, without employing reconstruction filters. Their method
is based on the mean square error between the reference sig-
nal and a sampled version, so that the effect of an input signal
is eliminated by computing a maximum error over a class of
signals. The metric favors regular grids, and is therefore not
well suited for comparing the quality of antialiasing patterns.
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Figure 1: Common sampling patterns. From left to right:
2× 2 uniform supersampling, 2× 2 jittered, rotated grid,
Quincunx, Flipquad and Fliptri.

Sampling patterns The quality of uniform sampling pat-
terns (Figure 1a) can be improved by jittering (Figure 1b)
[CPC84]. N-rooks [Shi91] patterns divide a pixel into N×N
grid and place one sample to each row and column. A special
case with four samples per pixel is the rotated grid supersam-
pling (Figure 1c). Kollig and Keller [KK02] construct low-
discrepancy patterns that combine the strengths of jittered
and N-rooks sampling.

Poisson disk patterns have good spectral characteris-
tics, and thus also desirable properties for image synthe-
sis [DW85]. Molnar [Mol91] places unweighted sampling
points so that the minimum distance of a Poisson disk
process is locally modified according to the impulse re-
sponse of a reconstruction filter. Hierarchical construction
of blue noise sampling patterns have been studied by Mc-
Cool and Fiume [MF92], Hiller et al. [HDK01], and Os-
tromoukhov et al. [ODJ04]. Poisson disk patterns are of-
ten advocated as theoretically optimal in the sense of sig-
nal processing. Nevertheless, Goss and Wu [GW00] observe
that the spectra of Poisson disk patterns exhibit clearly visi-
ble banding.

Sample sharing techniques use the same samples
in the reconstruction of multiple output pixels. Quin-
cunx [BTB91, NVI01] generates two samples per pixel
and uses five samples for reconstruction (Figure 1d).
Flipquad [AMS03] results in higher quality images, while
also creating two samples per pixel and using only four
samples for reconstruction (Figure 1e). Due to mirroring
along the x- and y-axes there are four distinct patterns. Flip-
tri [AM03] is similar to Flipquad, but takes on average only
1.25 samples per pixel (Figure 1f). These techniques typi-
cally introduce a slight low-pass effect on the final image.

3. Classification of Antialiasing Patterns

In our analysis, we consider only repeating sampling pat-
terns with the additional constraint that the same number
of samples is taken for each pixel. Most existing sampling
patterns fall into this category. Using a repeating sampling
pattern greatly diminishes its storage requirements, which is
crucial if the sampling pattern is to be implemented in hard-
ware. However, it is not necessary to repeat the pattern after
one pixel; e.g. in SAGE graphics architecture [DN02] the
pattern repeats in 128×128 pixel blocks.

Pattern s r n

Rotated grid [Shi91] 1 1 4
Quincunx [NVI01] 1 1+ 2
SAGE [DN02] 1282 25 16
Flipquad [AMS03] 4 1+ 2
Fliptri [AM03] 4 1+ 1.25

Table 1: Classification of some common patterns in our
P(s, r, n) notation, where s is the number of distinct pixel-
sized sample sets, r is the number of pixels accessed by the
reconstruction filter and n is the average number of samples
per pixel.

We define a pattern family P(s, r, n), where s is the num-
ber of distinct pixel-sized sample sets, r is the number of
pixels accessed by the reconstruction filter and n is the av-
erage number of generated samples per pixel. In general, n
does not have to be an integer, e.g., the Fliptri pattern has
n = 1.25. We write r+ in place of r when the reconstruction
filter also takes into account the samples that lie exactly on
the border of multiple pixels (see Figure 2b). Table 1 summa-
rizes the values of s, r and n for some common patterns, and
Figure 2 shows three examples. In the remainder of this pa-
per, we assume that every sample has an associated weight.
For example, in the sampling patterns of Figure 1, Quincunx
and Fliptri have samples with distinct weights, whereas in
uniform, jittered, and rotated grids, and in Flipquad every
sample has an equal weight.

When s > 1, the pattern defines multiple distinct recon-
struction kernels of size r. Figure 3 shows the structure of a
P(4, 4, n) pattern and its four reconstruction kernels. A sepa-
rate set of sample weights is required for each reconstruction
kernel. Our error metric handles every reconstruction kernel
separately.

The simplest pattern family is P(1, 1, n), with the special
case of n = 1 corresponding to no filtering. In this family, the
samples are located in the same places in all pixels, and the
reconstruction filter uses only the samples inside the current
pixel (Figure 2a). This leads to simple software and hard-
ware implementations, but no sample sharing occurs and
many sampling points are typically needed for acceptable
image quality.

The simplest pattern families that allow sample shar-
ing are P(1, 1+, n) containing Quincunx, and P(4, 1+, n)
containing Flipquad and Fliptri (Figure 2b). In the family
P(4, 1+, n) a good set of samples is typically determined for
only one pixel, and the rest of the sets are then obtained by
mirroring along the axis of translation. This implicitly re-
sults in interleaved sampling [KH01]. This is a special case
because in general s distinct sets of samples must be consid-
ered.

The simplest pattern family with a larger reconstruction
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Figure 2: a) In P(1, 1, n) only the samples inside a pixel
are used for reconstruction. b) In P(4, 1+, n) samples on the
border of the pixel are used as well. c) In P(1, 4, n) samples
from four pixels are used for reconstruction.

Figure 3: Patterns in family P(s, r, n) have exactly s dis-
tinct reconstruction kernels for different pixels. a) For exam-
ple, in pattern family P(4, 4, n) the pattern loops in 2× 2
tiles. b) This results in four reconstruction kernels. The cap-
ital letters stand for distinct pixel-sized sets of n samples.
The output color is always reconstructed to the center of the
reconstruction kernel, marked with large dots. If the size of
the reconstruction kernel is even (2×2, 4×4, . . . pixels), the
output pixel grid needs to be shifted 0.5 pixels vertically and
horizontally. This implementation trick removes the need of
resorting to a 3×3 pixel reconstruction kernel with a recon-
struction filter that has a radius of 1.0.

filter is P(1, 4, n) (Figure 2c). As in P(1, 1, n), the samples
are located in the same places in every pixel, but the recon-
struction filter now shares samples between adjacent pixels.
Four sets of sample weights are needed because each sample
is used in reconstruction of four output pixels.

The most complex pattern families discussed in this pa-
per are P(4, 4, n) and P(16, 16, n). They combine the prop-
erties of P(4, 1+, n) and P(1, 4, n) families: multi-pixel re-
construction filter and multiple sets of sample positions and
weights. We observed that the patterns in these families pro-
duce superior images compared to the previously discussed
families, with respect to the number of samples taken per
pixel.

4. Error Metric for Antialiasing Patterns

We now turn into defining an error metric that estimates the
approximation error caused by sampling, when compared
against the mathematically correct analytical filtering using
a given reference reconstruction filter. Our analysis is based
on evaluating the approximation error in presence of discon-
tinuities in the image, i.e., regions where abrupt changes in
intensity are present. We emphasize that the exact sources of
these discontinuities are not relevant for the analysis.

Discontinuities in a two-dimensional image can have any
shape, but the vast majority are at least locally shaped ac-
cording to a straight line. Thus we concentrate on the analy-
sis of approximation errors in case of linear discontinuities.

It must be emphasized that in order to evaluate the approx-
imation error in presence of discontinuities, some kind of re-
strictions on the shape of the discontinuities must be placed.
Otherwise the analysis would need to consider an infinite-
dimensional space of all possible shapes that discontinuities
may have.

Restricting the analysis to discontinuities with specific
shapes does not mean that the error metric is unable to es-
timate the approximation error in presence of irregularly
shaped discontinuities. On the contrary, it is reasonable to
assume that if a sampling pattern is able to produce good
results, i.e. small approximation errors, for all linear discon-
tinuities, is also gives good results for discontinuities with
more complicated shapes.

The following analysis is not limited to any particular ref-
erence reconstruction filter. We derive the error metric from
a geometrical point of view, first for one-dimensional and
then for two-dimensional sampling patterns.

4.1. Error Metric in One Dimension

We focus on filtering a family of monochromatic one-
dimensional image functions f (x) using both the reference
filter and a given sampling pattern and measuring the aver-
age approximation error. We choose the image functions so
that each function represents a single one-dimensional edge,
i.e., two constant parts are separated by a sharp discontinu-
ity. The position of the edge is parameterized by a parameter
a, giving a family of image functions fe(x,a). Without loss
of generality, we choose values 1 and 0 as the intensities on
different sides of the edge, yielding the following definition:

fe(x,a) =
{

1 if x≤ a
0 otherwise

(1)

We notice immediately that this image function is trans-
lationally invariant, satisfying fe(x,a) = fe(x− t,a− t) for
any t. Therefore, if we assume that all positions a for the
edge are equally probable, we may fix the position where
the approximation error is evaluated. Without loss of gener-
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Figure 4: Top: sampling points (pi,wi) of a one-
dimensional sampling pattern with six samples optimized to
approximate the ( 1

3 , 1
3 ) Mitchell-Netravali filter. Bottom: the

resulting ĝ0(a) function (solid line) and the reference func-
tion g0(a) (dashed line). Function ĝ0(a) depends only on
the sampling pattern, whereas function g0(a) depends only
on the reference reconstruction filter. Note that the optimal
sampling points in the top figure are not equidistantly dis-
tributed.

ality, the rest of the analysis assumes that the reference filter
and the sampling pattern are centered at x = 0.

The reference value g(x) is computed by filtering the im-
age function with the reference filter. This is done by con-
volving the image function with the impulse response h(x)
of the reference filter, denoted g(x) = f (x) ~ h(x). For our
image function fe(x,a), the convolution integral reduces to
the integral of h(x) from x− a to positive infinity. We can
thus define the reference function g0(a) for x = 0 as

g0(a) =
Z ∞

−a
h(t) dt. (2)

When a sampling pattern is used, the reconstructed value
ĝ(x) is a weighted sum of image functions at the sampling
points. Let pi and wi denote the position and weight of the
ith sampling point, with index i running from 0 to N − 1,
N being the number of sampling points. For image function
fe(x,a), ĝ(x) is simply the sum of weights wi of the sampling
points that satisfy x + pi ≤ a. We can thus write ĝ0(a) for
x = 0 as

ĝ0(a) =
N−1

∑
i=0

{
wi if pi ≤ a
0 otherwise

(3)

Figure 4 illustrates the relationship of a sampling pattern,
g0(a) and ĝ0(a). We are now ready to define the error metric
for one-dimensional case. By integrating over the squared
difference of g(x) and ĝ(x) over all edge positions a, we ob-
tain

E1 =
√Z ∞

−∞

(
ĝ0(a)−g0(a)

)2 da, (4)

which is the root sum square error of the reconstructed esti-

Figure 5: a) An edge in two dimensions has two parame-
ters, the angle of the edge θ and the distance from origin a.
b) Projecting the sampling points of a two-dimensional sam-
pling pattern on the normal vector n of the edge results in a
one-dimensional sampling pattern.

mate when every possible one-dimensional single-edge im-
age function is considered with equal probability. It can be
further noticed that E1 is finite only if the weights wi of the
sampling pattern sum to one.

This derivation was based on a geometrical interpretation
of antialiasing. Alternatively, the same result can be derived
from the signal processing point of view by first convert-
ing the sampling pattern into a filter with discontinuous im-
pulse response. The value of E1 is then equal to the root
sum square difference between the unit step responses of the
sampling pattern and the reference filter.

It should be noted that even though the definition of E1
bears some resemblance to the L2 discrepancy measure in
one dimension, there are fundamental differences between
the two. The standard discrepancy measure takes into ac-
count only the number of sampling points that fall inside
an interval, therefore implicitly assuming box-shaped recon-
struction filter and equal weights for all samples. Given that
the samples may have distinct weights and that the reference
reconstruction filter g(a) is known a priori, E1 metric pro-
vides more accurate estimate of the approximation error in
the filtering context.

4.2. Error Metric in Two Dimensions

In two dimensions, an edge can be both oriented and posi-
tioned arbitrarily. We denote the angle of the edge by θ and
the distance of the edge from the center of the coordinate
system by a, as illustrated in Figure 5a.

The two-dimensional error analysis can be reduced to
one dimension by investigating one angle at a time. In this
method, the sampling points of a pattern are projected to the
normal vector n corresponding to θ, as illustrated in Fig-
ure 5b. We denote the error of a projected pattern in angle θ

by E1(θ).

The projection to one dimension does not affect the re-
constructed value produced by a sampling pattern, since the
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sampling points do not move from one side of the edge to
another. Considering the filtering, the projection is equiva-
lent to applying the reference reconstruction filter in the di-
rection of the normal, which is the most reasonable choice
when given a one-dimensional reference reconstruction filter
such as the Mitchell-Netravali filter.

There is an important additional point in creating an
error metric for two-dimensional antialiasing. It has been
known for a long time that the visible jaggedness of a
non-antialiased edge depends on the angle of the edge.
Naiman [Nai98] conducted a psychovisual study, measuring
the distances from which the jaggedness became apparent
for edges with various slopes. We utilize this data to weight
the one-dimensional error metric according to the angle-
dependent acuity factors. This is essential for evaluating the
perceptual quality of a pattern instead of purely theoretical
quality.

Additionally, our tests indicate that evaluating the total
sum of E1 over all angles is not a good metric for the two-
dimensional case, even though it seems to be the obvious
choice. Considering only the sum of the one-dimensional er-
rors neglects the presence of badly antialiased angles that are
highly noticeable in test images and animations. As a solu-
tion, we measure the maximum weighted one-dimensional
error over all angles instead. Denoting the acuity factor
for an angle θ as W (θ) [Nai98], we can write the two-
dimensional error metric E2 as

E2 = max[W (θ)E1(θ)], (5)

where the maximum is taken over all angles θ. In practice,
we evaluate E1(θ) at a discrete set of angles for which the
acuity factors W (θ) are given and take the maximum.

It can be argued that if it is better to take the maximum
over all E1(θ) in two dimensions, it might also be better to
also define E1 in terms of maximum difference between g0
and ĝ0, instead of the integral in Equation 4. According to
our tests, this option is not reasonable, since the maximum
difference between g0 and ĝ0 over all a and θ tells far too
little about the overall antialiasing quality of a pattern. This
is because the single worst-case (a,θ) pair is encountered
very rarely when rendering an image. However, taking the
maximum in E2 is reasonable, since when e.g. drawing a
circle, we are bound to hit the worst-case θ at some point.

Until now we have assumed that the sampling pattern has
only a single reconstruction kernel. If there are multiple re-
construction kernels in the pattern, we perform the analysis
for every distinct reconstruction kernel and take the maxi-
mum E2 of all kernels.

5. Optimizing the Quality of a Pattern

Quality estimation of sampling patterns is valuable in itself,
but in order to find good patterns an optimization method is

needed. In this section we first discuss the problems in mini-
mizing E2 and then derive a heuristic optimization algorithm
that performs significantly better than standard approaches.

Because E2 is defined as the maximum of weighted E1 er-
rors (Equation 5), it becomes surprisingly hard a function to
minimize. Also, when we have multiple reconstruction ker-
nels in P(s, r, n) with s > 1, we define E2 as the maximum
of E2 over every reconstruction kernel. As a consequence,
we end up with a formidable number of distinct W (θ)E1(θ)
terms, whose maximum defines the resulting E2.

We first tried to apply the standard simulated annealing
algorithm in the minimization. Unfortunately, it was found
to practically stop converging after an initial phase of rapid
convergence. This observation was quite puzzling, but it can
be explained by the following reasoning.

After the optimization has reached a point where multiple
W (θ)E1(θ) terms are very close to the maximum, any ran-
dom mutation to the sampling point positions and weights
is most likely to hoist at least one of them above the current
maximum, no matter how small the mutation is. Thus, in
order to decrease E2 in this predominant situation, the modi-
fication to the sampling points must be carefully determined,
so that all terms that are close to the maximum are decreased
simultaneously.

The sensitivity to the direction of mutation renders op-
timization strategies based on random mutations unsuitable
for minimizing E2. Therefore, we developed a heuristic algo-
rithm based on the method of steepest descent. Since steep-
est descent is a local optimization method, the optimization
must be performed for many initial configurations in order
to find a good minimum.

It must be emphasized that there is no guarantee that the
global minimum is found by employing the optimization al-
gorithm. Particularly with sampling patterns with more than
a few samples, it may be quite improbable to hit an initial
configuration that converges to the global optimum. All op-
timized E2 values in the results section are obtained empir-
ically and should therefore be regarded as (relatively tight)
upper bounds for the minimum E2.

In the next sections, we first derive the basic tools for the
optimization in one dimension, and then describe the two-
dimensional optimization algorithm.

5.1. Optimization in One Dimension

We begin by describing an iterative method that mutates a
given one-dimensional seed pattern into a locally optimal
sampling pattern according to Equation 4. A locally optimal
sampling pattern has the property that no small perturbation
of either the positions or weights of the sampling points re-
sults in a smaller error.

We treat E1 (Equation 4) as a function of positions pi and
weights wi of the sampling points, and our aim is to find such

c© The Eurographics Association and Blackwell Publishing 2006.



Laine and Aila / A Weighted Error Metric and Optimization Method for Antialiasing Patterns

positions and weights that E1 is minimized. We exploit the
partial derivatives of E1 with respect to pi and wi, which can
be determined analytically. This enables us to modify the
positions and weights of the sampling points always towards
the direction of decreasing E1.

The partial derivative of the error with respect to the posi-
tion pi of a sampling point is

∂E1
∂pi

=
wi

2
√

E1

(
2g0(pi)−2

i−1

∑
j=0

w j−wi
)
, (6)

which assumes that the one-dimensional sampling points
are sorted according to ascending p, making the summation
cover all sampling points with p < pi.

The partial derivative of E1 with respect to wi is more in-
volved, as the mutation of one weight wi affects every other
weight as well due to the normalization to ∑

N−1
i=0 wi = 1. The

normalization ensures that ĝ0(a) (Equation 3) reaches value
1 at infinity, thus making E1 finite. After somewhat laborious
derivation, we get

∂E1
∂wi

=− 1√
E1

(N−2

∑
j=0

j

∑
k=0

wkH j−
N−2

∑
j=i

(wi +1)H j

)
,

where H j = (p j+1− p j)
j

∑
k=0

wk−
Z p j+1

p j

g0(a) da,

(7)

where it is again assumed that the sampling points are sorted
according to ascending p.

The one-dimensional optimization step is simple vari-
ant of steepest descent, replacing the line search for opti-
mal step size with a constant step size. First, the positions
are updated by setting p′i = pi − c(∂E1/∂pi), where c is
a positive constant that defines the size of the step taken
at each round of iteration. Then the weights are updated,
w′i = wi− c(∂E1/∂wi), and normalized.

To reach a minimal E1 in one-dimensional optimization,
we would continue the iteration until the improvement in E1
became sufficiently small. Figure 4 shows an example of an
optimized one-dimensional pattern.

5.2. Optimization in Two Dimensions

To minimize Equation 5, we must consider W (θ)E1(θ) sepa-
rately for each discrete θ. When a two-dimensional sampling
pattern is projected into one dimension as explained in Sec-
tion 4.2, the one-dimensional partial derivatives of sample
positions (Equation 6) describe the magnitude of gradient
along the direction of the normal vector corresponding to θ.
Since E2 is the maximum of W (θ)E1(θ), we must concen-
trate on the terms that are most likely to contribute to the
maximum.

Performing the minimization only at the single
W (θ)E1(θ) term that defines the current E2 usually in-
creases the error in other angles, causing the iteration to

oscillate instead of converging. Therefore we introduce an
error threshold t and two step sizes c0 and c1, and simulta-
neously optimize at the angles satisfying W (θ)E1(θ) < tE2
with c = c0 and at the rest of the angles with c = c1. Our
implementation uses values t = 0.99 and c1 = 100c0, which
were found to result in rapid convergence. This heuristic
introduces a small update for the relatively small error terms
and a large update for the error terms that are close to the
maximum. As a result, each step of the two-dimensional
iteration mutates the sampling pattern so that the decrease
of large error terms is favored at the cost of increase in small
error terms.

As mentioned before, we must start the optimization from
multiple seed patterns to find a good local minimum. The
likelihood of converging to a small E2 can be increased by
constructing the seed patterns using known good statistical
distributions such as jittered grid.

6. Results and Discussion

The error metric can be used with any reconstruction filter,
and the sampling patterns acquired by optimization depend
on the selected filter. The results in this section were mea-
sured by using the ( 1

3 , 1
3 ) Mitchell-Netravali filter [MN88]

as the reference reconstruction filter. It is acknowledged that
better filters exist for suppressing aliasing patterns more effi-
ciently in pathological cases, such as the lower left corner of
Figure 8a. However, such filters tend to produce excessively
blurry images, and thus we favored higher overall quality at
the expense of some postaliasing artifacts.

We first present antialiased test images that illustrate the
quality of optimized patterns in different situations. Next,
we investigate how the image quality is affected when the
radius of the reconstruction filter is limited below its true
spatial extent. Then, we evaluate the quality of selected low-
cost sampling patterns and high-quality sample distributions
according to our metric, and compare these to the best sam-
pling patterns found in the respective pattern families. Fi-
nally, we present a number of good low-cost patterns in dif-
ferent pattern families, and examine how the selection of a
pattern family and sample count affects the error.

6.1. Linear and Curved Discontinuities

Since the proposed error metric is based on the analysis of
the approximation error with linear discontinuities, the pat-
terns that are optimized to minimize the error can be ex-
pected to perform well in these situations. A comparison
between Poisson disk patterns and optimized patterns is pre-
sented in Figure 6, where the test scene consists of an infinite
checkerboard.

Although the proposed error metric only estimates the pat-
tern’s ability to approximate linear discontinuities, it reason-
ably well estimates the antialiasing quality for discontinu-
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P(16, 16, 2) Poisson disk P(16, 16, 2) optimized
E2 = 0.708 E2 = 0.296

P(16, 16, 3) Poisson disk P(16, 16, 3) optimized
E2 = 0.542 E2 = 0.206

P(16, 16, 4) Poisson disk P(16, 16, 4) optimized
E2 = 0.401 E2 = 0.161

P(16, 16, 5) Poisson disk P(16, 16, 5) optimized
E2 = 0.344 E2 = 0.140

Figure 6: Comparison of randomly generated Poisson disk
sample distributions and optimized patterns. All patterns are
in P(16, 16, n) family, corresponding to a 4×4 pixel repeat-
ing pattern and 4×4 pixel reconstruction kernels. The num-
ber of samples taken per pixel ranges from 2 to 5.

ities with more complicated shapes. Figure 7 shows the re-
sults of antialiasing a test image containing curved discon-
tinuities of various sizes. It can be seen that even though
curved discontinuities are not explicitly taken into account
by the error metric, the optimized pattern performs some-
what better than a statistically distributed pattern.

6.2. Support of Reconstruction Filter

The radius of the reconstruction filter limits the extent to
which a pattern can approximate the reference filter. As
Mitchell-Netravali filter has a radius of 2, samples from a

P(4, 1+, 2), Flipquad, E2 = 0.364

P(4, 4, 2), Poisson disk, E2 = 0.460

P(4, 4, 2), Optimized, E2 = 0.329

Comparison image, 1024 samples/pixel

Figure 7: Test image with curved discontinuities of various
sizes. All images except the comparison image have 2 sam-
ples/pixel. Flipquad suffers from its ability to produce only
3 distinct intermediate shades, and Poisson disk pattern ex-
hibits slightly more noise than the optimized one.

4× 4 pixels area are theoretically needed in reconstruction.
Especially in real-time (hardware) rendering, it is favorable
to keep the reconstruction filter as small as possible, thus
reducing the number of pixels that are accessed during the
filtering. Our results show that the ( 1

3 , 1
3 ) Mitchell-Netravali

filter can be satisfactorily approximated by using the sam-
ples from only a 2× 2 pixel area, corresponding to pattern
families P(s, 4, n).

Figure 8 illustrates the effect of a limited reconstruction
filter radius with dense sampling patterns. It also shows the
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RMSE = 0.162 RMSE = 0.077 RMSE = 0.052 RMSE = 0.039

a. b. c. d. e.

Figure 8: Measured reconstruction errors for dense sampling patterns having different reconstruction filter sizes and sample
weighting schemes. All images are sampled with 1024 samples/pixel in a jittered grid. The root mean square error (RMSE) of
the approximated images are computed using brightness scale from 0 to 1. In the difference images, white corresponds to no
error and black corresponds to 10% absolute error. From left to right: a) 100×100 pixel reference image filtered with full 4×4
reconstruction filter and Mitchell-Netravali weights; b) error with 1×1 truncated Mitchell-Netravali filter; c) as in (b) but with
our optimized sample weights; d) error with 2× 2 truncated Mitchell-Netravali filter; e) as in (d) but with optimized sample
weights.

Pattern Family E2 Best E2

2×2 uniform grid P(1, 1, 4) 0.698 0.359
rotated grid P(1, 1, 4) 0.439 0.359
Quincunx P(1, 1+, 2) 0.518 0.359
Flipquad P(4, 1+, 2) 0.364 0.359
Fliptri P(4, 1+, 1.25) 0.636 0.560

Table 2: E2 for common antialiasing patterns and for the
best pattern found in the same family. The ( 1

3 , 1
3 ) Mitchell-

Netravali filter was used as the reference reconstruction fil-
ter.

decrease in error when the weights are optimized instead of
taken directly from the impulse response of the Mitchell-
Netravali filter. Taking the weights from the impulse re-
sponse results in truncation of the reference filter, and leads
to a surprisingly bad approximation, especially with a 1× 1
pixel reconstruction filter. With a 2× 2 pixel reconstruc-
tion filter the error is considerably smaller, and acceptable in
practice. Figure 9 includes a comparison of optimized sam-
pling patterns having 4× 4 and 2× 2 pixel reconstruction
kernels.

6.3. Comparison of Common Antialiasing Patterns

We now evaluate the quality of some common low-cost an-
tialiasing patterns according to our metric. Table 2 gives the
error E2 for a number of antialiasing patterns. For reference,
the error of the best pattern we found in the same family
is shown. The uniform grid and the Quincunx pattern per-
form rather poorly compared to the best optimized patterns.
On the contrary, the Flipquad pattern is very good, the best
pattern having similar structure with slightly shifted sample
positions.

Opt Opt
Pattern Min Avg Max W W+P

jittered grid 0.423 0.622 0.907 0.242 0.169
Poisson disk 0.346 0.473 0.782 0.221 0.161

Table 3: Comparison of high-quality sample distributions
with 4 samples/pixel. Columns Min, Avg and Max show the
minimum, average and maximum E2 for 1000 randomly gen-
erated patterns. Opt W is the resulting E2 when the sam-
ple weights of the best generated pattern are optimized. Opt
W+P shows E2 when both the weights and the positions are
optimized.

We also consider two high-quality sample distributions,
jittered grid and Poisson disk. In these cases, the samples
are spread according to the desired distribution and the fil-
tering is performed by weighting the samples with the im-
pulse response of the reference reconstruction filter. In the
measurements we have used patterns from the P(16, 16, 4)
family, resulting in a pattern that loops in 4× 4 pixel tiles
with 4 samples/pixel. A 4× 4 pixel area of samples is used
for reconstruction, yielding a total of 64 sampling points per
output pixel.

Table 3 shows the minimum, average and maximum errors
for 1000 patterns generated according to the distributions.
The patterns with smallest E2 were then optimized, first by
optimizing only the sample weights and then by optimiz-
ing both the positions and the weights. It can be seen that
the initially best Poisson disk pattern converged to slightly
smaller E2 after optimization. This confirms that a different
local optimum was reached from the two initial configura-
tions, but the difference in final E2 values (0.008) is quite
small compared to the difference in initial E2 values (0.077).
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P(16, 16, 4) P(16, 16, 4) P(4, 4, 4)
Poisson disk Optimized Optimized
E2 = 0.401 E2 = 0.161 E2 = 0.182

Figure 9: a) Close-up of a test image antialiased with
a Poisson disk pattern having Mitchell-Netravali weights
and 4× 4 pixel reconstruction filter. b) Optimized sample
positions and weights. c) Optimized sample positions and
weights, and a 2× 2 pixel reconstruction filter. All images
were generated using 4 samples/pixel.

Therefore, the optimization is not exceedingly sensitive to
the quality of the initial seed pattern.

The values of E2 seem high when compared to the low-
cost patterns, and indeed the discrepancy metrics that disre-
gard psychovisual acuities would rank Poisson disk and jit-
tered grid much higher. The Poisson disk and jittered grid
give fairly equal unweighted errors E1(θ) for all angles,
whereas low-cost patterns such as Flipquad and rotated grid
concentrate on the perceptually most important horizontal,
vertical and diagonal features.

It is also somewhat surprising how much the optimization
of the sample weights decreases the error. The reason is that
choosing the weight of a sampling point is not a purely local
decision but should depend on the positions and weights of
the other sampling points. Therefore the traditional weight-
ing of simply evaluating the impulse response of the refer-
ence filter at the sampling point results in a greater error than
the use of optimized weights.

The rightmost column in Table 3 shows the E2 when both
the positions and the weights are optimized. It can be seen
that using a Poisson disk or jittered distribution as a seed
pattern gives almost equally good results. Test images gen-
erated using a Poisson disk distribution and two optimized
patterns are shown in Figure 9.

6.4. Good Low-cost Patterns

Figure 10 shows the smallest E2 found for different pattern
families with respect to the number of samples/pixel. The
patterns were generated by optimizing hundreds of random
seed patterns. The corresponding patterns are shown in Fig-
ure 11.

7. Conclusions and Future Work

We have presented a new error metric for evaluating the
antialiasing quality of sampling patterns. With dozens or

Figure 10: Error E2 of the best patterns found in differ-
ent pattern families with various number of samples/pixel.
In P(4, 1+,n) family the errors are evaluated for 0.25 incre-
ments in n.

Figure 11: The best patterns found for different pattern fam-
ilies, the size of a sampling point corresponding to its weight.
From top to bottom: P(1, 1, n), P(4, 1+, n), P(1, 4, n),
P(4, 4, n). Columns from left to right correspond to 2 – 6
samples/pixel. Only one of the four reconstruction kernels is
shown for each P(4, 4, n) pattern in the bottom row. The nu-
merical values of the sample positions and weights are avail-
able at http://www.tml.tkk.fi/˜samuli/patterns.

hundreds of samples per pixel, even image quality connois-
seurs have great difficulty in observing differences between
the sampling patterns. In contrast, the choice of antialias-
ing pattern is crucial when only a small number of samples
can be afforded per pixel. This is the typical situation with
graphics hardware architectures and other real-time render-
ing systems. Unlike earlier methods, our metric is applicable
to the analysis of such low-cost patterns. We have also de-
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scribed a method for constructing patterns that are almost
optimal with respect to the new error metric that takes the
reconstruction filter and psychovisual acuities into account.

Increasing the size of the reconstruction filter from 1× 1
to 2× 2 pixels enables the sampling pattern to more accu-
rately approximate a wider reference filter. This is a possible
way of improving the image quality in hardware rendering
systems, requiring no extra memory and only limited addi-
tional complexity to the filtering hardware.

Currently we use L2 norm the one-dimensional error E1
and L∞ norm for the two-dimensional error E2. While our
tests suggest that these two error metrics should use a dif-
ferent norm, it is not obvious whether the current choices
are the best ones. The L∞ norm gives perfectly plausible
results in most cases, but some extremely low cost pat-
terns such as Fliptri currently rank higher than they probably
should [HAML05]. This is because only the maximum an-
gular error is taken into account, and the high average error
is disregarded. This could perhaps be solved by employing
Lp norm with 2 < p <∞ in E2. Futhermore, it would be
interesting to derive the best sampling patterns for other ref-
erence reconstruction filters as well.
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