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Figure 1: Parameterization of the Gargoyle model using (a) our As-Similar-As-Possible (ASAP) procedure, (b)
As-Rigid-As-Possible (ARAP) procedure, (c) Linear ABF [ZLS07], (d) inverse curvature approach [YKL*08], and (e)
curvature prescription approach [BCGB08]. The pink lines are the seams of the closed mesh when cut to a disk.

Abstract
We present a novel approach to parameterize a mesh with disk topology to the plane in a shape-preserving
manner. Our key contribution is a local/global algorithm, which combines a local mapping of each 3D triangle
to the plane, using transformations taken from a restricted set, with a global "stitch" operation of all triangles,
involving a sparse linear system. The local transformations can be taken from a variety of families, e.g. similarities
or rotations, generating different types of parameterizations. In the first case, the parameterization tries to force
each 2D triangle to be an as-similar-as-possible version of its 3D counterpart. This is shown to yield results
identical to those of the LSCM algorithm. In the second case, the parameterization tries to force each 2D triangle
to be an as-rigid-as-possible version of its 3D counterpart. This approach preserves shape as much as possible. It
is simple, effective, and fast, due to pre-factoring of the linear system involved in the global phase. Experimental
results show that our approach provides almost isometric parameterizations and obtains more shape-preserving
results than other state-of-the-art approaches.

We present also a more general "hybrid" parameterization model which provides a continuous spectrum of
possibilities, controlled by a single parameter. The two cases described above lie at the two ends of the spectrum.
We generalize our local/global algorithm to compute these parameterizations. The local phase may also be
accelerated by parallelizing the independent computations per triangle.

Categories and Subject Descriptors(according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling I.3.8 [Computer Graphics]: Application

1. Introduction

Surface parameterization of 3D models is an important com-
ponent in various computer graphics and geometry process-

† ligangliu@zju.edu.cn
‡ gotsman@cs.technion.ac.il
§ sjg@cs.harvard.edu

ing applications, such as filtering, compression, recognition,
texture mapping, and morphing. It involves computing a bi-
jective mapping between a piecewise-linear triangulated sur-
face and a suitable parameter domain. In this paper we con-
sider the parameterization of a surface having the topology
of the disk, possibly with boundaries, onto the plane.

In general, the parameterization will incur some metric
distortion, since only developable surfaces can be flattened
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onto the plane without any distortion. Hence, the goal of pa-
rameterization is to find a bijective mapping which preserves
some geometric properties of the original as much as pos-
sible, e.g., authalic (area-preserving) mapping, conformal
(angle-preserving) mapping, isometric (length-preserving)
or some combination of these. Each individual triangle may
be easily parameterized without distortion, but then they will
no longer fit together properly in the plane.

Inspired by recent work on mesh deformation and mod-
eling [IMH05, SA07], we formulate the parameterization
problem as an optimization problem having both local and
global elements. In essence, we seek for local transforma-
tions which minimize the distortion of each mesh trian-
gle, yet require that they all fit together to a coherent 2D
triangulation. We follow closely the method for "as-rigid-
as-possible" deformation of triangle meshes described by
Sorkine and Alexa [SA07] for mesh editing purposes, and,
essentially, apply the same methodology to the problem of
mesh parameterization.

2. Previous Work

In the past decade, methods for triangular mesh parameteri-
zation have been studied extensively. We refer the interested
reader to [FH05] and [SPR06] for a survey of the state-of-
the-art in parameterization research.

The linear setting for parameterization offers the advan-
tage of simplicity and validity of parameterization results.
Based on Tutte’s barycentric mapping theorem [Tut63], Eck
et al. [EDD∗95] and Floater [Flo97] described a simple
approach to parameterization by representing each interior
vertex as some convex combination of its neighboring ver-
tices. Depending on the precise weights used, it is possi-
ble to achieve a variety of effects, minimizing various dis-
tortion measures. The most celebrated weight recipes are
the so-called cotangent weights [PP93], and the so-called
mean-value weights [Flo03], which are both related to har-
monic mappings. Unfortunately, the method of barycentric
coordinates requires the boundary of the mesh to be fixed
to a convex polygon in the plane, which is somewhat ar-
bitrary, typically resulting in significant distortion. Lee et
al. [LKL02] alleviated this somewhat by "padding" the mesh
with a virtual boundary, allowing the true boundary to evolve
to a less distorted shape. Desbrun et al. [DMA02] were
able to generalize the method of barycentric coordinates
so that also the boundary vertices are free, subject to so-
called "natural" boundary conditions - some additional lin-
ear equations. This was shown to be equivalent to the Least-
Squares Conformal Mapping (LSCM) method of Levy et
al. [LPRM02], which is a least-squares approximation of the
discrete Cauchy-Riemann equations, which define continu-
ous conformal mappings. These boundary equations were
generalized by Karni et al. [KGG05] to a larger family of
barycentric coordinates.

The main problem with linear free-boundary methods is

that the parameterization is no longer guaranteed to be bijec-
tive, meaning that the resulting 2D embedding may contain
local overlaps (also known as "triangle flips"), global over-
laps, or even wind on itself. Karni et al. [KGG05] showed
how to solve the more frequent problem of local overlaps in
a postprocessing step.

Some parameterization work focuses on directly optimiz-
ing the distortion metrics of length, angle or area. These
approaches require extensive computation, since the distor-
tion measures are usually highly non-linear. Hormann et
al. [HG99] define a deformation-based MIPS energy which
requires a non-linear solver. The compute-intensive ABF
method of Sheffer et al. [SdS00] computes the parameter-
ization in angle space, with a result minimizing angular
distortion. The more efficient ABF++ [SLMB05] and Lin-
ABF [ZLS07] have accelerated this method considerably.
Other metrics are also used to guide the optimization pro-
cess for parameterization, such as stretch. These are based
on the singular values of the Jacobian matrix of the pa-
rameterization mapping [SSGH01], on the Green-Lagrange
tensor [MYV93,ZMT05] or the synthesized distortion met-
ric [YYS06].

Other improvements on the method of barycentric coor-
dinates were proposed by Zayer et al. [ZRS05a, ZRS05b]
and Yoshizawa et al. [YBS04], who showed how to dynami-
cally adjust the barycentric weights such that the system con-
verges to a parameterization minimizing stretch.

Another approach to parameterization is inspired by re-
cent advances in dimension reduction and manifold learn-
ing [LYD∗05, ZKK02]. The basic principle is to preserve
some geometric property like geodesic distance of a higher
dimensional data set while embedding it in a lower dimen-
sional space. For example, Chen et al. [CLZW07] introduce
a new parameterization technique based on local tangent
space alignment (LTSA), which tries to embed each one-
ring of the mesh in some optimal manner in the plane, and
then solves a global linear system to "stitch" the one-rings
together to one coherent triangle mesh. In this sense, it is the
closest to the approach we describe in this paper.

A series of very recent works on conformal parameteriza-
tions by Yang et al. [YKL ∗08], Ben-Chen et al. [BCGB08]
and Springborn et al. [SSP08] manipulate the curvature dis-
tribution on a 3D mesh, flattening it by migrating the total
curvature so that it is distributed on only a small number of
so-called "cone singularities". The other mesh vertices retain
no curvature. For the case of a mesh having disk topology
with a given boundary, this means concentrating the curva-
ture on the boundary alone. In practice it amounts to comput-
ing new lengths for the mesh edges, so that they can be em-
bedded in the plane. Once the 2D edge lengths are computed,
the final 2D embedding is computed either by an incremen-
tal layout process, or by solving a simple sparse linear sys-
tem (which happens to be identical to the LSCM process
mentioned later in this paper, since that process reproduces
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a planar embedding). The difference between the three meth-
ods is the precise algorithm used to manipulate the curvature
distribution. These methods, although designed to minimize
only conformal (i.e. angular) distortion, in practice produce
parameterizations with not too much stretch. They are also
relatively easy to compute, thus are strong contenders for use
in conformal parameterization scenarios.

3. Contribution

We apply the methodology of Sorkine and Alexa [SA07] for
mesh editing (which has its origins in a series of papers start-
ing with Sorkine et al. [SCOL∗04]) to the problem of mesh
parameterization. This poses the problem as that of finding
optimal local transformations for each individual mesh el-
ement from an appropriate family and then "stitching" the
transformed triangles together to a 2D mesh. As opposed
to [SA07], where the local transformations are applied to
one-ringsof a vertex and its neighbors, we apply the local
transformations to individualtriangles. This then becomes a
proper finite-element discretization of an associated contin-
uous problem. In this context, our contributions are:

• For the case of local similarity transformations, our
method is shown to be equivalent to the well known
Least-Squares Conformal Mapping (LSCM) method
[LPRM02].

• For the case of local rotational transformations, we pro-
vide an efficient and simple iterative "local/global" algo-
rithm to solve the problem. This leads to a parameteriza-
tion which is close to isometric and shown to be supe-
rior to competing algorithms. Additionally, the algorithm
minimizes an "intrinsic" deformation energy function that
may be expressed in terms of the singular values of the
Jacobian of the parameterization, as is the case for many
other distortion measures. The algorithm is shown to be
very fast, due to pre-factoring of the linear system in-
volved in the global step, and optional parallel processing
in the local phase.

• We propose a more general "hybrid" parameterization
model which provides a continuous spectrum of possi-
bilities, controlled by a single parameter. The two cases
described above (similarities and rotations) lie at the two
ends of the spectrum. The hybrid parameterization may
also be computed using a similar local/global algorithm.

4. The General Local/Global Approach

If each triangle of the 3D triangle mesh were required to be
flattened to the plane independently of the other triangles,
this would certainly be easy. Requiring that all the flattened
triangles fit together into one mesh with the correct orienta-
tions is the main challenge (see Figure2). Obviously some
of the triangles are going to be deformed in the process. As-
sume we allow each triangle to be deformed by some subset
of the 2D linear transformations, in the sense that this trans-
formation "does not count" as a deformation. For example,

translations of the triangles are obviously allowed. A confor-
mal parameterization would also allow each triangle to un-
dergo a similarity transformation (only). An isometry would
allow only a rotation. An authalic parameterization would
allow only transformations with unit determinant. 

 

 

 

 

 

Figure 2: Parameterizing a mesh by aligning locally flat-
tened triangles. (Left) Original 3D mesh; (middle) flattened
triangles; (right) 2D parameterization.

Assume the triangles of the 3D triangle mesh are num-
bered witht = 1 to T and the area of the 3D triangles are
At . Assume that each 3D triangle is equipped with its own
local isometric parameterization using a triangle in the plane
xt = {x0

t ,x
1
t ,x

2
t }. Our goal is to find a single parameterization

of the entire mesh, i.e., a piecewise linear mapping from the
3D mesh to the 2D plane, described by assigning 2D coordi-
natesu to each of then vertices. For trianglet, let us denote
these 2D coordinates asut = {u0

t ,u
1
t ,u

2
t }. Given this setup,

the mapping betweenxt andut has an associated2× 2 Ja-
cobian matrix which is constant per triangle. We denote this
matrix at trianglet asJt(u) to express its dependence on the
u. It represents the linear portion of the affine mapping from
the triangle described byxt to the triangle described byut .
In our method, we will also assign an auxiliary linear trans-
formation (2×2 matrix)Lt to each triangle taken from some
family of allowed transformationsM (in particular, we will
consider, in turn,M to be the similarity transformations, and
later, the rotations).

Define the energy of the parameterization coordinates
u and an auxiliary set ofT linear transformationsL =
{L1, ..,LT} to be

E(u,L) =
T

∑
t=1

At ‖Jt(u)−Lt‖2
F

where‖·‖F is the Frobenius norm. Following Pinkall and
Polthier [PP93], this energy may be rewritten in terms of the
coordinatesx andu (instead of in terms of the Jacobians) in
an explicit form (in terms of the mesh vertex coordinates):

E(u,L)

= 1
2

T

∑
t=1

2

∑
i=0

cot(θi
t)

∥∥∥(ui
t −ui+1

t )−Lt(xi
t −xi+1

t )
∥∥∥

2 (1)

whereθi
t is the angle opposite the edge(xi

t ,x
i+1
t ) in the tri-

angle whose vertices arext and superscripts are all modulo
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2. Note that some of theui
t are identical, as they are shared

by more than one triangle in the mesh.

We would like to solve the following optimization prob-
lem:

(u,L) = argmin(u,L) E(u,L) s.t. Lt ∈M (2)

Namely, find a set ofn 2D coordinatesu for the mesh ver-
tices andT matricesL1 ,.., LT in M such that the Jacobians
of the transformation from the givenx to theu are closest to
theLt .

Although we solve for bothu and L, in the end we are
interested only inu while L plays an auxiliary role only. As
we shall see below, in many cases, the optimalu may be
defined as that minimizing an energy function formulated in
terms of the singular values of the JacobiansJt(u). In the
next sections, we will examine a number of interesting cases
for M and relate our energy functions to those.

4.1. Best fittingL matrix

Suppose we are asked to approximate one2×2 matrix J as
best we can by another2×2 matrixL, whereL is taken from
a restricted set of transformationsM (we will consider in turn
similarities and rotations) and where distance is measured
using the Frobenius matrix norm. In other words:

d(J,L) = ‖J−L‖2
F = tr

[
(J−L)T(J−L)

]

This problem can be solved using Procrustes analy-
sis [GD04], and its solution in general is computed using
the Singular Value Decomposition (SVD) ofJ.

In particular, using SVD,J may be written as

J = UΣVT

whereU andV are orthonormal, andΣ is a diagonal matrix:

Σ =
(

σ1 0
0 σ2

)

We use here a "signed version" of the SVD, where the de-
terminant ofUVT is constrained to be positive,σ1 is posi-
tive andσ2 may be positive or negative. We refer to these
σ as signed singular values. This signed version is needed
to constrain our Procrustes solutions to exclude orientation
reversing transformations.

Given this decomposition, it is easy to show that the opti-
mal rotation minimizing the distanced(J,L) is obtained by
setting both singular values to 1, i.e.L = UVT . Similarly,
the optimal similarity transform is obtained by setting both
singular values to(σ1 +σ2)/2. See Figure3 for examples.

4.2. As-similar-as-possible (ASAP) mappings

Conformal mappings are those which preserve angles, which
are invariant under similarity transformations. Thus, in order
to produce a conformal-type parameterization, the family

 

 

 

 

 

 

Figure 3: Optimal Procrustes transformations: Left: source
triangle; Right: target triangle in black, optimal similarity
of source in red, optimal rotated version of source in green.

M of allowed transformations should be similarities, which
may be parameterized as all matrices of the form:

M =
{(

a b
−b a

)
: a,b∈ R

}
(3)

Thus we may represent the allowedLt in the energy func-
tion (2) with the variablesa = (a1, ..,aT), b = (b1, ..,bT).
Since thexi

t andθi
t are fixed, the energy function is quadratic

in the variablesa,b,u and thus may be minimized by solving
a large sparse linear system with these variables.

Since we try to stay close to the family of similarity
transformations, we call this parameterization "as-similar-
as-possible" (ASAP). AppendixA proves that solving (2)
with this M is equivalent to finding theu that minimizes
Lévy’s conformal energy:

T

∑
t=1

At(σ1,t −σ2,t)
2

where σ1,t and σ2,t are the signed singular values ofJt

– the Jacobian of thet-th triangle’s transformation. Since
the Least-Square Conformal mapping (LSCM) technique
[LPRM02] also minimizes precisely this energy, the two
techniques are equivalent.

As with LSCM, for non-developable meshes, the (trivial)
solution that collapses all of the vertices to a single point
in the plane achieves a global minimum – zero energy. This
can be avoided by constraining two vertices to two differ-
ent locations in the plane. In practice, we pin down the two
vertices most distant from each other (the diameter) in the
mesh.

4.3. As-rigid-as-possible (ARAP) mappings

While conformal mappings have many nice mathematical
properties, they are not always exactly what the applica-
tion needs. The fact that arbitrary scaling factors may creep
into the parameterization makes it unsuitable for applica-
tions which try to minimize "stretch" and preserve the pro-
portions of the triangles.

To obtain an "as-rigid-as-possible" mapping we limit the
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family of allowed local transformations to be just rotations:

M =
{(

cosθ sinθ
−sinθ cosθ

)
: θ ∈ [0,2π)

}

Or, in other words, the same as (3), only with the extra re-
quirement thata2 +b2 = 1.

AppendixA proves that solving (2) with this M is equiv-
alent to finding theu which minimizes

T

∑
t=1

At

[
(σ1,t −1)2 +(σ2,t −1)2

]

This energy is similar to the Green-Lagrange en-
ergy [MYV93, ZMT05], which uses terms of the form[
(σ2

1,t −1)2 +(σ2
2,t −1)2

]
and also produces parameteriza-

tions which are close to isometric.

Alas, the extra condition onLt in (1) means that the energy
function may no longer be minimized by solving a linear
system.

4.4. Local/Global Algorithm

To solve the minimization problem (2) for an ARAP map-
ping, we adapt the local/global algorithm of [SA07]. This
iterates between two phases. In the firstlocal phase, the op-
timal rotationLt is computed per triangle, assuming theu
are fixed. Then, in the secondglobal phase, theLt are as-
sumed fixed, and the optimalu are solved for as a sparse
linear system. (Recall thatxt are fixed throughout the algo-
rithm.) Since each step is guaranteed to reduce the energy,
this energy will eventually converge. Additionally, since the
matrix of the global phase is unchanged from iteration to it-
eration, it only has to be factored once and reused at each
iteration.

4.4.1. Local Phase

The local phase can be solved using the SVD factorization of
J as described in Section4.1. Equivalently, and analogously
to [SA07], for ARAP one can also perform the SVD factor-
ization directly on the following "cross-covariance" matrix
in place ofJt(u)

St(u) =
2

∑
i=0

cot(θi
t)(u

i
t −ui+1

t )(xi
t −xi+1

t )T

4.4.2. Global Phase

For fixedLt , the energyE(u,L) is quadratic inu. The min-
imum u can be found by setting the gradients of (1) to zero
and solving the associated linear system. To calculate this,
overloading the notation slightly, we rewrite the energy func-
tion in terms of the mesh half-edges:

E(u,L)

= 1
2

T

∑
t=1

2

∑
i=0

cot(θi
t)

∥∥∥(ui
t −ui+1

t )−Lt(xi
t −xi+1

t )
∥∥∥

2

= 1
2 ∑

(i, j)∈he

cot(θi j )
∥∥∥(ui −u j )−Lt(i, j)(xi −x j )

∥∥∥
2

wherehe is the set of half-edges in the mesh,ui andxi are
coordinates of verticesi, t(i, j) is the triangle containing the
half-edge(i, j), andθi j is the angle opposite(i, j) in t(i, j).

Setting the gradient to zero, we obtain the following set of
linear equations foru.

∑
j∈N(i)

[
cot(θi j )+cot(θ ji )

]
(ui −u j )

= ∑
j∈N(i)

[
cot(θi j )Lt(i, j) +cot(θ ji )Lt( j,i)

]
(xi −x j ),

∀ i = 1, ..,n.

(4)

The entries of the associated matrix depend only on the
geometry of the input 3D mesh. Thus this sparse matrix is
fixed throughout the algorithm, allowing us to pre-factor it
(e.g. with Cholesky decomposition) [GvL05, In0] and reuse
the factorization many times throughout the algorithm in or-
der to accelerate the process. This has a significant impact
on algorithm efficiency.

Unfortunately, stitching the triangles using a global Pois-
son equation may result in some triangles "flipping" their
orientation especially for a highly curved surface with com-
pact boundary. We solve this with a final post-processing
phase, e.g., the "convex virtual boundary" algorithm of Karni
et al. [KGG05]. Since in most cases, there are only a few
flips, sprinkled throughout the parameterization, the post-
processing solves the flips without changing much else.

4.5. The initial parameterization

Our local/global algorithm requires an initial parameteriza-
tion M to start it off. The basic requirement from the ini-
tial parameterization is that it be a valid embedding (con-
tain no flips) reasonably close to a parameterization with not
too much distortion, and be fast to generate. Candidates are
the shape-preserving method [Flo97] and LSCM [LPRM02]
as they can be computed quickly. We found the shape-
preserving parameterization more suitable for meshes with
one boundary, and LSCM [LPRM02] for meshes with mul-
tiple boundaries. The experimental results shown in Section
6 are obtained using these initial parameterizations.

We tested the sensitivity of our algorithm to different
types ofM’s, as mentioned above. We found that the algo-
rithm is not sensitive toMat all. Figure4 shows the progress
of the iterative algorithm when initialized with the shape-
preserving parameterization and LSCM. Both converge fast
and stably.
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Initial guess 1 Iteration 3 Iterations Final result 

Figure 4: Successive iterations of the local/global ARAP algorithm. (Top) Initialized using Floater’s shape-preserving param-
eterization [Flo97]. (Bottom) Lower row: Initialized using LSCM parameterization [LPRM02].

5. The Hybrid Model

Our ASAP parameterization belongs to the family of (ap-
proximately) conformal maps and may be computed eas-
ily by solving a simple linear system. However, it is not
the most area-preserving among the conformal parameteri-
zations, and, in fact, the non-linear ABF++ method preserves
area much better, while still being approximately conformal.
On the other hand, our ARAP parameterization preserves ar-
eas much better, but since it it strives to be isometric, it might
damage the conformality in this effort. We now present an
energy function which is a generalization of (1), which pro-
vides a means to generate a parameterization anywhere be-
tween ASAP and ARAP. The two latter are endpoints of
the spectrum, and the result is controlled by a parameter
λ ∈ [0,∞).

The hybrid energy function is

E(u,a,b) =

1
2

T

∑
t=1

[
2

∑
i=0

cot(θi
t)

∥∥∥∇ei
t

∥∥∥
2
+λ(a2

t +b2
t −1)2

]
,

(5)

where

∇ei
t = (ui

t −ui+1
t )−

(
at bt

−bt at

)
(xi

t −xi+1
t ).

Settingλ=0 will be equivalent to ASAP while a very large
value of λ will be equivalent to ARAP. Any value inbe-
tween will yield an intermediate parameterization, so the
user may control the tradeoff between conformality and
area-preservation.

Solving for the parameterization coordinatesu which
minimize E(u,a,b) involves solving also for the auxiliary
vectors of unknowns of the similarity transformationsa and
b. The value ofλ indicates how much we want to force the
similarity to be a rotation. A local/global algorithm similar to
that we use for solving for the ARAP parameterization may
be used here as well, i.e. iterate while alternating between
two phases: one local and one global. Recall thatx is fixed
(derived directly from the input 3D mesh). The local phase
keeps the parameterization coordinatesu fixed and solves for
the optimalat andbt per trianglet. Examination of (5) re-
veals that this involves solving two cubic equations inat and
bt . Furthermore, this reduces to a single cubic equation inat ,
(Equation (B3) in AppendixB), which may be solved ana-
lytically. The global phase keeps both vectorsa andb fixed
and solves a global sparse linear system (similar to (4)) for
u. Since the matrix of the linear system is fixed throughout
all iterations, it may be pre-factored at the beginning, and
reused in all iterations thereafter. Thus the runtime of the
procedure is dominated by the first iteration. This makes for
a simple and efficient algorithm.

6. Experimental Results and Comparison

We have applied our approach to parameterize a variety
of 3D meshes and compared with other relevant methods.
These include LSCM (equivalent to our ASAP method)
[LPRM02], direct ABF++ (ABF++ without the hierarchi-
cal solver) [SLMB05], which we label dABF++, linear
ABF [ZLS07], which we label LABF, inverse curvature
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Figure 5: Isis model: Effect ofλ in hybrid energy function (5) compared with results of other algorithms. Numbers in brackets
denote angular distortion and area distortion.
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Figure 6: Balls model: Effect ofλ in hybrid energy function (5) compared with results of other algorithms. Numbers in brackets
denote angular distortion and area distortion.

[YKL ∗08], which we label IC, and curvature prescription
[BCGB08], which we label CP. We show some results in
Fig. 1 and Figs. 5-8. In our algorithm, we used the sparse
Cholesky linear solver [In0] for the global systems and the
analytic solution to Equation (B3) for the local systems. The
IC results were kindly provided by Yang and the CP results
by Ben-Chen, the authors of those methods, who ran their
own software. The results of LABF where obtained by run-
ning software kindly provided by Zayer.

Computing the ASAP parameterization involves the solu-
tion of one sparse linear system, thus is very fast. Comput-
ing ARAP involves running the local/global algorithm. This
converged in up to 10 iterations in all our experiments. Com-
puting the hybrid also involves an iterative local/global algo-

rithm, but with the local phase using the analytic solution to
Equation (B3) instead of a simple2×2 SVD operation.

The figures show the parameterizations resulting from
ASAP, ARAP and the hybrid method with some interest-
ing values ofλ. These are compared with the results of
the other algorithms. The runtime of our local/global pro-
cedure is comparable to the state-of-the-art ABF++. Our lo-
cal/global parameterization method may be applied also to
meshes with multiple boundaries. Fig.8 shows one such re-
sult. The LABF method is not applicable to such inputs.

To quantify the parameterization distortion, we compute
both the angle and area distortion metric defined using the
signed singular valuesσ1,t andσ2,t of the JacobiansJt for
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Figure 7: Cow model: Comparison with other algorithms. The pink lines are the seams of the closed mesh when cut to a disk.
Triangulations are the 2D parameterizations.
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Figure 8: Beetle model with multiple boundaries: (Left) Di-
rect ABF++. (Right) ARAP.

each triangle, as defined in [HG99,DMK03]:

Dangle = ∑
t

ρt

(
σ1

t /σ2
t +σ2

t /σ1
t

)

Darea = ∑
t

ρt

(
σ1

t σ2
t +1/(σ1

t σ2
t )

)

where the weightρt is

ρt = At/∑
t

At

andAt is the area of trianglet. The values of the distortion
measures obtained by the various algorithms is summarized
in Table1. As is evident in the table, our ARAP parameter-
ization consistently gives the best value ofDarea, at a very

small, even insignificant, penalty inDangle. It is possible to
significantly improve the value ofDarea relative to LSCM
even by introducing a small value ofλ.

7. Discussion and Conclusion

We have presented a novel approach to parameterization of
3D mesh surfaces, by minimizing a very general energy
function. We have also provided a simple and efficient lo-
cal/global algorithm for computing these parameterizations.
The local component of the algorithm tries to minimize dis-
tortion of the individual 2D triangles relative to the origi-
nal 3D mesh geometry, while the global component guaran-
tees that the resulting 2D triangles fit together in a coherent
manner. Both phases may be computed efficiently, the local
one taking advantage of parallelism (possibly on the GPU),
and the global one taking advantage of efficient sparse linear
solvers with factorization.

We have shown that our ASAP definition is equivalent
to LSCM, while ARAP can yield more shape-preserving
results compared with other contemporary methods. A hy-
brid model, coupled with a similar efficient local/global al-
gorithm, allows to obtain parameterizations anywhere in-
between these two. While we have applied this method to
parameterizing meshes with disk topology only, it seems it
could be possible to use the same methodology for higher
genus meshes, possibly through the use of one-forms. Posi-
tional constraints on some of the vertices in parameter space
can also be imposed without complicating the algorithm, as
these types of (hard or soft) constraints may be easily incor-
porated into the energy functions we optimize.
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Table 1: Comparison of distortion measures of different parameterization methods.

Dangle Darea
Model LSCM dABF LABF IC CP ARAP LSCM dABF LABF IC CP ARAP

Gargoyle 2.00 2.00 2.00 2.05 2.00 2.06 88.14 2.64 2.64 2.67 2.64 2.05
Isis 2.05 2.08 2.12 3.09 2.29 2.19 15.36 8.37 9.12 3.91 11.94 2.11

Balls 2.02 2.06 2.05 2.06 2.36 2.07 2.40 2.35 2.34 2.42 3.18 2.04
Cow 2.01 2.01 2.01 2.46 2.01 2.03 30.09 2.19 2.22 2.51 2.18 2.03

Beetle 2.00 2.00 - 2.02 2.00 2.01 2.08 2.09 - 2.14 2.10 2.01

Our local/global algorithm embodies the motif "think
globally, act locally", which is emerging as a powerful tech-
nique in geometry processing. This paper and others [DG07]
have applied this to the problem of mesh parameterization
and future work will address other applications where the
technique may also be very effective.
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Appendix A:

Consider minimizing the following energy function

E(u,L) =
T

∑
t=1

At ‖Jt(u)−Lt‖2
F

=
T

∑
t=1

At tr
(
(Jt(u)−Lt)T(Jt(u)−Lt)

)
(A1)

subject toLt ∈M.

If we defineE(u) = minLE(u,L), then our optimization becomes
minu E(u). To understandE(u), we use the fact that for a fixedu,
the bestLt for each triangle can be expressed using Procrustes anal-
ysis. In particular, if by the signed SVD,Jt = UtΣtVT

t , for Σt =

(
σ1,t 0
0 σ2,t

)
, then the optimalLt is of the formLt = UtKtVT

t ,

for Kt =
(

k1,t 0
0 k2,t

)
where for the ARAP case,k1,t = k2,t = 1,

and for the ASAP case,k1,t = k2,t = (σ1,t + σ2,t)/2.

Substituting this in (A1), we get

E(u)

=
T

∑
t=1

At tr
(
(UtΣtVT

t −UtKtVT
t )T(UtΣtVT

t −UtKtVT
t )

)

=
T

∑
t=1

At tr(VtΣ2
t VT

t −2VtΣtKtVT
t +VtK2

t VT
t )

=
T

∑
t=1

At tr(Σ2
t −2ΣtKt +K2

t )

=
T

∑
t=1

At

[
(σ1,t −k1,t)2 +(σ2,t −k2,t)2

]
.

In particular, for the ARAP case,k1,t = k2,t = 1, so

E(u) =
T

∑
t=1

At

[
(σ1,t −1)2 +(σ2,t −1)2

]
. (A2)

and for the ASAP case,k1,t = k2,t = (σ1,t + σ2,t)/2, so

E(u) =
T

∑
t=1

At(σ1,t −σ2,t)2, (A3)

which has been shown to be identical to Lévy’s conformal en-
ergy [LPRM02], minimized by the LSCM algorithm.

Appendix B:

Assume we seeka andb minimizing

E(a,b) =
2

∑
i=0

wi
∥∥∇ei

∥∥2 + λ(a2 +b2−1)2

where∇ei = (ui − ui+1)−
(

a b
−b a

)
(vi − vi+1) and all other

quantities are constants.

Denoteui −ui+1 =
( ∇ui

x
∇ui

y

)
,vi − vi+1 =

( ∇vi
x

∇vi
y

)
. Taking

∂E/∂a = 0 and∂E/∂b = 0 yields:

C1a+2λa(a2 +b2−1) = C2 (B1)

C1b+2λb(a2 +b2−1) = C3 (B2)

where C1 = ∑2
i=0 wi

[
(∇vi

x)2 +(∇vi
y)2

]
,

C2 = ∑2
i=0 wi

[∇ui
x∇vi

x +∇ui
y∇vi

y

]
, C3 =

∑2
i=0 wi

[∇ui
x∇vi

y−∇ui
y∇vi

x

]
.

Dividing (B1) by (B2) givesb = (C3/C2)a, and the final cubic
equation ina:

2λ(C2
2 +C2

3)
C2

2

a3 +(C1−2λ)a−C2 = 0 (B3)

For the special caseλ = 0 it is easy to derive the solutions

a =
C2

C1
, b =

C3

C1

and for the special caseλ→∞

a =± C2√
C2

2 +C2
3

, b =± C3√
C2

2 +C2
3
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