
COPERNICUS: Context-Preserving Engine for Route
Navigation with Interactive User-modifiable Scaling

Hartmut Ziegler† Daniel A. Keim

University of Konstanz, Germany

Abstract
In this paper, we present an automated system for generating context-preserving route maps that depict navigation
routes as a path between nodes and edges inside a topographic network. Our application identifies relevant context
information to support navigation and orientation, and generates customizable route maps according to design
principles that communicate all relevant context information clearly visible on one single page. Interactive scaling
allows seamless transition between the original undistorted map and our new map design, and supports user-
specified scaling of regions of interest to create personalized driving directions according to the drivers needs.

Categories and Subject Descriptors (according to ACM CCS): I.3.2 C.2.1 [Computer Graphics]: Graphics Systems
I.3.3 [Computer Graphics]: Line and Curve Generation I.3.8 [Computer Graphics]: Applications

1. Introduction

Route mapping systems have emerged to one of the most
popular applications on the World Wide Web. In February
2007, the keyword ’Routenplaner’ (German for ’driving di-
rection planner’) has been the most popular search query on
the German Google Zeitgeist [GZ07]. Despite the high de-
mand, most of the systems on the web have not shown any
significant new visualization techniques in previous years.
Most of them do not distinguish between relevant and ex-
traneous information, and interaction is usually limited to
zooming and panning. We present COPERNICUS, a sys-
tem for automated rendering of driving directions based on
a topographic network graph metaphor with interactive scal-
ing. We describe techniques for identifying, extracting and
weighting relevant context information to generate a com-
pletely context-driven route mapping style, and introduce a
novel scaling engine that allows a seamless interactive scal-
ing between undistorted maps and our new map design.

When analyzing current route mapping systems, almost
all systems today depict a specified region of the map and
plot the route using a highlighting technique (see figure 1,
we use this route as reference throughout the paper). As cor-
rectly identified before [Agr01], these types of maps have

† e-mail: hz@hzmail.de

two main shortcomings: on the one hand, the constant scale
factor leads to the problem that small roads near origin
and destination are not visible, which requires zooming into
these regions at different levels and to create multiple print-
outs. On the other hand, they do not distinguish between im-
portant and extraneous information, and clutter the map with
useless information hundreds of miles away from the route.

Figure 1: With current highlighting techniques, short streets
near origin or destination are not visible and require multi-
ple zooming and panning steps as well as multiple printouts.

©
©

http://www.ub.uni-konstanz.de/kops/volltexte/2008/6835/
http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-68359
http://www.eg.org/EG/DL/WS/VisSym/EuroVis08


2. Related Work and Definition of Design Goals

One very innovative system that appeared in 2001 and which
tried to address these problems was LineDriveT M [Agr01]
[AS01], which focuses on generalization techniques that hu-
man map-makers use in hand-drawn maps and adapts them
into an automated system. Figure 2 illustrates the same route
as in figure 1 using LineDrive, which consists of a series
of streets and turns. Similar to a verbal route direction, it
focuses on the essential information for following a set of
streets: street names, distances and turning points. As this
technique adapts human generalization techniques like dis-
tortion and abstraction, each street has its distorted length, is
clearly visible and conveys all information on a single page.

Figure 2: The same route from Figure 1 using LineDrive
which depicts a route by a sequence of streets with street
names, lengths and turning directions. This works well in the
USA where routes are mainly described by numbers, while
Europeans often navigate by town names on traffic signs.

Stripmaps or Overview/Focus maps try to solve the prob-
lem by using multiple maps with different scale factors on
one page. However, this requires to puzzle the pieces to-
gether again and to determine which focus map belongs
to which region of the overview map. Traditional tech-
niques like fish-eye views cause regions outside the fo-
cus to be unreadable. An overview of cartographic gener-
alization techniques can be found in the work of Agrawala
[Agr01]. Further related work regarding the extraction and
distortion process analyzes the schematization of networks
[CBK*05] [KRB*05], wayfinding in hierarchical street net-
works [CF93] [TVP92], and personalized routes [PCS*06].

As pointed out in figure 1, a sophisticated route map-
ping system should be able to separate relevant from extra-
neous information, and focus only on relevant information.
All information should be clearly visible on one single page,
avoiding batches of printouts with different zoom levels.

LineDrive was an initial approach in this direction, but
came with several shortcomings, especially for European cit-
izens as driving directions are different to the number based
system in the USA. Most importantly, relevant context in-
formation for navigation is missing. For example, no town
names are communicated, so the driver cannot use traffic
signs for orientation or navigation in order to verify if he
is still on the correct route, or, even more problematic, at no
position on the map does the driver know in which city he
currently is (see figure 2). LineDrive also comprises a fault
tolerance problem that once a driver misses a turn, it is nearly
impossible to get back onto the correct route as the missing
context information makes traffic signs useless to him.

It can be derived that route map visualization based only
on street information is not sufficient to solve these prob-
lems. In fact, human driving directions are not only based on
street names and numbers, but also on town names that have
to be passed in order to reach a destination, therefore a map
can also be seen as a schematized network with nodes and
edges like in figure 3. A network graph approach that is auto-
matically able to determine towns as nodes and its connect-
ing streets as edges, and that is able to support orientation
and navigation by identification and extraction of important
context information, would be an promising solution. Fur-
thermore, a seamless transition from an original map to our
new map design would be beneficial. Instead of confronting
the user with a maximum distorted map, this allows the user
to interactively understand the distortion process by altering
the map step by step. Figure 4 shows the stages of our pro-
totype [Z06] which are described in the following section.

Figure 3: A hand-drawn sketch of a street network accord-
ing to our design principles. It allows navigation from node
to node by using town names on traffic signs, but also shows
cities left and right of the path to support orientation.



Figure 4: An overview of the system stages. After the context
engine extracted the important information, heuristics rate
their importance and build a hierarchy that is used by the
scaling and rendering engine for generating our maps.

3. The Context Engine

For generating our maps, extracting useful context informa-
tion from the database is essential. On the one hand, this
requires determination of what can be considered useful, on
the other hand how algorithms can detect and extract this
information from a database. Due to our fully modular con-
cept, additional methods can easily be added.

3.1. Determination of Nodes and Edges

As stated in the design goals in section 2, the fundamental
concept of our maps is based on a network graph metaphor
that reflects towns as nodes and streets in between as edges,
which allows navigation from node to node rather than from
street to street compared to LineDrive. By analyzing the
database which street belongs to which administrative area,
we are able to detect towns and its connecting streets and can
build the corresponding node/edge data structure.

3.2. Identification of Highway Network Nodes

Highway network nodes can be identified in the database by
its data attributes. Although they are technically streets and
therefore edges, we treat them as nodes because they repre-
sent important decision points in the distortion process. It is
crucial at the highway network nodes that the map clearly
reflects which ramp to take. In order to achieve this, we do
not only extract the highways that a driver has to take, but

also all other ramps that the driver has to avoid, and display
them with light blue arrows along with the highway number
and the destinations where he should not go to (see figure 6).

3.3. Identification of Concatenated Streets

The routing engine returns around 4500 street segments for
our example route. 1800 of these segments are unique, all
other carry the information redundantly with different street
names or numbers (see figure 9). In order to determine con-
nected streets segments that have the same name or number,
these segments must be re-aligned. An algorithm processes
all segments, and queues them in special data structures that
now describe the streets. An importance rating determines
which of them are used for rendering.

3.4. Cross Street Detection

Not every cross street is of relevance. If traveling a main
street, small cross streets are often of no interest, and only in-
tersections with other main streets are important. Vice versa,
on a small street a small cross street might be of interest.
The system compares the street types (1=highway, 2=coun-
try road, 3=main street, 4=road, 5=alley) which span a two-
dimensional matrix that reflects the importance level of a
cross street type compared to the current street type.

3.5. Determination of Town Boundaries

In order to display a region of the map as town if we travel in-
side its boundaries, distorting the exact geographic boundary
is difficult. We therefore decided to symbolize towns with
convex hulls (see figure 5) which retains the drivers attention
on the relevant information of the map. The town boundaries
also give the driver an exact feedback of his current location
when entering and leaving a town.

3.6. Locating Major Cities along the Highways

On highways, it is often helpful to know the names of the
major cities that are located along the route, even if they
are not directly passed. Names of large towns and cities are
widely visible on traffic signs, and in combination with dis-
tance measures give valuable feedback about the drivers cur-
rent position on the map. The context engine identifies major
cities in the vicinity of the highways with a spatial database
query, plots its geometric shape onto the map, and helps the
driver to build a topographic view of the map (see figure 6).

3.7. Determination of Landmarks

A set of rules evaluates if a landmark is shown (for exam-
ple gasoline stations are often important and prominent land-
marks), and a numeric threshold defines at which zooming
level a landmark should start to be displayed. So far, we only
added gasoline stations as landmarks, with other landmarks
easily being added if required (see figure 7).



Figure 5: In order to display the nodes, we use convex hulls
instead of the exact geographic shape of the town boundaries
as they symbolize the nodes in a space efficient and easy to
understand way. The driver can navigate large parts of the
map by following the traffic signs from town to town, without
the necessity to rely only on street names. The curved shape
of the roads also gives additional feedback to the driver.

Figure 6: Showing the major cities in the vicinity of the route
facilitates orientation and navigation on the highway net-
work, as the traffic signs give a permanent feedback to the
driver. In our system, the user can use a slider to specify the
radius in which the cities along the route are displayed.

4. Importance Rating

After the context information has been extracted from the
database, the next step analyzes the information and ranks
its importance. It processes all information from the previous
stage, and has the ability to accomplish substantial changes
in order to improve the route map layout.

4.1. Importance Rating and Space Optimization

In this stage, a set of heuristics evaluates the importance
of nodes and edges in order to optimize the network graph
structure. Due to space limitations, we only describe one ex-
ample of such a heuristic in order to demonstrate the princi-
ple: In country areas, it is often the case that villages or small

Figure 7: A set of heuristics determines whether a landmark
is important or not. So far, only gasoline stations have been
added as landmarks, but other types can easily be added.

cities are passed nearly on a direct way, with no important
driving maneuver taking place. As each village is treated as
one node with two edges, this consumes a lot of valuable
display space. Heuristics try to recognize unimportant nodes
and edges, and modify the data structure in order to reduce
unimportant information (see example in figure 8). Nodes
that are tagged unimportant are not required to be shown in
detail and are removed from our data structure. In this case it
is sufficient to represent the unimportant village just with a
small symbol located along the way. Technically, ’two edges
and one unimportant node’ are replaced by ’one edge + one
additional context information’ in the data structure. This re-
duces the amount of streets to be rendered significantly.

Figure 8: One example of an importance rating heuristic: If
a village is passed, and the combined length of streets inside
the village is less than 2 miles, the number of streets inside
the village is 3 or less, and the maximum turning angle from
street to street is less than 20 degrees, then the small village
is passed almost straight through. The node (a) is tagged
’unimportant’ and replaced by a simplified view (b).

4.2. Determination of Streets for Rendering

After evaluating the importance of nodes and edges, as a next
step the system determines the streets that are used for be-
ing displayed and rendered on the map. As can be seen in
figure 9 and as already mentioned in section 3.3, some street
segments have several street names and street ID numbers,
with different total street length. In order to determine the
streets for rendering, the algorithm evaluates the importance
of nodes and edges and the overlapping streets (street ID
number or street name) together with their length to find a
solution with as few streets as possible. All streets in impor-
tant nodes must be shown in full detail and by their street



name, whereas small streets in unimportant nodes are left
out and two or more of those can be concatenated to one.

Figure 9: After evaluating the importance of nodes and
edges, an algorithm determines which street segments are
suitable for rendering the maps. The decision depends on the
importance of a node or edge, length of the street and street
type (from 1 to 5, see section 3.4). The bottom line represents
the streets that are finally used by the rendering engine.

4.3. Determination of Street Lengths

In our system, the length of a street that is displayed on the
map depends completely on the amount of important context
information that has been determined for this street. Figure
10 gives an overview of some combinations of towns or im-
portant cross streets (see section 3.4) that might be corre-
lated with a street. As an example, a cross street and a town
(see figure 10 E) will require two extra space units for dis-
playing the information on the screen in a clear looking way,
but if the cross street is located inside the town (see figure
10 F), only one extra space unit will be sufficient as both are
mapped one above the other. A space-saving algorithm com-
putes the smallest amount of display space for each com-
bination in order to use as few display space as possible.
This value is finally the amount of display space that a street
segment requests from the scaling engine in order to have
enough space to show all its context information.

5. The Interactive Scaling Engine

Once the relevant context information has been retrieved
and the data structures for nodes, edges and streets are de-
termined, the scaling engine is able to construct a layout
depending on the space that each street requests. As user-
customizable maps can significantly facilitate the use of a
route mapping system, our scaling engines allows seamless
transitions between the original and our new map design.

5.1. Calculating an Initial Layout

Finding the optimal layout that takes all our design princi-
ples into account is an optimization problem, and it cannot
be guaranteed that a map with the desired layout exists. For

Figure 10: The length of the streets to be rendered depends
on the amount of context information that has to be dis-
played. Cross streets that leave left and right within a thresh-
old are considered intersections and only need one space
unit (D). A space-saving algorithm computes the minimum
space that is required for each combination.

example, there are cases where the available display space is
too small to show all context information. As a result, it is
necessary to have an approximation process to come as close
to the desired layout as possible. In contrast to LineDrive,
our scaling engine is completely based on horizontal and
vertical distortion of street segments, where the beginning
of each street segment is attached to the end of the previous
street segment. This construction can be larger or smaller
than the viewport, so it is automatically scaled to fit the view-
port to use all available space. As each street segment has
an original length in the undistorted map, and a requested
length depending on the amount of context information in
our map (see figure 10), for finding the initial layout the al-
gorithm iterates over all street segments. At each iteration
the horizontal and vertical scaling for a street is increased by
20% or decreased by -20%. The multiplication is performed
on both horizontal and vertical direction at the same time, so
the geographic direction and shape of a street remains un-
changed and only the size is altered. Such a change in the
scaling is only permitted if consistency constraints are not
violated (we will describe these in section 5.3). In case of
a violation, the street element is not changed, and the iter-
ation continues with the next street element until our final
map layout is found. The final result of such a route map
according to the design principles can be seen in figure 11.

5.2. Interactive Scaling and Distortion

Seamless scaling between original and distorted shape is a
combination of several linear scale factors. In the undistorted
state, the map preserves the aspect ratio and uses either the
full height or full width of the viewport, depending on its
shape (see figure 12 a). The maps generated by our route
mapping system use the full height and width of the available
display space. The distortion ratio can be adjusted by a slider
between zero and hundred percent



Figure 11: This image shows the final result of a route map
created by our system. In contrast to existing mapping styles,
the network graph metaphor allows navigation by ‘hopping‘
from town to town. The individual scale factor for each street
allows to see all streets clearly visible on a single page, so
only one printout is required.

(1) Firstly, each street in the undistorted map (if we draw a
bounding box around it) has a height of Hundist and a width
of Wundist , each corresponding street in our distorted route
map a height of Hdist and a width of Wdist . The scaling func-
tion is a linear transition in both horizontal and vertical di-
rection, so the height of the street elements and bounding
boxes varies linearly between Hundist and Hdist and its width
between Wundist and Wdist depending on the distortion ratio.

(2) Secondly, due to the aspect ratio, the undistorted map
uses either the full height or the full width of the viewport. In
the example throughout this paper, the undistorted map uses
the full height of the viewport HmaxViewport , but not the full
width. Accordingly, the second scaling factor is a transition
that linearly scales the width of our example map to the full
width of the viewport WmaxViewport .

(3) Thirdly, each street is seamlessly scaled between its
original length and a value where each context information
for each street on the whole map has the same amount of
space. This causes enlargement of short and shrinking of
long streets. Therefore, streets with a lot of context infor-
mation are larger than streets with fewer context informa-
tion. However, each street has a defined minimal length to
be clearly visible.

5.3. Consistency Constraints

As already identified in previous work [AS01], distortion
of route maps can cause undesirable effects such as false

or missing intersections, or inconsistent turn directions that
have to be avoided.

Regarding false intersections that occur when intersec-
tions are created during distortion where they are not sup-
posed to, a comparison of each of the 1800 street segments
with all other street elements of our example would create
enormous computational overhead (n∗ (n−1)/2 complex-
ity). In order to accelerate the process, our engine uses min-
imum bounding rectangles to speed up the process (see fig-
ure 13). If the minimum bounding rectangles do not overlap,
the streets within these rectangles will not overlap as well.
This only requires a comparison of eight variables (x,y and
xsize,ysize for each pair of rectangles) in order to exclude
these rectangles from a detailed consistency analysis.

Figure 13: The computation speed if false intersections oc-
curred by the distortion algorithm can be significantly im-
proved by using minimum bounding rectangles for each
street. If two bounding rectangles do not overlap, there can
also be no intersection of the streets that are enclosed.

Regarding intersections that already exist in the original
route, it is necessary to assure that these intersections are
preserved and placed on the correct position during the dis-
tortion process. Figure 14 (a) shows a typical situation with
three roads that form an intersection (the previous road is
crossed via a bridge or tunnel, or a set of one-way roads re-
quire this maneuver). The distortion process might cause the
intersection to vanish, or to be at the wrong position. Figure
14 (b) shows a solution where the three roads are handled as
two roads, in this case it does not matter how the rectangles
are distorted in horizontal or vertical direction as the inter-
section inside the large rectangle will always be at the cor-
rect position. An even better solution to redefine the street
segments is to use the intersection point in order to create
three separate rectangles as can be seen in figure 14 (c), in



Figure 12: The scaling engine allows a seamless interactive scaling from the original route map to our route map design. The
system performs a seamless transition into a context-based network-oriented layout where all streets are clearly visible, and
outlines the boundaries of towns in order to allow a navigation from node to node by following the road signs with town names.

this case each of the three rectangles can also be distorted
independently and the intersection point is still at the correct
position.

Figure 14: Preserving intersections at the correct positions
during the distortion process can be difficult. We solve this
by redefining the affinity of street segments. As a result, each
of the bounding rectangles can be distorted independently
with the intersection remaining at the correct position.

To maintain roughly the correct geographic direction of
the streets and the turning angles between them, we exploit
a side effect of the horizontal and vertical scaling. A street
(see figure 15), will always go into roughly the correct ge-
ographic direction regardless of the distortion ratio, with a
deviation of usually less than 25 degrees.

5.4. Shape Simplification

Shape simplification can be helpful to generate a clear map
design, but in practical use can also be a big disadvantage
because useful context information is lost that can give the
driver valuable feedback while traveling. This is, for exam-
ple, the case when the driver follows the path of a street with
several curves and the curves can also be recognized on the
map, giving him a clear impression of his current position,
whereas a straight line that replaces the curves would leave
him with no environmental feedback at all. Because a curve
instead of a straight line is usually only consuming minimal
additional display space, we prefer the unsimplified route
shape, as the feedback to the driver is rather a benefit than a

Figure 15: One effect of linear scaling is that regardless
of any vertical and horizontal distortion ratio a street will
never be able to leave its quadrant. A street heading north-
east remains between north and east, with extreme angles
being unlikely so the general direction is maintained.

disturbing factor. The only road type suitable for full simpli-
fication might be highways.The rendering engine allows the
simplification ratio to be adjusted by a slider (see figure 16).

6. Implementation Details

6.1. Data Sources and Implementation

In order to accomplish this project, we obtained geographic
data of the German street network from NAVTEQ, and
stored it in an Oracle 10g database with GIS extensions.
We used Oracles "Network Data Model" to save the network
graph with 5 million nodes (=intersections) and 10.6 million
edges (=streets) in the database. Each edge has more than
100 additional attributes that our algorithms use to extract
the contextual information. The NAVTEQ data also includes
geographic data for town boundaries that we used for spatial
queries, as well as landmarks. We also imported informa-
tion from other databases such as population data to distin-



Figure 16: The shape of a street can give the driver a valu-
able feedback if he is still driving on the correct road if the
map reflects a characteristic curved path of a road. Our ap-
plication allows to adjust the simplification rate individually.

guish large cities from small ones. For calculating a path, we
used the Oracle Routing Engine with 4GB memory cache,
which created an extra 60GB of partitioning data on the hard
disk, however, our application is independent from the un-
derlying database system. For optimization purposes, all rel-
evant context information is pre-computed and saved in ad-
ditional street attributes, so a query retrieving the data for a
street segment instantly returns all corresponding context in-
formation.This one-time pre-computation which requires to
compare each street in the database with all context informa-
tion takes around 120 hours, but offers instant retrieval of all
context information afterwards. The query time for all 1800
segments is reduced from 40 to 2 seconds on a 2.4Ghz Pen-
tium4, but can further be optimized. Database updates only
require to update the corresponding tuples, and the system
is fully scalable to larger networks. The client application is
written in Java and therefore can be run in any web-browser.

6.2. The Rendering Engine

Once the scaling of the map has been computed, the ren-
dering engine uses the data to render the output. The en-
gine draws towns, cities and streets, places labels (for streets,
towns, cross streets and where they lead to), distances, land-
marks, north orientation arrow, and other context and deco-
rative elements, priorized in this order. Context information
with no available display space is not mapped so there is no
overlap. Different types of streets are characterized by differ-
ent line width and color, and can easily be adapted to local
conditions (highways are colored blue in Germany, green in
Switzerland, and red in many other countries). The control
interface allows to interactively control the scaling and ren-
dering engine, like manipulating the overall distortion ratio,
varying the minimum street size or the length of the cross
streets (see figure 10), shape simplification, or the radius of
the vicinity in which major cities along the route shall be
displayed. The application is not limited to these parameters,
and more controls can easily be added.

7. Conclusion and Future Work

In this work, we presented a context-preserving route map-
ping prototype system with a novel scaling engine that ren-
ders route maps in a network graph metaphor which allows
traveling a path from node to node by mainly using context
information. The application evaluates and extracts a vari-
ety of important context information from a database, ranks
their importance, and offers an advanced scaling engine that
displays all relevant information clearly visible on one single
page. The scaling engine supports a seamless interactive dis-
tortion between a familiar undistorted map and our context-
based mapping style. Future work focuses on rendering a
more attractive map design, a usability test, integration of
more landmarks, linking landmarks directly to correspond-
ing web pages, and optimizing the routing engine to calcu-
late simpler to navigate paths [DK03] [PCS*06].

Acknowledgements: The authors thank Navteq for the ge-
ographic data, Holger Bruch (Logiball) for the GDF Suite
Software, and Chuck Freiwald and Siva Rivada (Oracle) for
their help with the Oracle routing engine. Patent pending.

References

[Agr01] AGRAWALA M.: Visualizing Route Maps. PhD
thesis, Stanford University, 2001.

[AS01] AGRAWALA M., STOLTE C.: Rendering Effec-
tive Route Maps: Improving Usability through General-
ization. ACM Press, SIGGRAPH 2001, Computer Graph-
ics Proceedings, pp. 241-250, 2001.

[CBK*05] CABELLO S., DE BERG M., VAN KREVELD

M.: Schematization of networks. Computational Geome-
try: Theory and Applications,Vol.30 n.3 p.223-228, 2005.

[CF93] CAR A., FRANK A.U.: Hierarchical Street Net-
works as a Conceptual Model for Efficient Way Finding.
Proc. of the EGIS’93, Italy, pp. 134-139, 1993.

[DK03] DUCKHAM M., KULIK L.: "Simplest" Paths: Au-
tomated Route Selection for Navigation. COSIT’03, Lec-
ture Notes in Computer Science, Springer, 2003.

[GZ07] google.com/press/zeitgeist/zeitgeist-feb07.html

[KRB*05] KLIPPEL A., RICHTER K., BARKOWSKY T.,
FREKSA C.: The Cognitive Reality of Schematic Maps.
in Meng, Zipf, Reichenbacher (Eds), Map-Based Mobile
Services-Theories, Methods and Implementations, 57-74

[PCS*06] PATEL K., CHEN M., SMITH I., LANDAY J.:
Personalizing routes. Proc. of the 19th ACM symposium
on User interface software and technology, 2006.

[TVP92] TIMPF S., VOLTA G.S., POLLOCK D.W.: A
Conceptual Model of Wayfinding Using Multiple Levels of
Abstraction. In Theories and Methods of Spatio-Temporal
Reasoning in Geographic Space, Springer Lecture Notes,
Vol 639, pp 348-367, 1992.

[Z06] ZIEGLER H.: Context-Preserving Route Map Visu-
alization. Master Thesis, 2006.


	Text2: Konstanzer Online-Publikations-System (KOPS)
URL: http://www.ub.uni-konstanz.de/kops/volltexte/2008/6835/
URN: http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-68359
	Text3: First publ. in: Proceedings / EuroVis08: Joint Eurographics - IEEE VGTC Symposium on Visualization, 2008, pp. 927-934


