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Abstract

Barycentric coordinates can be used to express any point inside a triangle as a unique convex combination of the
triangle’s vertices, and they provide a convenient way to linearly interpolate data that is given at the vertices of
a triangle. In recent years, the ideas of barycentric coordinates and barycentric interpolation have been extended
to arbitrary polygons in the plane and general polytopes in higher dimensions, which in turn has led to novel
solutions in applications like mesh parameterization, image warping, and mesh deformation. In this paper we
introduce a new generalization of barycentric coordinates that stems from the maximum entropy principle. The
coordinates are guaranteed to be positive inside any planar polygon, can be evaluated efficiently by solving a
convex optimization problem with Newton’s method, and experimental evidence indicates that they are smooth
inside the domain. Moreover, the construction of these coordinates can be extended to arbitrary polyhedra and

higher-dimensional polytopes.

Categories and Subject Descriptgascording to ACM CCS) G.1.1 [Numerical Analysis]: Interpolation formulas

G.1.6 [Numerical Analysis]: Constrained optimization |

.3.5 [Computer Graphics]: Geometric algorithms

1. Introduction

Barycentric coordinates were first introduced by Mdbius as
a special kind of homogeneous coordinates with respect
to the vertices of a simplexM6b27]. While unique for
simplices, they can be generalized in several ways to ar-
bitrary polygons Wac75 Flo03 MLDO05, FHKO06], polyhe-

dra [FKR05 JSWO05LBS06, higher dimensional polytopes
[War96 JLWO07], and even curvesBel06 SJW07DF0g.

LetQ c RY be an arbitrary polytope (e.g., a polygorRif
or a polyhedron iriR3), with verticesvs,...,vn. The func-
tionsh; : Q — R, i=1,...,n are calledbarycentric coordi-
nateswith respect tqQ if they form apartition of unity

i bi(v) =1,

allow to write any pointv € Q as anaffine combinatiorof
the vertices,

@)

n
bi(v)vi =V, 2
i; I I
and satisfy thé.agrange property
bi(vj) = &j. 3)
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Due to the property inJ), barycentric coordinates can be
used as basis functions fbarycentric interpolationindeed,
it is clear that the function
n
(V) = 3 byt (@)
i=
interpolates the datd at the verticesy; for i = 1,...,n,
and properties1) and @) further guarantee the reproduc-
tion of affine functions by barycentric interpolation. Obvi-
ously, the interpolantf inherits the smoothness from the
functionsb; and if theb; can be evaluated efficiently, then
so canf. Barycentric interpolation has many useful applica-
tions, ranging from Gouraud and Phong shading, rendering
of quadrilateralsHiT04], image warping [HFO6 WSHDO07,
and mesh deformatiod $WO05LKCOL07,JIMD*07,LS0§
to generalized Bézier surfacds}89, LS07] and finite ele-
ment applications4006, SM06, WBG07, MP07, TS09.

Many of these applications require or at least benefit from

the barycentric coordinates beingn-negative
bi(v) > 0, ®)

so that @) and @) becomeconvex combinationand sof (v)
is guaranteed to lie inside the convex hull of the data
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Figure 1: Barycentric coordinates for the green (top row) and the red vertex (bottom row) of an L-shaped polygon. Note that
the MVC for the green vertex is negative inside the grey region of the polygon and that the PMVC for that vertex is constant
zero there. Moreover, PMVC are onI)QGIong the dashed lines andlcalong the dotted lines.

1.1. Related Work Another approach for constructing generalized barycen-
tric coordinates that has been suggested independently by
Sukumar Buk04 and Arroyo and Ortiz AO06] is based

on Jaynes’s principle of maximum entroplaly51. By con-
struction, these coordinates are non-negative and always sat-
isfy conditions () and @), but the Lagrange property8Y
holds only ifQ is strictly convexsee Figure?).

If Q is a simplex (e.g., a triangle iR? or a tetrahedron

in R3), then the barycentric coordinates are uniquely de-
termined by conditionsl) and @), and they automatically
satisfy properties3) and 6). For general polytopes, this
unigueness breaks down and the non-negativity is not always
guaranteed by the several constructions that have been pro-
posed in the past.

Wachspress Wac79 was the first to come up with 1.2. Contribution
a generalization of barycentric coordinates for finite ele- . .
ment applications. Thed&achspress coordinates well as In this paper we show how to adapt.the maximum entropy
their higher-dimensional extension&/grog WSHDO07 sat- approach in prder to get non-negative bgrycentrlc coordi-
isfy (5) as long asQ is convexand can further be evalu- nates for arbitrary polygons that also satisfy the Lagrange

ated efficiently MLBDO2]. For planar polygons, alternative property and can thus be used for barycentric interpolation.
generalizations are thtiscrete harmonic coordinat¢BP93 In contrast to PMVC, these new coordinates are smooth and

EDD*95] and themetric coordinategMLDO05, SMO€], but unlike HC, they can be evaluated directly.
they both can be negative even inside a convex polygon. After a brief introduction to informational entropic mea-

A major breakthrough came with the advent mean sures and the maximum entropy formalism (Seciprwe
value coordinate§MVC) that were discovered by Floater ~ '€view how to derive barycentric coordinates frpnior es-
[Flo03 in the context of mesh parameterization and later timatesby maximizing t.he Shann.on-Jaynes entropy with re-
generalized to polyhedr&KR05, JSW05LBS07. In con- spe_ct to linear con;tralntg (Sectla_h We ther_l presen_t two
trast to Wachspress coordinates, they are well-defined evenchoices of appropriate prior functions (Sectig)rthat yield
if Q is non-convex IHFOE], but they can take on negative maximum entropy coordinat¢®#EC) with all the desired

values then (see Figuts. properties for arbitrary polygons (see Figdjeand explain
how to extend the construction to higher dimensions. We

further describe how Newton’'s method can be used to ef-
ficiently evaluate these coordinates (SectnFinally, we
compare MEC with previous constructions (MVC, PMVC,

By modifying the transfinite description of mean value co-
ordinates JSW05Bel0g], Lipman et al. LKCOLO7] were
able to overcome this drawback, which significantly im-

proves the results in applications like mesh deformation. ;4 HC) by studying some application examples (Sedjon

Their positive mean value coordinat¢BMVC) no longer and discuss their limitations as well as interesting open ques-
have a simple closed form, but they can still be evaluated ef- tions for future research (Sectigh.

ficiently with the GPU. However, these coordinates are only
piecewise smooth (see Figulte

Up to now, the only known barycentric coordinates that 2. Principle of Maximum Entropy
are smqoth and_non-negative fc_)r arbitrary_ polytopes are the shannon $ha4$ introduced the concept of entropy as a
harmonic coordinategHC), which have first been men-  eaqure of uncertainty in information theory, with an eye
tioned by Floater et alHHKO] and later realized by Joshi o, jts applications in communication theory. TBannon

et al. JMD*07] for animating characters. The drawback of entropyof a discrete probability distribution is
harmonic coordinates is that they are rather costly to evalu-

ate because they require to compute the solution of Laplace’s

n
H(p) =<—I =— i In pj 6
equation subject to suitable Dirichlet boundary conditions. (p) = <—Inp> i; ping:, ©

(© 2008 The Author(s)
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Figure 2: Barycentric coordinates for the rightmost vertex of this convex polygon. For convex polygons, MVC and PMVC are

MEC-2 MEC-constant MEC-Gaussian

the same, and the maximum entropy coordinates based on conSték@4 and Gaussian priors AO0] (with B = 5 in this

example) satisfy the Lagrange property. Note that the coordinate derived from constant priors is very steep near the vertex and

would lose the Lagrange property if the polygon wasakly convexand the vertex and its neighbours were collinear.

where <- > is the expectation operatop; = p(X;) is the
probability of the occurrence of the eveqitandp; Inp; =0
if pi = 0. Note that the above form df satisfies the ax-
iomatic requirements of an uncertainty measiei$7].

3. Maximum Entropy Coordinates

Historically, discrete probability measures have been seen as
weights and hence their association with the construction of
barycentric coordinates is natural. As in conditidp, dis-

As a means for least-biased statistical inference in the crete probability measures sum to one, and condit®ris(
presence of testable (known) constraints, Jaynes used thethe counterpart of the expectation value of the first moment

Shannon entropy to propose tpeanciple of maximum en-
tropy [Jay57. While Jaynes's initial emphasis was on ap-

plications in statistical mechanics, the principle has broader
appeal and can be applied to any ill-posed problem that re-

quires inductive inferencdfy03. In a nutshell, maximizing
entropy provides théeast-biasedstatistical inference solu-
tion when insufficient information is available.

(or mean) of a discrete probability distribution being known.

Sukumar Buk04 adopted the Shannon entrop§) (to
construct non-negative barycentric coordinates for strictly
convex polygons, whereas Arroyo and OrtJ06] used
a modified entropy functional in the variational principle to
derive basis functions for meshfree methods. The modified
entropy chosen in4O06] is a linear combination of Rajan’s

To illustrate this statement, consider a coin toss experi- functional Raj94 and the Shannon entropy, and the solu-

ment and letpy and pt be the unknown probabilities of

tion of the variational problem provides a smooth transition

heads and tails, respectively. Here, the only known constraint from Delaunay interpolation as a limiting case at one end to

is py + pt = 1, which involves two unknowns but only one
equation. But if we regularize the problem by maximizing
the Shannon entropys) subject to this constraint, then the
unigue maximum entropy solutionf®; = pt = 1/2, which
is consistent with our expectations for an unbiased coin.

It was later recognized that fafl to be invariant under
invertible mappings of the continuous random variabkbe
general form of the continuous entropy should be

—/p(x)ln (%) dx,

wherem is called ap-estimateor prior distribution [KL51,
Jay63SJ80Q. In this paper we use the discrete version of the
Shannon-Jaynes entropy functional

Sen(2)

In the literature, the quantif®(p || m) = —H(p, m) is known

as the Kullback-Leibler (KL) distance. If the KL-distance is
adopted as the objective functional, the variational princi-
ple is known as the principle of minimum relative entropy
[SJ8Q. Obviously, maximizing the Shannon-Jaynes entropy
functional H(p,m) is equivalent to minimizing the relative
entropy functionaD(p|| m).

@)

(© 2008 The Author(s)
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global maximum entropy approximation at the other end of
the spectrum.

Sukumar and Wright§WO078 later realized that both
constructions can be described in a unifying framework that
uses the Shannon-Jaynes entropy functional with a pfjor (
The variational formulation for maximum entropy coordi-
nates in general then is: fird= (by,...,bn) : Q — R as
the solution of the constrained optimization problem

= zovn () e

subject to the linear precision conditions
(8b)

_ibi (V) =1,
ébi (V)i —

for anyv € Q. In (8a), R"} is the non-negative orthant and
m : Q — Ry is a prior estimate fob;. Note that ifQ is

a simplex inRY, thenn = d+ 1 and the linear constraints
yield a unique solution for thie. Forn > d+ 1, which is the
case of interest in this paper, the linear constraints form an
under-determined system.

max H(b,m),
b(v)eRT

(8c)
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Figure 3: Barycentric coordinates for the lower left vertex of this non-convex polygon and prior estimate of MEC-1. In this
example, all functions are between zero and one. Note that PMVC is constant zero over the region shaded in red and also attains
a local maximum just above the vertex in the centre.

In the present context, the prior functions can be seen that vanishes along and is positive elsewhere, by virtue
as weight functions associated with each vertgxand the of the triangle inequality. Note thai; is also used in the
variational principle provides eorrectionthat modifies the construction of metric coordinates[L D05, SM0§]. It then
weight functionsm; in a minimal (i.e., least-biased) way to  follows that the product
form coordinatesy; that satisfy the constant and linear pre- N )
cision conditions. For non-negativg, the objective func- (V) = i I_lip'(v)
tional H (b, m) is strictly concave, and therefore the problem ’
posed in 8) admits a unique non-negative solution fgr
Note that this construction of barycentric coordinates is also
valid for pointsv inside the convex hul¢ = [v1,...,vn] of

is non-negative and vanishes on all edges that are not adja-
cent to vertexy;. The same clearly holds for the prior func-
tionsm that we derive from theg through normalization,

the polytope as long as the priors are well-defined exer m(v) = (V)
It now turns out that the coordinates of Sukum@nk04 ZT:lT[j (v)’
are the solutions off for constant priorsiy(v) = 1and that  Note that after dividing both the numerator and the denomi-
Gaussian prior functions; (v) = exp(—p||vi —v||) resultin nator by the product of apj, we get the equivalent form
the coordinates proposed by Arroyo and OrtvOp6] (see -
Figure 2). We further note that one obtairtm(v) = mj(v) m(v) = % with fi(v)= ————, (10)
for i = 1,....n if the priors m a priori satisfy the lin- Y1 TG(v) Pi—1(V)Pi(V)

ear constraints. Moreover, if we omit the linear precision \yhich renders it amenable to stable numerical computations.
condition @c) and use just the constant precision con-

dition (8b) as a constraint, then the solution ) (is
bi(v) = m(v)/z?:l m;j(v), which we recognize as having
the same form as the Shepard functiSh¢68.

Now solving the optimization problen8) with thesem
as input yields functions; with all the desired properties.
Due to the linear constraint8If) and @c), theb; clearly sat-

] o ) ) isfy conditions () and @) and as them are non-negative,
The key ingredient in the maximum entropy formulation ihen so are thds;. It remains to be shown that tHg in-

is the selection of the prior functioms, and this flexibility herit the Lagrange property from the prior functioms If
presents the possibility of designing tailored barycentric co- y (v*) = 0 for somei € {1,...,n} andv* € Q, then solv-

ordinates. The next section describes the specific choices forjng () givesh; (v*) = 0 because
prior functions that we make to construct non-negative bary-

centric coordinates for arbitrary polygons and polyhedra. lim bi(v)In bi(v)
V—V* mi(v)
4. Prior Functions is zero ifbj(v¥) = 0 and diverges otherwise. Therefore, the

To obtain non-negative barveentri rdinates for an arbi functionsb; have the same zero sets as their prior estimates
0 obtain non-negative barycentric coordinates for an arbi- m;, and the only function that does not vanish at vergx

trary polygonQ, we first construct non-negative priong .

. . is bj. The Lagrange property now follows because oflj
that POSSEss the desired bounda_ry propertl_es. We_then US€&nd we similarly conclude that the are linear on the edges
these within the entropy formulation to obtain functidns

that tive. int lat the bounda® cind of Q. Hence, the functionb; are non-negative barycentric
at are non-negative, interpofate on the boun ap.ain coordinates. We call them “MEC-1" and Figuseshows an
are linearly precise.

example of such a functidn and its prior estimatan.
To this end, leg be the edge of the polygon betwean

: ; ; We would like to point out that this construction of
andv; 1 and consider thedge weight function P

barycentric coordinates is rather general and also works for
pi(V) = [[V=Vi|| + IV=Vit1|| — [[Vit1 — Vil 9) any other choice of edge weight functions as longais

(© 2008 The Author(s)
Journal compilatiorf©) 2008 The Eurographics Association and Blackwell Publishing Ltd.
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Figure 4: Image warping using different barycentric coordinates and backward mappingH€@€]). The bottom row shows
a close-up of the region around the concave vertex of the target polygon. Note that the result using PMmvCis only C

non-negative and vanishes aloggFor example, using the  wherevi = v; — v. On setting the first variation of to zero,

alternative edge weight functions namelydL(b;Ag,A) = 0, we obtain
(V)= |lv=vi| - [v—v; v—V;)- (V= ;
PiY) = V= il|- [V = Vil + (V=) - (V= Vi) {_1_m(b'<v>) _AO_M} s0(v) =0

in (10) gives the barycentric coordinates that we refer to as mi(v)
“MEC-2" in our examples. fori=1,...,n, and since the variatiodb; (v) is arbitrary, the

Moreover, the construction can be extended to higher di- term within the bracket must be identically equal to zero:
mensions. For example,d is a polyhedron iR with con- bi (V)
vex planar faces, then we first define for each faaefunc- —1—1In ( ! (v)> —A—A-Vi=0.
tion p;j that vanishes offy and is positive elsewhere. ff has m
k verticesv,,...,V;,, then the analogue of the edge weight Therefore,
function @) is theface weight function m (V) exp(—A - )

v =S AViLVL,Y) — AV, .V, o .
pi(v) J-Zl (V15 V) = Ay ) where the substitution I8 = 1+ \g has been madeZ(is
known as thepartition functionin statistical mechanics).

where A(vy,...,vm) denotes the area of the polygon with Now, on using conditiongl), we obtain BW07H

verticesvy,...,vm. The prior functionmy for any vertexy;

of Q is then computed as i) with the product in the de- bi(V) = Z(N)
nominator offg ranging over all faces adjacenttp ! VAN
Zi(N) = my(v) exp(—A - Vi), (11)

5. Numerical Algorithm

n
In order to use the proposed maximum entropy coordinates Z(\) = J.lej (A)-

for practical applications, it is essential to be able to effi-

ciently solve the constrained optimization problem &). ( Note that\, Z;(A), andZ(A) implicitly depend orv and that
We resort to the method of Lagrange multipliers to first con- once the Lagrange multipliers = (Ay,...,Aq) are deter-
vert (8) into an unconstrained problem and then use New- mined, therbj(v) can be obtained frori(). To compute\
ton’s method to solve it. we note that théy;(v) in (11) must satisfy 8c), which leads

Let Ap € R be the Lagrange multiplier for the con- to thed non-linear equations

straint @8b) andA € RY be the Lagrange multipliers for thtk 1 2 A0
constraints§c). Then the Lagrangian for probler8)(is Z(N) i;Z'( )% =0 (12)
n . n
L(b;Ag,A) = Z\_bi (V)In (M) —)\o( Zibi (V) — 1) in thed unknownsh1, ...,Aq. The solution of {2) is equiv-
i= m; (V) i= alent to solving the dual unconstrained optimization prob-
i N lem [BVO04]
h (56w ).
i= A* = argminF()), F(A) =InZ(X),

(© 2008 The Author(s)
Journal compilatiorf© 2008 The Eurographics Association and Blackwell Publishing Ltd.
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Figure 5: Mesh deformation using different barycentric coordinates and a control polyhedron with triangular faces. The results
for MVC, PMVC, and HC are taken fronh KCOLO7.

where)* is the optimal solution. SincE is strictly convex m ” MVC | PMVC | HC _SMEC "
in Q, Newton’s method is the natural choice. The steps in £=107° | =10
the Newton algorithm to compute the maximum entropy co- 50K || 0.07 | 0.33 | 2.44 4.52 5.09
ordinatesbi (v) of anyv € Q are as follows: 100K |} 015 | 0.67 | 6.75| 8.9 10.5
200K 0.32 1.42 17.3 18.7 24.3
1. For givenv, compute and storg = v; — v; also functions 400K 0.59 2.61 195 34.6 39.7

to compute the prior functions; (v) are available;

2. Start with iteration countde= 0, the initial guesQ\0 =0,
and lete be the convergence tolerance. The convergence
tolerance dictates to what accuracy the linear precision
conditions are satisfied. A value ®fn the range 103 to

Table 1: Timings (in sec.) for evaluating the barycentric in-
terpolant at m points inside the L-shaped polygon with &
vertices from Figurel.

107 %%s S‘fjtable ‘ v ‘ . applications that build on barycentric interpolation. PMVC,
3. Computeg” = V,F(A) andH" = V,V,F(A"), which however, are only piecewise smooth and have discontinuous
are the gradient and Hessianfofrespectively; derivatives along certain lines inside a non-convex polygon
4. Determine Newton search directidn® = — (H¥) ik (see Figurd), and similarly inside non-convex polyhedra. In
5. UpdateA*™! = AK + aANK, wherea is the step size. For  particular, this happens along the lines defined by a concave
Newton’s methoddampedor guarded, a line search al- vertex and its two neighbours and can lead to visible “kinks”
gorithm [BFO4 is used to determine if the error is if used for image warping (for example, see Figdye

greater than 10%, otherwisen is set to unity;

; . Thirdly, MEC can be evaluatddcally at any poinv € Q,
6. Check convergence: ifg“"!|| > ¢, then increment the Y y v P

) i . though not as efficiently as MVC or PMVC, and the cost
|terat>|kon CEEP tek and goto 3, else contmue_; scales reasonably with the desired accuracy. In contrast, the

7. Seth™ = A""" and computés; (v) from Equation {1). evaluation of HC requires the solution ofgéobal approx-

Due to the quadratic convergence of Newton’s method, only imation problem, and the computational cost substantially

3to 7 iterations are needed to obtain an accuracy 640 increases if high accuracy is desired.

For planar polygons, we implemented all methods consid-

6. Results and Discussion ered in this paper in the following way. For MVC, we use the
pseudo code suggested HH0€], and for PMVC we first de-
termine the segments &fthat are “visible” from some point
v € Q and then use the MVC formulas, restricted to these
segments. In order to evaluate HC, we usamngle [She02

Firstly, MEC are non-negative for arbitrary polytopes, to triangulateQ with mvertices andAUCS [Tol03] to solve
which is important as it guarantees the convex hull property the linear system arising from the piecewise linear finite ele-
of the barycentric interpolatiod). PMVC and HC share ment discretization of the Laplacian. The details of our MEC
this property with MEC, but MVC can be negative inside implementation are described in Sect®n
a non-convex domain (see Figutg In some applications,
this can lead to undesired results: for example, the inter-
polation of colour values can yield values outside the valid
range HFO€| and it can lead to severe artefacts in mesh de-
formation in some extreme casésK[COL07]. However, in
many situations, the influence of negative weights is not no-
ticeable (see Figuré).

The advantages of MEC over previous barycentric coordi-
nates are threefold and we present several examples to illus-
trate them.

The timings in Tablel were measured on a 2 GHz Intel
Pentium M with 1 GB of RAM and confirm that the cost for
computing MVC, PMVC, and MEC am points grows lin-
early with m and slightly worse for HC, because the latter
requires to solve a linear system with a sparse system matrix
of sizemx m. The significantly larger constant of propor-
tionality for HC in the last row is due to the fact that the

Secondly, like MVC and HC, MEC are smooth inside linear system solver required more memory than available
the domain, which in turn leads to well-behaved results in as RAM and thus started swapping data to the hard disk.

(© 2008 The Author(s)
Journal compilatiorf) 2008 The Eurographics Association and Blackwell Publishing Ltd.
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can be used as a weight functipn Due to the close con-
nection between distance fields and level set functions, we
believe that it is worth investigating the possible use of level
sets for the design of prior functions in future work.

4

Although confirmed by the many numerical results that
we ran, it also remains to prove the smoothness of MEC. For
the MEC, based on Gaussian prior functions, Arroyo and

source mesh

Figure 6: Mesh deformation using a control polyhedron with
quadrilateral faces.

However, we point out that HC can be computed more
efficiently by using boundary element method?uf08§,
which requires solving a linear system with a deksek
system matrix (witm < k < m, wheren andmare the num-
bers of polygon vertices and interior points, respectively).
The timings also show that it is not very costly to increase
the accuracy of MEC due to the quadratic convergence rate
of Newton’s method.

We also implemented MEC for polyhedra]]ﬁ? and Fig-
ures5 and6 show the results of using them for mesh defor-
mation. It took about 100 sec. to compute the 51 MEC
of the m = 48485 vertices of the horse, and about 140 sec.
for then = 218 MEC of them = 15002 vertices of the ar-
madillo, confirming again that the evaluation cost depends
linearly both onn andm. Note that MEC can also be used
if the control polyhedron consists of quadrilateral faces, as
shown in Figure6. Moreover, the mesh to be deformed is
not required to be inside the control polyhedron but only in-
side its convex hull (see Secti@), which is the case in this
example.

7. Conclusions

Maximum entropy coordinates offer a new way of general-
izing barycentric coordinates to arbitrary polytopes. By con-
struction, MEC are non-negative and have affine precision,
and we have shown that they also satisfy the Lagrange prop-
erty as long as the corresponding prior functions have the
correct zero set. Due to this flexibility, there is a lot of room
for improvement in designing “good” prior functions. For
example, it might be possible to manipulate the derivative
of the barycentric coordinates in a prescribed way by mod-
ifying the priors so as to allow for Hermite interpolation as
in [LSOg.

A good prior will probably need to account for the local
geometry of the polytope, and it should also have local sup-
port. The construction inl() seems to be a good recipe for
constructing priors and in essence, any function that mea-
sures the distance to an edge (or a facBihin some way

(© 2008 The Author(s)
Journal compilatiorf© 2008 The Eurographics Association and Blackwell Publishing Ltd.

Ortiz [AOO€] could prove smoothness, and it is generally
assumed that the MEC are as smooth as the prior functions.

A first step towards a proof has been taken by Sukumar and
Wets [SW073 who establishet[io-continuity of MEC for

any set ofck prior functions k > 0.

We would finally like to mention again that MEC are only
defined inside the convex hull of the polytogeand not
everywhere iRY like MVC and HC (seeRRus0§), because

the optimization problemg) does not have a feasible non-

negative solution at points outside the convex hull.
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