
EUROGRAPHICS 2008 / G. Drettakis and R. Scopigno Volume 27 (2008), Number 2
(Guest Editors)

© 2007 The Author(s)
Journal compilation © 2007 The Eurographics Association and Blackwell Publishing Ltd.
Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and
350 Main Street, Malden, MA 02148, USA.

Conformal Flattening by Curvature Prescription
and Metric Scaling

Mirela Ben-Chen, Craig Gotsman and Guy Bunin

Technion – Israel Institute of Technology

Abstract
We present an efficient method to conformally parameterize 3D mesh data sets to the plane. The idea behind our
method is to concentrate all the 3D curvature at a small number of select mesh vertices, called cone singularities,
and then cut the mesh through those singular vertices to obtain disk topology. The singular vertices are chosen au-
tomatically. As opposed to most previous methods, our flattening process involves only the solution of linear sys-
tems of Poisson equations, thus is very efficient. Our method is shown to be faster than existing methods, yet gener-
ates parameterizations having comparable quasi-conformal distortion.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism

1. Introduction
Triangular meshes are a popular representation for 3D
models. They are used in a wide range of applications,
many of which require the parameterization of the model to
a planar domain. Examples are texture mapping, detail
mapping, morphing and remeshing, to mention just a few.
Parameterization is also an important preliminary step for
many geometry processing algorithms.

The main challenge for parameterization algorithms is to
bound the distortion of the resulting parameterization. The
distortion can be either angular– the angles between edges
in the parameter domain are very different from those in
the input 3D mesh, or area distortion – large areas of the
3D mesh are mapped to small areas in the parameterization
and vice-versa, or both. Angle preserving parameterizations
are called conformal, and area preserving parameterization

authalic. Most surfaces do not have a parameterization
which is isometric, meaning that both area and angles are
preserved.

The main obstacle to a distortion-free parameterization is
Gaussian curvature. In fact, only meshes which are devel-
opable - have zero Gaussian curvature everywhere – can be
mapped to the plane without any distortion, thus the main
objective in planar parameterization is the “removal” of
Gaussian curvature. Since the Gauss-Bonnet theorem dic-
tates that the total sum of Gaussian curvature in the mesh is
fixed (and determined only by the mesh topology), elimi-
nating all Gaussian curvature is generally not possible.

If the mesh has the topology of a disk (with a boundary),
one way to eliminate Gaussian curvature is to move it from
the interior vertices to the mesh boundary. Thus a common

M. Ben-Chen, C. Gotsman & G. Bunin / Conformal Flattening by Curvature Prescription and Metric Scaling

© 2007 The Author(s)
Journal compilation © 2007 The Eurographics Association and Blackwell Publishing Ltd.

technique employed by many mesh parameterization meth-
ods, when presented with an input which is topologically
closed, is to first create a boundary by cutting the mesh
into one or more pieces, each of which is a topological
disk. Each piece is then mapped to the plane, while trying
to preserve angles, area, or some combination of the two.
The curvature originating in the 3D input ultimately ends
up on the new disk boundaries, namely the external angle
at boundary vertices is not necessarily π. Cutting the mesh
is not only a means of achieving a disk-like topology, but is
also important for reducing the distortion of the resulting
parameterization, and may be even advantageous for mesh-
es which were originally equivalent to a disk. However,
cutting results in discontinuities along the cuts introduced
into the mesh. Since each patch is parameterized independ-
ently, there is no guarantee that edges along the cut will be
mapped to edges of the same length on both sides of the cut
in the parameter plane.

An alternative to cutting the mesh and creating a boundary
is the introduction of cone singularities, first proposed by
Kharevych et al. [KSS06]. The main idea is as follows:
Instead of introducing artificial boundaries to absorb the
undesired curvature, a few vertices of the mesh are desig-
nated as cone singularities and the entire Gaussian curva-
ture of the mesh is concentrated at those singularities. Once
this abstract sparse curvature distribution is computed, a
metric (i.e. edge lengths) having this target curvature is
found, and this is subsequently realized by an embedding in
the plane (i.e. a parameterization), by cutting the mesh such
that the cone singularities are on the boundary. Note that
the new metric will be different from the original 3D edge
lengths. The main difference between this method, in
which the cut is performed after the new metric is com-
puted, and the older methods, in which the cut is performed
before the new metric is computed, is that this method
guarantees that edges on both sides of the cut will be
mapped to edges of the same length. Also, for every non-
singular vertex on the boundary, the sum of the curvatures
on both sides of the cut will be 0. This means that the flat-
tened version of the mesh may be “zippered” back together
in the plane at these vertices. This reduces the discontinui-
ties in the parameter plane. Unfortunately, despite their
novel idea, Kharevych et al. [KSS06] do not provide an
automatic way of identifying the locations and the curva-
tures of these cone singularities, such that the resulting
parameterization will have a small distortion. Since the
distortion is generally not known in advance, this is some-
what a "chicken and egg" problem. The method we propose
in this paper is closest in spirit to that of [KSS06] and im-
proves upon it in a number of ways.

1.1. Previous work
The body of research dedicated to the parameterization of a
triangular mesh to the plane is quite vast, and a survey of it
is beyond the scope of this paper. We will focus here only
on recent algorithms which are most relevant to our work.
The interested reader is referred to [SPR06] for a
comprehensive survey of parameterization methods.

As mentioned above, many parameterization methods solve
the problem in two quite separate steps: first cut the mesh
to one or more disk-like pieces, and then "flatten" each
piece separately. The cutting process is
performed independently of the subse-
quent flattening process. Methods such as
ABF++ [SLMB05], LinABF [ZLS07]
and others [HG00, LPRM02] concentrate
mostly on reducing the angular distortion
when flattening given disk-like regions.
These methods ignore the discontinuities
generated by the cuts, as the same 3D
edge might be mapped to edges of differ-
ent length in the parameterization. Such a
mapping will generate a change of scale
in the parameterization which will be
quite visible in applications such as tex-
ture mapping. The inset figure illustrates
this in the texture mapping of the David
model, parameterized using the LinABF
method [ZLS07]. The red lines are the
cut generated by Seamster [SH02]. Note
that any method which pre-cuts the mesh
is prone to such problems.

Kharevych at al [KSS06] proposed a way to generate a
planar parameterization with low area distortion without
cutting the mesh first, by introducing cone singularities.
These are vertices which, at the end of the parameterization
process, do not have zero Gaussian curvature as the other
vertices of the mesh. Their method is based on the concept
of circle patterns, a powerful technique for generating
discrete conformal mappings. Another method for redis-
tributing Gaussian curvature, also based on circle patterns,
is discrete Ricci flow [JKG07]. Both these methods require
a non-linear solver.

The idea of using cone singularities can be probably ex-
tended to any angle-based parameterization method, such
as ABF++ [SLMB05] and its recent linearized version
LinABF [ZLS07]. However, the real challenge in such an
approach is finding the location and target curvature of
those cone singularities, such that the resulting parameteri-
zation has low distortion.

Other methods which use cone singularities, but do not cut
the mesh, are the recent quad remeshing algorithms, such
as Ray et al. [RLL*06], Dong et al. [DBG*06], Tong et al.
[TACSD06], Kalberer et al [KNP07] and others. Some of
these methods even find the singularities automatically.
However, since their main goal is quad remeshing, the
singularities must have curvature which is a multiple of
π/2. Many of these methods try to approximate a given
input frame field, which is usually derived from the princi-
pal curvature directions. In these cases, the cone singulari-
ties are the singular points of this input field.

1.2. Contribution
Our contribution is twofold. First, given the locations and
curvatures of a set of cone singularities we propose a novel
conformal parameterization technique, which is fast and

M. Ben-Chen, C. Gotsman & G. Bunin / Conformal Flattening by Curvature Prescription and Metric Scaling

© 2007 The Author(s)
Journal compilation © 2007 The Eurographics Association and Blackwell Publishing Ltd.

simple to implement, and generates results comparable to
existing parameterization methods. Our method is inspired
by both discrete conformal theory, and the continuous rec-
ipe for conformally transforming between metrics having
different Gaussian curvature distributions. Second, at the
heart of our parameterization technique lies a method to
compute the conformal scaling factor by which the mesh
should be locally scaled in the vicinity of a vertex in order
to achieve the target curvature at that vertex. This scaling
factor can be used to automatically determine the location
and curvatures of the cone singularities, such that the re-
sulting parameterization will have low distortion.

Hence, we propose a simple and efficient method for the
parameterization of a mesh with arbitrary topology to the
plane, with low angle and area distortions. Our method
guarantees that edge lengths will be equal, and non singular
vertices' curvature will sum to 0, across the cuts in the pa-
rameter plane.

The rest of the paper is organized as follows. In the next
section, we present our parameterization method. In Sec-
tion 3 we show how to leverage our parameterization me-
thod in order to automatically find the location and curva-
ture of the cone singularities. Section 4 describes the full
algorithm for the parameterization of an arbitrary mesh,
including some technical implementation details. We con-
clude with some results in Section 5 and a short discussion
in Section 6.

2. Metric scaling
2.1. Definitions
A triangular mesh M is given by the sets of its vertices,
faces and edges, which we denote by V,F and E respec-
tively. An embedding of a mesh M is the assignment of a
point in R3 to each vertex of the mesh: XM = {xv ∈ R3 | v ∈
V}.

A (discrete) metric of a mesh M is the assignment of a posi-
tive number to each edge of the mesh: LM = {lij ∈ R+ | (i,j)
∈ E}. The natural metric of a mesh embedding XM is a
metric which uses the Euclidean edge lengths:

{ }| (,)
MX ij i jN l x x i j E= = − ∈

The angles induced by a metric LM are:
2 2 2

arccos
2

(, ,)
M

f vu vw uw
v

L uv uw

l l l
A l l

f u v w F

α
⎧ ⎫⎛ ⎞+ −

=⎪ ⎪⎜ ⎟= ⎨ ⎬⎝ ⎠
⎪ ⎪= ∈⎩ ⎭

The (discrete) Gaussian curvature induced by a metric LM
is:

2 |
M

v

f
L v v

f F
K k v Vπ α

∈

⎧ ⎫⎪ ⎪= = − ∈⎨ ⎬
⎪ ⎪⎩ ⎭

∑

where Fv is the set of the faces in F which share the vertex
v. The discrete Gaussian curvature is also known as the
angle defect of a vertex.

A vector of Gaussian curvatures K is feasible for a mesh M
if ∑K = 2πχ(M), where χ(M) is the Euler characteristic of
M.

2.2. Problem statement
In our setting, cone singularities are defined by prescribing
a target Gaussian curvature for all the vertices of the mesh.
For a planar parameterization, most of the vertices will be
prescribed zero target curvature, and the cone singularities
will be prescribed some nonzero target curvature. The for-
mal definition of the problem is as follows.

Conformal Mapping via Curvature Prescription

Given a triangular mesh M, its embedding X, and feasi-
ble target Gaussian curvatures K, find a metric LM which
induces the target curvatures K, and is conformal to the
natural metric of the mesh NX.

Conformality is a well defined concept when dealing with
continuous surfaces, and essentially means that angles are
preserved. In the discrete setting, however, the angles of
the 3D embedding cannot be preserved exactly when it is
flattened to 2D, since the angle sum around a vertex in the
3D embedding is arbitrary, and in 2D the angle sum must
be 2π. Thus some angle distortion is inevitable.

As described in [SPR06], there are a few different meas-
ures of discrete conformality, and different methods to
achieve it. One of the recent discrete conformal mapping
approaches uses circle patterns. In these approaches, the
3D mesh geometry is represented as a pattern of intersect-
ing circles, circumscribing either the faces [KSS06] or the
vertices [JKG07]. Once such a pattern is defined, the con-
formal mapping problem reduces to seeking new radii for
the circles, such that the intersection angles between the
circles are preserved and the Gaussian curvatures the radii
induce are the required target curvatures.

Unfortunately, solving the circle patterns problem requires
a complicated two-phase non-linear optimization method
(albeit with a unique minimum) in [KSS06], and an itera-
tive flow in [JKG07]. In addition, [KSS06] generates a
parameterization which is a Delaunay realization, and
hence requires the computation of an "intrinsic Delaunay
triangulation" of the mesh to avoid large distortion for
non-Delaunay input meshes. [JKG07] requires a non-trivial
initialization of the circle pattern. So computing these con-
formal mappings in practice is quite complex and its run-
time can be slow.

We now propose a simple linear method to solve the con-
formal parameterization problem.

2.3. The conformal scaling factor
Conformal mappings of Riemannian manifolds are very
well understood. In the continuous setting, a conformal
mapping can be achieved by applying a scaling function e2φ

M. Ben-Chen, C. Gotsman & G. Bunin / Conformal Flattening by Curvature Prescription and Metric Scaling

© 2007 The Author(s)
Journal compilation © 2007 The Eurographics Association and Blackwell Publishing Ltd.

to the Riemannian metric. Intuitively, this can be thought
of as scaling infinitesimal patches of the surface. The
Gaussian curvature change caused by such a mapping is
related to the scaling function by the following Poisson
equation [SY94, Chapter V]:

2 2orig newK e Kφ∇ φ = −
where ∇2 is the Laplace-Beltrami operator of the manifold,
Korig is the Gaussian curvature of the original manifold, and
Knew is the Gaussian curvature of the manifold after the
conformal mapping. The equation is non-linear, due to the
factor e2φ. This can be attributed to the fact that continuous
Gaussian curvature scales when the metric scales. For ex-
ample, a larger sphere will have smaller curvature. Hence,
to be able to compare the original and final curvature, one
must scale back the final curvature to compensate. Discrete
Gaussian curvature however, is not affected by uniform
scaling – both a large cube and a small cube have a discrete
Gaussian curvature of π/2 at the vertices. Since the initial
and final curvatures are comparable without scaling, the
scaling factor is redundant, and we are left with a simpler
equation. In fact, in a recent paper [Bun07], Bunin showed
that the equivalent equation relating the scaling function φ
to the change of Gaussian curvature, in the special case that
the new Gaussian curvature distribution is a sum of delta
functions, is:

2 orig newK K∇ φ = −
When working with a discrete mesh, the natural thing to do
is to approximate the continuous solution using a finite
elements solution. In this case, the discrete scaling factor
will be defined as a scalar function on the vertices of the
mesh, and extended to the faces in a piecewise linear mat-
ter. The Laplacian is now the cotangent weights Laplacian
[PP93], which is the FEM approximation to the Laplace-
Beltrami operator.

Apart from the FEM interpretation, this Poisson equation
has also a meaning in the pure discrete setting. Using the
derivative of the cosine law, and some simple derivations,
it is easy to show that for an infinitesimal change of the
discrete metric (edge lengths) near a vertex v, the following
holds (see a proof in Appendix A):

2 new orig
v v vk k∇ φ ≈ −

As in the FEM approximation to Bunin's equation, the
discrete Laplacian is defined using the cotangent weights.
But in contrast to that equation, this one is correct only for
small changes in the metric. Note that the discrete Lapla-
cian is typically defined to have a sign opposite that of its
continuous counterpart.

Motivated by these observations, we suggest the following
solution to the problem of conformal mapping via curva-
ture prescription.

Given a mesh M, its embedding X, and target Gaussian
curvatures KT, the required scaling factors eφ are computed
by first solving the following discrete Poisson equation on
the mesh vertices:

2 T origK K∇ φ = − (1)

where Korig is the Gaussian curvature induced by the natu-
ral metric of the embedding X.

φ is extended in a piecewise-linear manner to be defined
over the entire mesh surface. For an edge (i,j) we therefore
have: φ(t) = tφi+(1-t)φj, where t ∈ [0,1] parameterizes the
edge. The scaling factor of the edge (i,j) is obtained by
integrating φ(t) over the edge:

1
()

0

 , (,)

j i

i

i jt
j iij

i j

e e
s e dt i j E

e

φ φ

φ

φ

⎧ −
φ ≠ φ⎪ φ −φ= = ∈⎨

⎪ φ = φ⎩

∫

The target metric is then computed by multiplying the orig-
inal edge lengths of the embedding by the edge's scaling
factors:

{ }| (,) ,T T
ij ij ij ij XL l l s i j E l N= = ⋅ ∈ ∈

As we shall see in the following sections, this method is
only an approximation of the true metric that we seek. The
curvature induced by the target metric LT differs from the
target metric KT by an amount that depends on the amount
of distortion that is necessary for the flattening.

Figure 1: Flattening and texture mapping of parameterized
meshes.

M. Ben-Chen, C. Gotsman & G. Bunin / Conformal Flattening by Curvature Prescription and Metric Scaling

© 2007 The Author(s)
Journal compilation © 2007 The Eurographics Association and Blackwell Publishing Ltd.

The final 2D embedding of the target metric is performed
using linear least squares, as in the ABF++ method
[SLMB05]. This way, the accumulated errors introduced
by the inaccurate metric are better distributed across the
mesh. Only in this step do we require that the mesh be a
topological disk such that all the cone singularities – the
vertices which have non-zero target Gaussian curvature –
are on the boundary. In Section 3 we explain how to find
the locations and curvatures of the cone singularities, and
how to cut the mesh such that the singularities are on the
boundary.

Figure 1 shows some results of using this parameterization
method, given some suitable target curvatures. The cow
and bunny models were pre-cut by the Seamster [SH02]
algorithm to have disk-like topology. The hand and camel
were parameterized by first computing the cone singulari-
ties and the cuts, as will be explained in the next sections,
and then flattening them.

3. Curvature Prescription
In the previous section we explained how to compute a
conformal metric given target Gaussian curvatures. Now
we show how to determine suitable target curvatures, most
of which will be zero.

The process consists of two steps: first, identify the cone
singularities – those vertices which will have non-zero
target Gaussian curvature, and second, determine the target
curvature of these singularities. We first explain how to
determine the curvature of the cone singularities, once
these are identified, and then explain how to decide which
vertices should be cone singularities.

3.1. Pushing curvature around
Given a mesh M, an embedding X, and a set of vertices S
designated as cone singularities, we want to assign to each
vertex s ∈ S a target Gaussian curvature ks. The sole, but
important, constraint is that the target curvatures should
satisfy the Gauss-Bonnet condition, i.e.:

2s
s S

k πχ
∈

=∑

where χ is the Euler characteristic of the mesh M. Thus we
need to distribute the total Gaussian curvature induced by
the original metric of the mesh among the cone singularity
vertices.

Our distribution method may be thought of as an iterative
process. In each step, each non-singular vertex tries to dis-
pose of its curvature, thus equally distributes it among its
neighbors. The cone singularities vertices, on the other
hand, try to absorb as much curvature as possible, thus do
not distribute their curvature, rather absorb the curvature
passed to them. The process stops when all the curvature
has been absorbed by these vertices. Since no curvature
was added or removed from the system at any point in
time, the total curvature is preserved and the Gauss-Bonnet
condition satisfied throughout the process. This distribution
process can be modeled as an absorbing Markov chain.

Each vertex v ∈ V is a state, and the transition probabilities
from vertex i to vertex j are defined as follows:

(,) , , 1

1 ,
0

ij ij
j

ij

w i j E i S w

P i j i S
Otherwise

⎧ ∈ ∉ =
⎪
⎪= = ∈⎨
⎪
⎪
⎩

∑
 (2)

This means that once a random walker on the graph enters
a non-singular vertex, it must continue to a neighbor of that
vertex. The cone singularities are the absorbing states, and
a random walker arriving at a singularity must remain
there. We wish to find the probabilities of winding up at
the different absorbing states, depending on the initial state.
Stochastic process theory [WC07], provides a closed solu-
tion for these probabilities, given in terms of the transition
matrix P defined in (2).

Without loss of generality we reorder the vertices of the
mesh, such that the cone singularities are last. Then the
transition matrix P has the special structure:

0
nxn nxs

sxn sxs

S T
P

I
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

where n is the number of regular vertices (not cone singu-
larities) and s is the number of cone singularities. A simple
computation shows that after k time steps, the transition
probabilities are given by:

1(...)
0

k k
k S T I S S

P
I

−⎛ ⎞+ + +
= ⎜ ⎟
⎝ ⎠

Hence, as time goes to infinity, and the random walker
converges to the absorbing states, we have:

10 ()
0

I S T
P

I

−
∞ ⎛ ⎞−
= ⎜ ⎟
⎝ ⎠

Subsequently, the probabilities of ending up in the different
absorbing states are:

1()G I S T−= − (3)
The size of G is n×s, the entry Gij representing the prob-
ability of ending up in cone singularity vertex j, if we
started from vertex i. Since this is a probability matrix, all
the rows sum to unity.

Using G, we can compute the target Gaussian curvatures of
the cone singularities vertices as a function of the initial
Gaussian curvatures in closed form:

\
New Orig T Orig
S S V SK K G K= + (4)

In order to compute G as in (3), observe that P has the
structure of the incidence matrix of the mesh, thus it is easy
to check that (3) is equivalent to the following Poisson
equation:

ˆ
i iLG δ= (5)

where L is a generalized Laplacian operator of the mesh,
defined with weights wij as in P, and δi is a column vector
which is 1 at row i and zero elsewhere. Gi, the columns of
G, are sub-vectors of the solutions Ĝi. Each of the s Gi is a
function on the n regular mesh vertices, also called discrete
Green's functions [CY00]. The sum of the s Gi at each reg-
ular mesh vertex is unity (because the curvature of that

M. Ben-Chen, C. Gotsman & G. Bunin / Conformal Flattening by Curvature Prescription and Metric Scaling

© 2007 The Author(s)
Journal compilation © 2007 The Eurographics Association and Blackwell Publishing Ltd.

vertex is distributed in those proportions to the singular
vertices). This matrix G has been recently used as a type of
barycentric coordinates (so-called harmonic coordinates)
for mesh deformation in animation applications [JMD*07].

3.2 Finding cone singularities
Given a mesh M and an embedding X, we search for a set
of vertices S of cone singularities, such that when flattening
the mesh with these singularities the distortion will be
small. By the very definition of the problem, it can be seen
that finding cone singularities is a "chicken-and-egg prob-
lem": one needs the singularities to compute the flattening,
and one needs the flattening to compute the distortion, in
order to decide where to place the singularities.

As is usually the case in such scenarios, we resort to an
iterative process. Here we rely heavily on the fact that our
flattening method is based on computing local scaling fac-
tors. In fact, the function φ computed in the previous sec-
tion indicates how much distortion we can expect in a giv-
en region of the mesh.

Since scaling all the edges of the mesh by the same factor
eφ will preserve the Gaussian curvature, φ is unique only up
to an additive constant. Hence, we may assume that φ has
zero mean. Now, let us consider how the parameterization
will be distorted. If φ is all zeros, the metric does not
change, resulting in zero distortion relative to the original
embedding. This is possible of course, only if the mesh is a
developable surface. Otherwise, the largest distortions will
occur near the vertices where φ obtains its maximal and
minimal values. Placing a singular vertex at the locations of
extreme distortion allows curvature to accumulate at that
vertex, and thus reduces the distortion in the vicinity of that
vertex. A similar concept was used by Gu et al. [GGH02]
for finding cut vertices by repeatedly parameterizing a
mesh, and finding the triangle with the maximal distortion.
In our case however, φ is an indicator for the final distor-
tion, and there is no need to compute the full parameteriza-
tion at every iteration.

Note that simply choosing the vertices having maximal
absolute curvatures as singular vertices will not achieve the
same effect, since the discrete curvature is a
local feature, dependent only on the vertex
and its neighbors, whereas φ is obtained by a
global computation on the entire mesh. The
inset figure shows the set of vertices with
highest absolute curvatures in the hand mod-
el, which are obviously not a good selection
as singularities.

We thus propose the following algorithm for finding the
locations of the cone singularities:

1. Initialize the set of cone singularities as follows:

 If the mesh has a boundary, designate all the boun-
dary vertices as cone singularities.

 If the mesh is closed and has positive (negative) Eu-
ler characteristic, select the vertex with the largest
positive (negative) curvature as a cone singularity.

 If the mesh is closed and has zero Euler characteris-
tic, the initial set of cone singularities is empty.

2. Find the target curvatures for the set S using (4)
3. Compute φ using the Poisson equation (1). If max(φ)–

min(φ) > ε, where ε is a user-specified tolerance, or
the maximal allowed number of singularities has not
been reached, add two cone singularities to S at the lo-
cations of max(φ) and min(φ) and go to step 2.

Note that since the total sum of the target curvature must be
equal to the total sum of the original curvature, the initial
set S cannot be empty unless the mesh has genus 1, hence
the need for the initialization step.

Using different values of ε, one can trade off the number of
cone singularities with the resulting distortion. In our ex-
periments we observed that using ε = 1 gives reasonable
results.

Figure 2 shows the cone singularities we found for a vari-
ety of models. Red spheres indicate singularities with posi-
tive curvature, and black spheres singularities with negative
curvature. For each model we also state the number of
singular vertices generated, and (in parentheses) the total
number of vertices. Singularities tend to emerge in regions
with large total curvature. For example, at the tips of the
fingers of the hand, although each individual vertex is near-
ly flat, there is a total curvature of about 2π on the com-
plete tip of the finger. Another example is the back of the
elephant, where a single singularity emerges to account for
the total curvature of the elephant's back.

4. Implementation Details
In this section we provide the details necessary to repro-
duce our results. Our algorithm consists of the following
steps:

 1. Find the cone singularities and their target curvatures.
 2. Compute φ as a solution to the Poisson equation.
 3. Compute the new 2D edge lengths using φ.
 4. Compute the 2D coordinates from the new lengths.

4.1. Computing φ
Computation of φ involves solving the Poisson equation
(1). We use the discrete symmetric Laplacian with cotan-
gent weights derived from the input 3D mesh [PP93]:
wij=0.5(cot(α)+cot(β)), where α and β are the angles oppo-
site edge (i,j). Since the co-rank of the Laplacian of a con-
nected mesh is 1, φ is defined up to an additive constant.
This is consistent with the fact that uniformly scaling the
edges of the mesh by a scalar does not affect the Gaussian
curvature. Note also, that since all the columns of the Lap-
lacian sum to 0 and the original Gaussian curvature vector
is feasible, a necessary and sufficient condition for the
linear system to have a solution is that the target Gaussian
curvature vector is also feasible, i.e. the target curvatures
sum to 2πχ. In this case, the right hand side of Eq. (1) also
sums to 0, thus the co-rank of the augmented matrix of the

M. Ben-Chen, C. Gotsman & G. Bunin / Conformal Flattening by Curvature Prescription and Metric Scaling

© 2007 The Author(s)
Journal compilation © 2007 The Eurographics Association and Blackwell Publishing Ltd.

linear system is positive, which is a sufficient condition for
the existence of a solution.

Since the Laplacian is sparse and symmetric, Eq. (1) can be
solved very efficiently, e.g. with Matlab's mldivide opera-
tor, which uses the CHOLMOD package [Dav05].

Figure 2: Cone singularities. Red (black) spheres indicate
positive (negative) singularities. The number of singulari-
ties is stated, along with the total number of vertices (in
parentheses).

4.2. Computing the target curvatures
Once the cone singularities are found, we need to deter-
mine their target curvatures. These curvatures are an accu-
mulation of the curvatures of the regular vertices, as dic-
tated by the Green’s functions (3), of Section 3.1. The en-
tries of the matrix P are pij = wij / ∑jwij.

Unfortunately, the computation of the inverse of L=I-S
required in (3) is not feasible for large meshes. Even stor-
ing the inverse requires a prohibitive amount of memory.
To avoid these problems, we compute G as the solutions to
(5), where the Laplacian matrix L is sparse, symmetric and
semi-positive definite, thus can be efficiently factorized, so
that the columns of G (denoted Gi) may be computed one
by one by back-substitution. Since the number of columns
in G is only as the number of cone singularities, this proc-
ess is quite efficient. The solution, however, might take
more time for meshes which have a relatively large bound-
ary, since all the boundary vertices function as cone singu-
larities.

4.3. Computing the 2D embedding
To generate the final 2D embedding, the mesh is cut such
that all the singular vertices are on the boundary of the cut,
and the homology generators of the mesh are part of the
cut. This is achieved using the Seamster algorithm [SH02],
where our singular vertices are used instead of the terminal
vertices of Seamster. We used the method of Dey et al.
[DLS07] to compute the homology generators. Once a cut
is found, we may apply the least squares method of ABF++
[SLMB05] to compute the locations of the 2D vertices
given the edge lengths. Since there is no guarantee that the
triangle inequality will hold for the computed edge lengths,
this might result in complex angles when converting the
edge lengths into the angles required for the system of equ-
ations. If this is the case, we use the real part of the result-
ing angles.

In our case, since the edge lengths might have relatively
large errors, it is crucial to use the least squares method,
and not the more naïve, but also more efficient, original
greedy ABF approach where the triangles are laid out in-
crementally, thus accumulate error.

5. Experimental Results
We have run our algorithm, which we call CF (Conformal
Factor) on a variety of inputs. For each input we computed
the resulting quasi-conformal distortion, the main measure
of success, as defined in [KSS06]. The objective is that the
quasi-conformal distortion be as close as possible to unity.

Since the edge lengths generated by CF do not induce the
exact target curvature, we also computed the average cur-
vature error as the L2 norm: ||KT – K||/n, where KT is the
input target curvature, K is the actual curvature induced by
the computed edge lengths, and n is the number of vertices.
As can be seen in Table 1 this error is quite small, on the
order of 1e-5 π. This error is important for another reason -
since the final 2D embedding is computed on the cut mesh,
edge lengths on both sides of the cut might not be identical,

36 (2K)

32 (6.5K)

12 (10K)

67 (142K)

52 (53K)

106 (20K) 28 (10K)

M. Ben-Chen, C. Gotsman & G. Bunin / Conformal Flattening by Curvature Prescription and Metric Scaling

© 2007 The Author(s)
Journal compilation © 2007 The Eurographics Association and Blackwell Publishing Ltd.

depending on the target curvature error. However, since the
curvature error is small, the resulting embedding error is
negligible.
We compared the results of CF with those of the Circle
Pattern (CP) method of [KSS06], feeding that method our
cone singularities, curvatures and cuts. We also compared
to the Linear ABF (LABF) method of [ZLS07], feeding it
just the cut (as boundary). All the comparisons were done
using software kindly provided by the respective authors,
run on the same machine as our software.

Model #∆ Curvature Error
(units of π)

fandisk 13K 4.6e-6
rockerarm 20K 1.4e-5
foot 20K 2.7e-5
gargoyle 20K 2.9e-5
elephant 40K 1.6e-5
horse 40K 1.8e-5
hand 106K 3.2e-6
torso 284K 1.4e-6
isi-horse 358K 8.4e-7

Table 1: Curvature error relative to target curvature.

Table 2 shows the results of this comparison. For each
method we list the quasi-conformal distortion, and the
computation time in seconds, as measured on a 1.4GHz
CPU with 1.5GB RAM. As the other methods do not com-
pute the singularities and the cut, the computation time
quoted for all methods includes only the flattening – gener-
ating the new edge lengths or angles – given the cone sin-
gularities and the cut. Since the final step – generating the
2D layout (coordinates) from the angles or the edge lengths
– is common to all three methods, it is not included in the
timings. Where data is missing, the respective methods
failed to generate the parameterization.

Quasi-conformal
distortion

Runtime (sec) Model #∆

CP LABF CF CP LABF CF
fandisk 13K 1.013 1.007 1.012 20 0.9 0.5
rockerarm 20K 1.045 1.027 1.028 21 1.5 0.4
foot 20K 1.029 1.016 1.020 29 1.4 0.6
gargoyle 20K 1.213 1.032 1.037 29 1.6 0.7
elephant 40K 1.028 1.022 1.027 44 4.8 1.1
horse 40K 1.035 1.017 1.077 62 4.1 1.3
hand 106K 1.009 1.008 1.009 902.7 26.0 3.8
torso 284K - 1.004 1.005 - 86.2 24.3
isi-horse 358K - - 1.009 - - 31.6
Table 2: Comparison between parameterization methods

As is evident from Table 2, our CF algorithm achieves
quasi-conformal distortions comparable to CP at a fraction
of the time CP requires. The CP algorithm solves two non-
linear problems, one for the angles and one for the radii.
The last is convex and has a unique minimum. Kharevych
et al. [KSS06] state that the performance bottleneck of the
CP method is the angle optimization step. The distortions
generated by CF are only slightly worse than those gener-
ated by LABF, which seems to come at the price of a long-
er runtime. This is to be expected, since LABF solves a
sparse linear system of 4n equations in 6n variables, com-

pared to the sparse linear system of n equations in n vari-
ables solved by CF. In addition, CF has the advantage that
edge lengths on both sides of the cut are the same, and the
curvature of all the vertices except the cone singularities is
zero. It is possible that LABF can be modified to accom-
modate cone singularities, by changing the constraints the
method optimizes. If it is indeed possible, the cone singu-
larities generated by CF can be used to drive LABF, and it
would be interesting to compare our results to those.

Figure 3 compares the quasi-conformal distortion per face
color-coded over the mesh, produced by the three methods.
The color ranges from blue (quasi-conformal distortion =
1) to red (quasi-conformal distortion > 1.5). In all compari-
sons to CP, we compared to the version without the intrin-
sic Delaunay triangulation. Figure 4 compares the flatten-
ing of the foot mesh generated by the three methods. Fi-
nally, Figure 5 shows the models listed in Table 2 texture
mapped and color-coded with the quasi-conformal distor-
tion generated by CF.

 CP CF LABF
Figure 3: Quasi-conformal distortion color coded over the
mesh

CP CF LABF

Figure 4: Flattening of the foot model

6. Conclusions and Discussion
We have presented a new method for conformal parame-
terization of arbitrary meshes, when given cone singulari-
ties and their target curvatures. In addition, we showed how
to identify suitable cone singularities for a given 3D mesh.
Our method relies only on the solution of sparse linear
systems, thus is both simple to implement and very effi-

M. Ben-Chen, C. Gotsman & G. Bunin / Conformal Flattening by Curvature Prescription and Metric Scaling

© 2007 The Author(s)
Journal compilation © 2007 The Eurographics Association and Blackwell Publishing Ltd.

cient. Despite its simplicity, resulting in runtimes which are
much faster than other state-of-the-art methods, it still yi
elds results comparable to those methods.

Figure 5: Texture mapping and color coding of quasi-
conformal distortion, for the meshes of Table 2.

Our CF method has a few drawbacks. The most important
is that it is somewhat sensitive to high-distortion parame-
terizations, to which the CP method, for example, is more
robust. If, for example, the disk-topology hand model in
Fig. 2 is required to be parameterized without additional
cuts (thus without cone singularities), our method will
probably not produce a good parameterization. However,
as high area distortions are usually undesirable, it is not
obvious that this scenario will ever arise in practice. An-
other drawback is that the method is somewhat sensitive to
long and skinny triangles in the original mesh, since the
negative cotangent weights generated in this case affect our
evaluation of φ as a piecewise linear function.

Since mesh parameterization is a very fundamental opera-
tion, a prerequisite to other more sophisticated geometry
processing techniques, we are sure that our approach, and
its underlying theory, will find more applications. Manipu-

lating the intrinsic geometry (the curvature distribution and
its associated metric) seem to be a promising alternative to
processing the extrinsic geometry (e.g. the vertex coordi-
nates) directly. We are currently exploring the implications
of this for applications such as quad remeshing of 3D mesh
datasets. For quad remeshing to be applicable, applying a
checkerboard texture to the parameterization should gener-
ate a seamless texture. As our method only takes care of the
scale of the texture across the cut boundary, and not of the
directions of the iso-lines of the parameterization, this
problem remains open.

Acknowledgments
All the models except the cut cow and cut bunny were obtained
from the AIM@SHAPE shape repository. The cut cow and bunny
are courtesy of Alla Sheffer.

We thank Pierre Alliez and Camille Wormser for thought provok-
ing discussions, Tamal Dey and Alla Sheffer for providing us with
software, and the authors of the LinABF and CP algorithms for
providing us with comparison data. Thanks also to the anonymous
reviewers for their many useful comments.

This work was partially supported by European FP6 IST NoE
grant 506766 (AIM@SHAPE), the Israel Ministry of Science, and
the INRIA-Technion Associate Team GEOTECH project.

References
[Bun07] BUNIN, G.: A continuum theory for unstructured mesh generation in

two dimensions. Computer Aided Geometric Design (2007), to appear.

[CY00] CHUNG, F., YAU, S.: Discrete Green's functions. J. Comb. Theory
Ser. A 91, 1-2 (2000).

[Dav05] DAVIS T.-A.: CHOLMOD Version 1.0 User Guide
(http://www.cise.ufl.edu/research/sparse/cholmod). (2005).

[DBG*06] DONG S., BREMER P.-T., GARLAND M., PASCUCCI V., HART J.:
Spectral surface quadrangulation. ACM SIGGRAPH (2006).

[DLS07] DEY T., LI K., SUN J.: On computing handle and tunnel loops.
Proc. IEEE NASAGEM workshop (2007), to appear.

[GGH02] GU X., GORTLER S., HOPPE H.: Geometry images. ACM
SIGGRAPH (2002).

[HG00] HORMANN K., GREINER G.: MIPS: An efficient global parameteriza-
tion method. Curve and Surface Design (2000).

[JKG07] JIN M., KIM J., GU X.-D.: Discrete surface Ricci flow: theory and
applications. Mathematics of Surfaces XII (2007).

[JMD*07] JOSHI P., MEYER M., DEROSE T., GREEN B., SANOCKI T.: Har-
monic coordinates for character articulation. ACM SIGGRAPH (2007).

[KNP07] KÄLBERER F., NIESER M., POLTHIER K.: QuadCover - Surface
parameterization using branched coverings. Computer Graphics Forum,
26(3), 375-384, (2007).

[LPRM02] LÉVY B., PETITJEAN S., RAY N., MAILLOT J.: Least squares
conformal maps for automatic texture atlas generation. ACM SIGGRAPH
(2002).

[Luo06] LUO F.: Some applications of the cosine law. Discrete Differential
Geometry conference, Oberwolfach. http://www.math.tu-berlin.de
/geometrie/ps/DDGWorkshopSlides/DDG_talk_Luo.pdf (2006).

[KSS06] KHAREVYCH L., SPRINGBORN B., SCHRÖDER P.: Discrete conformal
mappings via circle patterns. ACM Transactions on Graphics 25(2)
(2006).

[PP93] PINKALL U., POLTHIER K.: Computing discrete minimal surfaces and
their conjugates. Experimental Mathematics, 2 (1993).

[RLL*06] RAY N., LI W. C., LÉVY B., SHEFFER A., ALLIEZ P.: Periodic
global parameterization. ACM Trans. Graph. 25(4), 1460–1485, (2006).

M. Ben-Chen, C. Gotsman & G. Bunin / Conformal Flattening by Curvature Prescription and Metric Scaling

© 2007 The Author(s)
Journal compilation © 2007 The Eurographics Association and Blackwell Publishing Ltd.

[SH02] SHEFFER A., HART J.: Seamster: Inconspicuous low distortion texture
seam layout. In Proceedings of IEEE Visualization (2002).

[SLMB05] SHEFFER A., LÉVY B., MOGILNITSKY M., BOGOMJAKOV A.:
ABF++: Fast and robust angle based flattening. ACM Trans. Graph.
24(2), (2005).

[SPR06] SHEFFER A., PRAUN E., ROSE K.: Mesh parameterization methods
and their applications. Foundation and Trends in Computer Graphics and
Vision 2(2), (2006).

[SY94] SCHOEN R., YAU S.-T.: Lectures on Differential Geometry. Intl Press
(1994).

[TACSD06] TONG Y., ALLIEZ P., COHEN-STEINER D., DESBRUN M.: Design-
ing quadrangulations with discrete harmonic forms. In Proc. Eurograph-
ics/ACM Symp. on Geom. Proc. (2006), pp. 201–210.

[WC07] WANER S., COSTENOBLE S.: Finite Mathematics and Applied Calcu-
lus, 4th Edition. Thomson Brooks/Cole, 2007.

[ZLS07] ZAYER R., LÉVY B, SEIDEL H.-P.: Linear angle based parameteriza-
tion. In Proc. ACM/Eurographics Symposium on Geometry Processing
(2007).

Appendix A: The discrete conformal scaling factor
In this section we derive an infinitesimal version of our Eq. (1) -
the Poisson equation for the conformal scaling factor - the key to
our approach. The derivation is based on differentiating the cosine
law, an approach inspired by Luo [Luo06].

Given a mesh M and its embedding X, consider a vertex v∈V and
its 1-ring neighborhood {v1, v2, … , vd | (vi,v) ∈ E} where d is the
degree of v. Let fi be the face (v,vi,vi+1). Then the Gaussian curva-
ture of v is:

1

2 i

d
f

v v
i

k π α
=

= −∑

In fact, this Gaussian curvature is a function of only the edge
lengths of the faces near v. This is because the edge lengths deter-
mine the angles, which in turn define the curvature. Considering
the Gaussian curvature as a function of the edge lengths, one may
wonder how the curvature would change if the edge lengths un-
dergo an infinitesimal perturbation. As the curvature depends only
on the angles, we need to compute the partial derivatives of the
angles near v with respect to the edge lengths. Luckily, an angle
near v depends only on the edge-lengths of the face to which it
belongs, so we may consider just a single triangle for the computa-
tion of the derivatives.

Let f be the triangle whose edge lengths are l1, l2 and l3. Denote by
α1, α2, α3 the angles of this triangle, where li is the length of the
edge opposite to the vertex vi. Now, how does a small perturbation
of the edge lengths li, i∈{1,2,3} affect αi? To answer this, we
differentiate the cosine law, which governs the connection between
angles and edge lengths in a triangle:

2 2 2

cos
2

j k i
i

j k

l l l
l l

α
+ −

=
 (A1)

where {i,j,k} is some cyclic permutation of {1,2,3}.
Differentiating (A1) with respect to lj and using the cosine law
again we get:

sin cosi i
i k

j j k

l
l l l
αα α∂

− =
∂

 (A2)

Applying the sine law to (A2) we have:
1coti

k
j jl l
α α∂

− =
∂

 (A3)

Now, let uj = log(lj):

coti
k

ju
α α∂

= −
∂

 (A4)

Note, that we can similarly differentiate the cosine law for αj
 with

respect to li and obtain the symmetric relation:

cotji
k

j iu u
αα α
∂∂

= = −
∂ ∂

 (A5)

Since the sum of the angles is the constant π, we have:
()

0 i j k ji k

i i i i

ji k

i i i

u u u u

u u u

α α α αα α

αα α

∂ + + ∂∂ ∂
= = + +

∂ ∂ ∂ ∂

∂⎛ ⎞∂ ∂
= − +⎜ ⎟∂ ∂ ∂⎝ ⎠

Using (A5) gives:

i i i

i j ku u u
α α α⎛ ⎞∂ ∂ ∂

= − +⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠

 (A6)

Finally, we may compute the change dα1 in the angle α1 as a result
of the changes dui using the chain rule and (A5) and (A6):

() ()

() ()

1 1 1
1 1 2 3

1 2 3

1 1
2 1 3 1

2 3

3 2 1 2 3 1cot cot

d du du du
u u u

du du du du
u u

du du du du

α α αα

α α

α α

∂ ∂ ∂
= + +
∂ ∂ ∂

∂ ∂
= − + −
∂ ∂

= − − − −

 (A7)

Now, let us define the change in the edge length caused by the
scaling function φ as follows:

()exp(0.5)new old
i i j kl l= φ + φ (A8)

which means an edge is scaled using the mean of the scaling func-
tion at its two endpoints. Using (A8) we get the following:

()log log log 0.5
new

new old i
i i i j kold

i

ldu l l
l

⎛ ⎞
= − = = φ + φ⎜ ⎟

⎝ ⎠

hence:
() ()0.5 0.5 0.5()j i i k j k i jdu du− = φ + φ − φ + φ = φ −φ (A9)

Plugging (A9) into (A7) we have:

1 3 1 2 2 1 30.5cot () 0.5cot ()dα α α= − φ −φ − φ − φ

Returning to the original problem of the 1-ring neighborhood, let
us compute the change in the curvature dkv as a function of the
changes dui. Let fi be the face (v,vi,vi+1), then:

() ()()1 1
1 1

0.5cot 0.5coti i i

i i i i

d d
f f f

v v v v v v v v
i i

dk dα α α
+ +

= =

= − = − − φ − φ − φ − φ∑ ∑

Since on neighboring faces fi and fi-1, the same factor appears, this
simplifies to:

() ()
1

0.5 cot cot
i

d

v v v
i

dk α β
=

= + φ − φ∑ (A10)

Where α and β are the angles opposite the edge (v,vi) on the faces fi
and fi-1. Note that the right hand side of (A10) is exactly the dis-
crete Laplace-Beltrami operator (with cotangent weights).

To summarize, we have the following relation between the scaling
function and the resulting curvature change:

2 new orig
v v v vdk k k∇ φ = ≈ − (A11)

This implies that given a mesh, a small enough curvature change
dkv can be achieved by solving the above equation for φ, and modi-
fying the edge lengths using (A8).

The update method based on the FEM approach introduced in
Section 2 is different from the one in (A8). However, a simple
Taylor expansion for small φ shows that the two are equivalent.

Eq. (A11) proven here is correct for small curvature changes, and
we use it for general curvature changes, large and small alike. As it
turns out, and as is shown in the results section, in practice one can
prescribe relatively large curvature changes and still get reasonable
results.

