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Abstract

The Marching Cubes Algorithm may return degenerate, zero area isosurface triangles, and often returns isosurface
triangles with small areas, edges or angles. We show how to avoid both problems using an extended Marching
Cubes lookup table. As opposed to the conventional Marching Cubes lookup table, the extended lookup table
differentiates scalar values equal to the isovalue from scalar values greater than the isovalue. The lookup table

has 3% = 6561 entries, based on three possible labels,

—"or '="or '+’, of each cube vertex. We present an

algorithm based on this lookup table which returns an isosurface close to the Marching Cubes isosurface, but
without any degenerate triangles or any small areas, edges or angles.

1. Introduction

A three dimensional scalar field is a continuous function f
from R? to R. Given a regular grid sampling of a scalar field
f: R? — R and a scalar value o, the Marching Cubes Al-
gorithm [WMW86, LC87] constructs a piecewise linear ap-
proximation to the level set {x : f(x) = c}. The piecewise
linear approximation is called an isosurface and the value ¢
is called an isovalue.

The Marching Cubes Algorithm partitions all the grid
vertices into two classes. Grid vertices with scalar value
STRICTLY LESS than the isovalue are assigned a nega-
tive, *—’, label, while vertices with scalar value GREATER
THAN or EQUAL TO the isovalue are assigned a positive,
"4, label. Note the arbitrary asymmetry in which vertices
with scalar value equal to the isovalue are clustered with ver-
tices whose scalar value is greater than the isovalue.

Since each of the eight cube vertices has two possible la-
bels, each cube has 28 = 256 possible configurations of "4’
and *—’ vertex labels. The Marching Cubes Algorithm uses
an isosurface lookup table containing an isosurface patch for
each configuration. For each cube, the algorithm retrieves an
isosurface patch from the lookup table based on the cube’s
configuration of vertex labels. The isosurface patch is a set
of triangles whose vertices lie on the edges of the cube. The
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algorithm positions each isosurface vertex on an edge based
on the scalar values of the edge endpoints.

A grid edge is bipolar if one endpoint is labeled ’+’ while
the other is labeled *—’. If some endpoint of a bipolar edge
has scalar value equal to the isovalue, the Marching Cubes
Algorithm will position an isosurface vertex at that endpoint.
The Marching Cubes Algorithm uses the same lookup table
entries for vertices with scalar value equal to the isovalue
and scalar value strictly greater than the isovalue. Because
of this, the algorithm sometimes creates triangles which have
two or three isosurface vertices positioned at the same grid
vertex.

For example, the grid cube in Figure 1 has one vertex, v,
with scalar value four and all others with scalar values two.
For isovalue four, vertex v has a ’+’ label and all other ver-
tices have a *—’ label. The isosurface patch for a configura-
tion with a single +’ vertex is a single triangle. Marching
Cubes will retrieve that triangle and then position all its ver-
tices at grid vertex v, creating a degenerate isosurface trian-
gle.

A post processing step could eliminate degenerate isosur-
face triangles by identifying isosurface vertices which have
been mapped to the same grid vertex. Instead, we show how
such degenerate triangles can be completely avoided by us-
ing a lookup table which distinguishes between scalar values
equal to the isovalue and scalar values greater than the iso-
value. Grid vertices are assigned a +’, *—’ or '=’ label,
depending upon whether their scalar value is greater than,
less than or equal to the isovalue. Each grid vertex has three
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a)

Figure 1: a) Grid cube with one vertex with scalar value four
and all others with scalar values two. The grid cube has a
single '+’ vertex when the isovalue is four. b) Lookup table
isosurface patch for configuration with a single '+’ vertex.

possible labels, 4’ or ’—’ or ’=". The extended isosurface
lookup table has 38 = 6561 entries, one for each possible
configuration of the labels on the cube vertices.

The algorithm for isosurface construction based on the
extended isosurface lookup table is exactly the same as
the Marching Cubes Algorithm. The challenge is in con-
structing the extended lookup table. Lachaud and Mon-
tanvert in [LMOO] and independently Bhaniramka et. al.
in [BWC00,BWC04] gave convex hull based algorithms for
automatically generating isosurface lookup tables. We show
how to modify those algorithms to generate extended isosur-
face lookup tables based on ’+’, ’—’ and "=’ vertex labels.

Just as isosurface vertices located on grid vertices can cre-
ate degenerate triangles, isosurface vertices located near grid
vertices can create triangles with small areas, edges or an-
gles. They can also create triangles with angles near 180°.
Recently, Labelle and Shewchuk [LS07] presented an algo-
rithm for constructing tetrahedral meshes with good dihe-
dral angles. By combining their algorithm with the extended
isosurface lookup table, we can modify Marching Cubes to
produce an isosurface with good triangle angles. We deter-
mine where Marching Cubes will place the isosurface vertex
on each bipolar grid edge. If that vertex is too close to a
grid vertex, then we modify the scalar value of the grid ver-
tex to exactly equal the isovalue. This forces the isosurface
vertex to be “snapped” to the grid vertex. We run Marching
Cubes on the modified scalar grid using the extended lookup
table and then reposition the “snapped” isosurface vertices.
Our algorithm is called SnapMC. Figure 2 contains an exam-
ple of the output of our algorithm compared with Marching
Cubes.

Labelle and Shewchuk’s algorithm constructs a 3D mesh
filling the volume bounded by an isosurface but can easily be
modified to generate only an isosurface. However, Labelle
and Shewchuk’s algorithm requires converting the input reg-
ular grid into a body centered lattice partitioned into tetrahe-
dra. In contrast, SnapMC constructs the isosurface directly
on the original grid cubes. SnapMC also uses a slightly dif-
ferent technique for “snapping” isosurface vertices to grid
vertices, modifying scalar values instead of warping the grid
as in [LSO7].

Processing degenerate or small triangles is time consum-
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Figure 2: Isosurface from fuel data set (www.volvis.org),
isovalue 80. a) Marching Cubes isosurface. b) SnapMC iso-
surface (snap parameter 0.3.)

ing, but not a major visualization problem. However, when
isosurface triangulations are used for modeling and simula-
tion, small or large triangle angles can create significant nu-
merical problems [She02]. SnapMC produces an isosurface
triangulation with guaranteed upper and lower bounds on the
angles of any triangle in the triangulation.

SnapMC has two drawbacks. First, it can change isosur-
face topology, eliminating small tunnels and components
and merging vertices, edges and faces which are not con-
nected in the isosurface triangulation but are geometrically
close. Second, because our algorithm merges geometrically
close vertices, edges and faces, it can and often will produce
non-manifold isosurfaces. Non-manifold surfaces can be a
real problem for numerical simulation software. Post pro-
cessing can be used to unglue merged vertices, edges and
facets, creating a manifold with well-shaped triangles.

Our paper makes the following contributions:

1. An algorithm for constructing extended isosurface
lookup tables with "+’ or *—’ or *=" labels assigned to
vertices. The Marching Cubes Algorithm run with this
extended lookup table does not create any degenerate tri-
angles.

2. An algorithm for constructing isosurfaces without small
areas, edges or angles. The algorithm is similar to the one
in [LSO7], but it uses a lookup table for cubes not tetra-
hedra. It can also be modified for other convex mesh ele-
ments, such as pyramids or bipyramids.

2. Background

Lorensen and Cline [LC87] published the Marching Cubes
Algorithm in 1987. A year earlier, Wyvill et. al. [WMW86]
published a somewhat similar isosurface extraction algo-
rithm, but without the use of isosurface patch lookup tables.
Marching Cubes is a fast, efficient, easily implementable al-
gorithm because of its use of lookup tables.

There are numerous variations and improvements of
the original Marching Cubes Algorithm. We cite only
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Figure 3: 2D illustration of isosurface patch construction.
a) Square vertices labelled '+, '—’" and '=". b) The convex
hull of the midpoint of the bipolar edges and the '+’ and '=’
vertices. c) The line segment on the boundary of the convex
hull which is not on the square boundary.

the two most relevant to our paper. Lachaud and Mon-
tanvert in [LMOO] and independently Bhaniramka et. al.
in [BWC00,BWC04] gave algorithms for automatically gen-
erating isosurface lookup tables for the Marching Cubes Al-
gorithm. Their algorithms apply to generating lookup tables
for other convex mesh elements such as tetrahedra or pyra-
mids and to mesh elements in dimension R* or higher.

Schreiner et. al. [SSS06] gave an advancing front method
for constructing isosurfaces with good triangles. However,
the method has difficulties in a few cases where the front
meets itself. Dey and Levine [DL07] gave an isosurface con-
struction and meshing algorithm based on Voronoi diagrams
and Delaunay triangulations. Meyer et. al. [MKWO07] use a
particle based system to construct a point sampling of the
isosurface and then reconstruct the isosurface from the sam-
ple points using the TIGHT COCONE software [DGO03]. All
three algorithm are adaptive, producing large triangles in
flat, featureless regions and small triangles in regions with
high curvature.

We cite only the most relevant articles on mesh genera-
tion. Bernd, Eppstein and Gilbert [BEG94] introduced the
idea of warping a background grid for mesh generation in
2D. Mitchell and Vavasis [MV00] generalized the algorithm
to higher dimensions. Labelle and Shewchuk [L.SO7] applied
the grid warping to a body centered lattice and combined it
with a Marching Cubes style lookup table to quickly gener-
ate tetrahedral meshes with guaranteed bounds on dihedral
angles.

3. Constructing Isosurface Patches

Given a convex polyhedron & with vertices labeled "+ or
’—’ or ’=’, we construct triangles representing an isosurface
patch in ®. As previously defined, an edge of ® is bipolar
if one endpoint has label +’ and another endpoint has label

L]

Our algorithm is as follows. Create a set Wg of the mid-
point of the bipolar edges of ® and the vertices of ® which
are labeled "+ or ’=". Construct the convex hull, conv (Wg),
of Wp. (See Figure 3.)

If conv(Wg) is three dimensional, then triangulate

d(conv (Wgp)), the boundary of conv(Wg). Remove from
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Wg < the midpoints of the bipolar edges of @
and the vertices of ® labeled "+’ and *=".

!

’ Construct the convex hull, conv (Wg ), of Wep. ‘

!

If conv (Wg ) is three dimensional, then
1. Triangulate the boundary of conv (Wg);
2. Return triangles which do not lie on the boundary of ®.

!

If conv (W) is a subset of some facet of &, then
return a triangulation of conv (We).

’ Otherwise, return the empty set. ‘

Figure 4: Isosuface patch construction in a convex polyhe-
dron .

this triangulation all triangles contained in a facet of ®.
The remaining set of triangles forms the isosurface patch.
If conv (W) is contained in a facet of @, then return all the
triangles in a triangulation of conv (Wg). If conv (Wg ) is one
or two dimensional but not contained in a facet of ®, then
return the empty set. (See Figure 4.)

If @ has no vertices with label =" and Wg is not empty,
then conv (Wep) is a three dimensional set. In this case, the
construction of the isosurface patch is exactly the same as
that given in [LM00, BWC00, BWC04].

4. Constructing the Extended Isosurface Table

The extended isosurface lookup table contains isosurface
patches for all possible vertex labellings of the unit cube.
Each vertex has three possible labels, "+ or ’—’ or ’=". A
cube has eight vertices so there are 38 = 6561 entries in the
extended lookup table.

Each entry in the extended lookup table contains a list
of triangles representing an isosurface patch within a cube.
This triangles list is generated by applying the algorithm in
Figure 4 to the unit cube with the appropriate vertex labels.

The extended isosurface lookup table is generated in a
preprocessing step and stored in a file. A file (in xml format)
representing the extended isosurface lookup table can be
downloaded from www.cse.ohio-state.edu/graphics/isotable
along with C++ source code for reading this file into an iso-
surface generator.

5. MC Isosurfaces with No Degenerate Triangles

The algorithm for constructing isosurfaces using the ex-
tended isosurface lookup table follows the classical March-
ing Cubes algorithm. To add isosurface triangles lying on the
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Figure 5: Grid facet with duplicate isosurface triangles.
Identical (but oppositely oriented) isosurface triangles are
created in each of the cubes incident on the facet.

boundary of the grid, the algorithm includes an additional
step for processing the grid boundary.

The extended isosurface lookup table is read from a file.
Each grid vertex v is labeled '+’ if its scalar value sy is
greater than the isovalue ¢, ’—’ if s, is less than ¢, and =" if
sy is equal to ©. For each grid cube, find the lookup table en-
try corresponding to its vertex labels. Retrieve the isosurface
triangles from that entry, forming an isosurface patch within
the grid cube.

The isosurface vertices in the lookup table lie either on
cube vertices with label =" or on the midpoints of bipolar
cube edges. As in Marching Cubes, we reposition the isosur-
face vertices on bipolar grid edges using linear interpolation.
Repositioning the isosurface vertices implicitly repositions
all the isosurface triangles. The isosurface is the union of all
the isosurface triangles.

The final step of the algorithm adds isosurface triangles
to the grid boundary. For every square on the grid boundary
with four vertices labelled ’=’, use a diagonal of the square
to form two isosurface triangles covering that square. For ev-
ery square on the grid boundary with three vertices labelled
’=" and one labelled ’—’, form an isosurface triangle from

s

the vertices labelled *=".

We claim the constructed isosurface has the following two
properties:

1. The isosurface does not contain any zero area triangles.

2. The isosurface separates vertices with scalar value greater
than the isovalue from vertices with scalar value less than
the isovalue;

An isosurface separates point p from point ¢ if every path
in the grid from p to ¢ intersects the isosurface.

Proof sketch of 1. The extended isosurface lookup table
does not contain any degenerate triangles. The Marching
Cubes algorithm with the extended lookup table never po-
sitions two triangle vertices at the same location and never
moves three triangle vertices onto the same grid edge. Thus
no three triangle vertices are ever collinear and the isosur-
face contains no degenerate triangles. (]

The proof of 2 is based on the following lemma:

Separation Lemma. /f X and Y are closed subsets of R?
and X CY, then X Ncl (Y — X) separates X from Y —X.

Proof sketch of 2. For each cube in the grid, we define a
positive and negative region. The positive region is the con-
vex hull of the midpoints of the cube’s bipolar edges and its
vertices labeled *+’ and ’=’. The negative region is the com-
plement in the cube of the positive region. The isosurface
lookup table returns a set 7 of triangles which separate the
positive region of a cube from its negative one.

Let R be the union of all the positive regions of all the
grid cubes. Let Q be the region covered by the grid. Set R
contains all the positive grid vertices while Q —R* con-
tains all the negative ones. We claim that set 7 contains
Rt N (Q—R"). (The intersection RT N (Q —R™) may be a
proper subset of 7'.) By the Separation Lemma, T separates
Rt from Q — R", and thus the positive grid vertices from
the negative ones. The linear interpolation step in Marching
Cubes never moves an isosurface vertex passed a grid ver-
tex, so the isosurface also separates the positive grid vertices
from the negative ones. d

Topological Properties

When the scalar value at a grid vertex equals an isovalue, the
constructed isosurface may not be a manifold (with bound-
ary). This reflects the behaviour of the trilinear interpolant.
Let f be the scalar field defined by applying trilinear interpo-
lation within each grid cube. Some (but not necessarily all)
of the critical points of f lie on grid vertices. If the isovalue
o equals the scalar value of such a grid vertex, then £~ (o)
is not a manifold.

The constructed isosurface may also have duplicate trian-
gles, albeit with opposite orientation. Consider three or four
vertices labelled *=" which lie on on a grid facet and are sur-
rounded by grid vertices with label *—’. (See Figure 5.) The
two grid cubes containing the facet each contribute identical,
although oppositely oriented, triangles lying in the facet. In-
tuitively, the isosurface has collapsed onto itself.

6. Snapping for Quality Mesh Generation

The Marching Cubes Algorithm is notorious for producing
isosurface triangles with small angles. Such triangles are cre-
ated when two triangle vertices are very close to a grid vertex
while the third is far away. To avoid creating such a triangles
we modify the scalar field so that isosurface vertices close to
a grid vertex are “snapped” onto that grid vertex.

Algorithm SnapMC takes an input parameter Yy in the
range [0,0.5] to control the snapping. All isosurface vertices
less than distance YL of a grid vertex are “snapped” to a grid
vertex where L is the length of the grid edges.

The algorithm begins by determining all the bipolar edges
of the original scalar grid and using linear interpolation to
locate isosurface vertices. If an isosurface vertex lies within
distance YL of a grid vertex, then the scalar value at the grid
vertex is set to ¢, the isovalue.

(© 2008 The Author(s)
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Compute the location of isosurface vertices.

v
For each grid vertex v,
if the distance from some isosurface vertex to v
is less than YL,
then reset the scalar value of v to the isovalue, G.

|

Run Marching Cubes on the modified scalar grid
using the extended lookup table.

|

For each isosurface vertex w on a grid vertex v,
move w to the location of the closest
isosurface vertex in the original grid.

Figure 6: Algorithm SnapMC. The snap parameter Y con-
trols the snapping of isosurface vertices to grid vertices. L is
the length of grid edges.

Values of y
0.1 0.2 0.3 0.4
min length 0.14 0.28 0.42 0.6
min area 0.01 0.04 0.08 0.1
min angle 4.7° 8.9° 12.7° 6.4°
max angle | 164.1° | 149.6° | 144.2° | 162.4°

Table 1: Min. edge lengths, min. area, and min. and max.
angles for different values of y on a grid with unit edge length
L = 1. Angles are in degrees.

After resetting all the appropriate grid values, algorithm
SnapMC runs the Marching Cubes algorithm on the new
scalar grid, using the extended lookup table described in Sec-
tion 4. As claimed in Section 5, the algorithm does not create
any degenerate triangles.

The final step moves “snapped” vertices back to one of
the original isosurface vertices. Each isosurface vertex lying
on a grid vertex is repositioned to the location of the clos-
est isosurface vertex in the original grid. The algorithm is
presented in Figure 6.

Topology

Snapping combines geometrically close isosurface vertices,
even if these vertices are not connected by isosurface edges
and lie in different “parts” of the isosurface. Combining
such vertices can create topological changes in the isosur-
face. (See Figure 7.) It can eliminate small isosurface com-
ponents, join different components and close loops in the
isosurface. However, such topological changes are “small”
in the sense that they are produced by small perturbations of
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Figure 8: Extremal configurations. a) Min. edge length for
all snap parameters. Min. area for y=0.1,0.2,0.3. b) Min.
area for Y= 0.4. ¢) Min. angle for y=0.1,0.2. d) Min. angle
for y=0.3. e) Min. angle for y= 0.4. f) Max. angle for Y=
0.1,0.2. g) Max. angle for y=0.3,0.4.

the isosurface of a distance less than the length of a single
grid edge.

Because snapping will merge geometrically close vertices
which may not share an edge, it can and often will produce
non-manifold surfaces. The surface will have a structure of a
manifold (with boundary) which is glued to itself at different
vertices, edges and facets. Facets which are glued together
will appear as duplicate triangles in the isosurface, although
they will have opposite orientation.

Variants of SnapMC

The algorithm for generating an isosurface lookup table
which distinguishes '+, ’—’ and =" vertices applies to any
convex polyhedral mesh element, not just cubes. In partic-
ular, it can be used to generate an extended lookup table
for tetrahedra, pyramids and bipyramids. The snapping al-
gorithm also can be used for any such mesh although the
resulting bounds on isosurface angle size depends on the ge-
ometry of the original mesh elements.

7. SnapMC Isosurface Properties

Bounds on the SnapMC edge lengths, triangle areas and tri-
angle angles are a function of Yy and are based on extremal
configurations. The extremal configurations have isosurface
vertices at distance ¥ from a cube vertex or at the midpoint
of some cube edge. Because of snapping, it is possible for
an isosurface vertex to lie outside of a cube vertex, as in
Figure 8e). We determined the extremal configuration for
v=0.0,0.1,...,0.5, using a computer program to enumerate
all possible combinations of isosurface vertices at distance Y
from a cube vertex. Some combinations are not possible and
those were eliminated.

The extremal configurations are:

a) (1,0,0), (0,7,0), (0,0,7v):
Min. edge length and min. area, Y= 0.1,0.2,0.3;
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a) Marching Cubes

Figure 7: Example of topological changes. Isosurface from silicium data set (www.volvis.org), isovalue 130. a) Marching Cubes
isosurface. b) SnapMC isosurface (snap parameter 0.3.) c) Afront (rho 0.5.) d) Dellso. e) Closeup of Dellso showing two holes

in the reconstructed isosurface.

b) SnapMC

c) Afront

d) Dellso

e) Dellso (closeup)

grid Regular Lookup Table | Extended Lookup Table SnapMC (y=0.3)
dimensions isovalue | # triangles | cputime | # triangles cputime | # triangles | cpu time
aneurism | 256 x 256 x 256 100 175,832 | 0.71 sec 174,300 0.73 sec 106,356 1.52 sec
bonsai 256 x 256 x 256 30 1,284,542 | 1.16sec | 1,117,304 1.19 sec 729,623 | 2.19 sec
engine 256 x 256 x 128 100 608,416 | 0.58 sec 593,963 0.59 sec 427,338 | 1.08 sec
lobster 301 x 324 x 56 20 312,948 | 0.33 sec 300,340 0.34 sec 181,058 | 0.77 sec

Table 2: Number of isosurface triangles and cpu times of Marching Cubes with regular and extended lookup tables and of

SnapMC. CPU time does not include time to read or write data.

b) (0,—v,0), (1 —7,0,0), (1,1 —7,0): Min. area, y= 0.4;
©) (1 -7 L, 1)7 (07 _Y7O)’ (17 1,1 _Y):

Min. angle, y=0.1,0.2;
d) (1—1,1,0), (0,—v,0), (1,1,7): Min. angle, y=0.3;
e) (1,v,0), (0,—v,0), (1,14v,0): Min. angle, y=0.4;
f) (0,0,v), (0,0.5,0), (1,v,0): Max. angle, y=0.1,0.2;
2) (—7,0,1), (v,0,0), (1,0,—y): Max. angle Y= 0.3,0.4.

See Figure 8. Minimum area and minimum and maximum
angles for specific values of y are shown in Table 1.

Isosurface triangles in Figure 8b), 8e), and 8g) overlap a
face of the cube. While such triangles cannot be created by
the original Marching Cubes algorithm, they can be created
using the extended isosurface lookup table described in Sec-
tion 4. The triangle in the extended lookup table connected
three vertices in a cube face. These three vertices were repo-
sitioned to the three isosurface vertices seen in the figure.

8. Results

We implemented our algorithms in C++ and applied them
to the publicly available data sets at www.volvis.org. (See
Figures 2 and 9.) Running times are for a computer with two
Intel Xeon 2.80 GHz CPU’s, a 2048K cache and 8 GB RAM
running Linux.

We first compared the regular Marching Cubes algorithm
and Marching Cubes with the extended lookup table. See
Table 2. The CPU times were the almost same. The reported
CPU times measure only the time to run construct the iso-
surface and do not include the time to read in the scalar data
or write out the isosurface mesh. The time to read in the iso-

Values of y
0.1 0.2 0.3 0.4
min length 0.141 0.29 0.43 0.58
min area 0.001 0.04 0.09 0.15
min angle 4.87° 9.7° 13.6° 12.5°
max angle | 161.3° 146.7° | 135.1° | 144.0°
Hausdorff 0.80 0.81 0.86 0.93
mean dist 0.014 0.02 0.04 0.05
RMS dist 0.060 0.07 0.09 0.11

Table 3: Measurements of lobster isosurface. Min. edge
length, min. area, min. and max. triangle angles, directed
Hausdorff distance, mean directed distance and root mean
squared directed distance. Measurements are for the isosur-
face with isovalue 20 except for the distances which com-
pared isosurfaces with isovalue 20.01.

surface lookup table is negligible for both the regular and
extended table.

The regular Marching Cubes algorithm produces an iso-
surface containing degenerate triangles. The difference in
the number of isosurface triangles between the Marching
Cubes with the regular and extended lookup tables is the
number of such degenerate isosurface triangles.

Output size and CPU times for SnapMC with snap param-
eter 0.3 are reported in Table 2. SnapMC reduced the number
of isosurface triangles by 25-40% over the Marching Cubes
isosurface. Of course, the reduction depends greatly on the
snap parameter Y, with smaller values of y giving less reduc-
tion in the number of isosurface triangles.

(© 2008 The Author(s)
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Figure 9: Isosurface from lobster data set (www.volvis.org), isovalue 20. a) Marching Cubes isosurface. b) SnapMC isosurface
(snap parameter 0.3.)

min edge min radius directed

isovalue length | min area | min angle | max angle ratio | Hausdorff

aneurism 100 0.425 0.078 13.09 135.20 0.29 0.86
bonsai 30 0.427 0.083 13.35 135.67 0.28 0.86
engine 100 0.428 0.080 13.96 134.71 0.26 0.66
fuel 80 0.428 0.104 14.30 135.51 0.39 0.30
lobster 20 0.428 0.087 13.55 135.13 0.25 0.86
Marschner-Lobb 100 0.442 0.231 14.58 122.63 0.35 0.71

Table 4: Measurements on SnapMC isosurfaces. Snap parameter Y = 0.3. The minimum radius ratio is the minimum ratio of the
inscribed to circumscribed circle for any isosurface triangle. Directed Hausdorff distance was computed on isosurfaces with
isovalue 0.01 greater than the isovalues listed in column two.

SnapMC took approximately twice as long as the March-
ing Cubes algorithm. The extra time was spent in “snapping”
scalar values in the grid to the isovalue.

We ran SnapMC on different data sets varying the snap
parameter Y. We measured the minimum isosurface edge
length, the maximum isosurface triangle area, the minimum
and maximum angle in an isosurface triangle, and the min-
imum inradius to circumradius ratio. Output measurements
for the data set lobster (Figure 9) are presented in Table 3.
Output measurements for other data sets and snap value 0.3
are presented in Table 4. As can be seen, the actual minimum
and maximum values are quite close to the theoretical ones.

To measure how much SnapMC modified the isosurface,
we measured the difference between the SnapMC isosurface
and the original isosurface using the tool METRO [CRS98].
METRO measures the Hausdorff distance between two sur-
faces. For technical reasons, we measured only the directed
Hausdorff distance from the SnapMC surface to the original
surface and used a slightly perturbed isovalue. The directed
Hausdorff distance from P to Q is max,cpmingcg|p — q|.
We also measured the mean directed distance defined as
Y, ep (ming ¢ o [p—ql) / |P|, and the root mean squared
directed distance defined as Y ,cp(mingeg|p — q))?*/|P|.
The sums are over a set of sample points chosen from the
surface. METRO reports all these distances.
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The directed distances for lobster are in Table 3. Distances
for the other data sets with snap value 0.3 are in Table 4. Note
that all distances are less than 1.

Comparison with Dellso and Afront

We compared SnapMC with two publicly available isosur-
face meshing programs, Afront [SSS06] and Dellso [DLO7].
(See Figure 7 and Table 5.) Afront meshing is controlled by
a parameter rho which we set to 0.5. As expected, SnapMC
ran an order of magnitude faster than the other two. Afront
failed to complete on two of the data sets and Dellso failed
on one. Afront and Dellso created triangles with extremely
small angles and Dellso often created degenerate triangles
with zero area or edge length.

On all the data sets, SnapMC joined different regions of
the isosurface, creating a non-manifold. However, on many
of the data sets Dellso also produced a non-manifold, creat-
ing duplicate triangles, or edges or vertices whose neighbor-
hoods were not manifolds (nor manifolds with boundary.)
Dellso almost produced a manifold on engine but created a
single non-manifold vertex. All the other non-manifold iso-
surfaces produced by Dellso had multiple non-manifold ver-
tices or edges. The surface produced by Dellso sometimes
had “holes”. (See Figure 7e).)
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SnapMC (y=0.3) Dellso Afront

isoval #tri | cpu | angle | man # tri cpu | angle | man #1tri | time | angle | man
aneurism 100.5 | 106K | 3.7s 13.2 no 242K | 5.7m 0 no 602K | 0.5h 1.6 yes
bonsai 305 | 691K | 4.4s 134 no | 2745K | 29m 0 no 10h+
engine 100.5 | 427K | 2.0s 13.6 no 244K | 2.2m 0.2 no 10h+
lobster 20.5 223K | 0.8s 13.3 no Aborted 3353K 2h 0.6 yes
lobster 30.5 183K | 0.7s 13.4 no | 2354K | 24m 0 no | 1222K | 50m 1.0 | yes
silicium 60.5 25K | 0.0s 15.2 no 125K | 1.2m 0 no 52K 3m 11.2 yes
silicium 130.5 22K | 0.0s 14.5 no 390K | 3.9m 0.0 no 160K Sm 3.1 yes
marschner | 100.5 10K | 0.0s 15.4 no 946K | 11lm 0.1 no 379K | 15m 2.3 yes

Table 5: Comparison with Dellso and SnapMC. CPU times for SnapMC and Dellso do not include time to read or write data.
CPU times for SnapMC and Deliso are in seconds and minutes, respectively. Afront times include time to read and write data
and are in hours or minutes as indicated. Column angle represents the minimum triangle angle. Column man indicates whether

the isosurface is a manifold (with boundary.)

On the data sets which Afront completed, Afront pro-
duced manifolds, but it sometimes changed the topology of
the isosurface. (See Figure 7c).) When we set Afront’s pa-
rameter “rho” to 0.8, instead of 0.5, Afront failed to produce
a manifold on all these data sets.

Both Afront and Dellso are adaptive, adding more trian-
gles in areas of high curvature. SnapMC is not.

Numerical Simulation

SnapMC produces well-shaped triangles which are good
for numerical simulation. Unfortunately, SnapMC often pro-
duces non-manifold isosurfaces which are problematic for
simulation software. Snapping causes geometrically close
vertices, edges and triangles, to merge, collapsing the sur-
face onto itself. Post processing could reverse this process,
by ungluing merged vertices and edges, and separating du-
plicate triangles. We have not yet implemented such a post
processing algorithm.

Source Code

SnapMC source code and executables are publicly available
at www.cse.ohio-state.edu/graphics/isotable.
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