
UC Davis
IDAV Publications

Title
Out-of-core Data Management for Path Tracing on Hybrid Resources

Permalink
https://escholarship.org/uc/item/1750k9st

Authors
Budge, Brian C.
Bernardin, Tony
Stuart, Jeff A.
et al.

Publication Date
2009

DOI
10.1111/j.1467-8659.2009.01378.x

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1750k9st
https://escholarship.org/uc/item/1750k9st#author
https://escholarship.org
http://www.cdlib.org/

EUROGRAPHICS 2009 / P. Dutré and M. Stamminger
(Guest Editors)

Volume 28 (2009), Number 2

Out-of-core Data Management for Path Tracing on Hybrid

Resources

Brian Budge Tony Bernardin Jeff A. Stuart Shubhabrata Sengupta Kenneth I. Joy John D. Owens

Institute for Data Analysis and Visualization,
Department of Computer Science, and

Department of Electrical and Computer Engineering
University of California, Davis

Abstract

We present a software system that enables path-traced rendering of complex scenes. The system consists of two

primary components: an application layer that implements the basic rendering algorithm, and an out-of-core

scheduling and data-management layer designed to assist the application layer in exploiting hybrid computa-

tional resources (e.g., CPUs and GPUs) simultaneously. We describe the basic system architecture, discuss design

decisions of the system’s data-management layer, and outline an efficient implementation of a path tracer appli-

cation, where GPUs perform functions such as ray tracing, shadow tracing, importance-driven light sampling,

and surface shading. The use of GPUs speeds up the runtime of these components by factors ranging from two to

twenty, resulting in a substantial overall increase in rendering speed. The path tracer scales well with respect to

CPUs, GPUs and memory per node as well as scaling with the number of nodes. The result is a system that can

render large complex scenes with strong performance and scalability.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.7]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture

1 Introduction

Enhancements in performance and storage in modern com-
puters have enabled the realistic display of ever-larger and
more complex datasets. Graphics applications constantly
stress these bounds with scenes exceeding the total mem-
ory of even the largest systems, leading to out-of-core data
access. When combined with the workload of global illumi-
nation, complex scenes can take days or weeks to render.

Advances in the design of computational systems have pro-
duced systems with a variety of general purpose computa-
tional engines. Machines can be designed with CPUs and
GPUs, allowing substantial computational power even on the
desktop. The challenge is to fully utilize the power of these
hybrid computational resources for solving problems.

We describe a system architecture that addresses these large-
scale complex out-of-core problems on machines that con-
tain both CPUs and GPUs. We build our renderer on top

of an out-of-core data-management layer that controls data
access and schedules tasks to exploit the hybrid resources
available. This data management layer is designed to exploit
the coherent operations inherent in rendering. By breaking
data and algorithmic elements into modular components, we
can queue tasks until we reach a critical mass of work, only
then fetching the data necessary to execute the tasks. In this
way, our system can handle large-scale geometry, but unlike
other methods, it can also work on complex materials with
long shaders and large textures in the presence of GPUs. By
utilizing our data-management layer, we have developed a
path tracing application that scales to systems with many
processors and many nodes, and that can use multiple types
of computational resources, including scalar processors such
as CPUs and data-parallel processors such as GPUs.

In this paper, we discuss key design and implementation de-
tails of the system. We present an overview of the system
explaining the function of components and how they are con-

c© 2008 The Author(s)

Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and

350 Main Street, Malden, MA 02148, USA.

B. Budge et al. / Out-of-core Data Management for Path Tracing on Hybrid Resources

Figure 1: The 337 million triangle Boeing 777 model. The scene, preprocessed for ray tracing, is several times larger than our

machine’s system memory. It is extremely expensive to path trace due to out-of-core data access, but our technique helps to

alleviate this cost. From left to right: Viewing the Boeing 777 from nose to tail, within the cockpit, and split down the center.

The render times ranged from 27 minutes for the leftmost image, to about 17 hours for the rightmost image.

nected. We also give details of the most crucial components,
and discuss the path tracer and how it was designed to uti-
lize the data-management layer, allowing for fast, scalable,
out-of-core ray and shadow tracing, shading and lighting.

2 Related Work

Teller et al. described an out-of-core radiosity sys-
tem [TFFH94] which calculated intermediate results in core,
storing results for later, memory-coherent use. Wald et
al. [WDS04] proposed an out-of-core method that utilizes
Linux low-level memory and I/O functions. The method tries
to pre-fetch all memory pages. When page faults occur, the
method can decide to replace the ray by a shading proxy to
approximate the ray’s color value thus achieving fast render
times, at the cost of approximation. Demarle et al. [DGP04]
designed a distributed virtual memory system for rendering
where page faults resulted in a request being sent to gather
the data from another node’s memory. Their work did not
handle scenes that do not fit into the memory of the cluster.
Fradin et al. [FMH05] allow out-of-core photon mapping in
large buildings, but are limited to in-core geometry at render
time. In contrast, our system allows the estimation of the full
rendering equation [Kaj86] with out-of-core scenes.

Lefer [Lef93] ray traced large scenes by distributing the
scene amongst the system nodes. Task parallelism was com-
bined with data parallelism to achieve good scaling. Rein-
hard et al. [RCJ99a, RCJ99b] presented a hybrid approach
for rendering large scenes that combined demand-driven par-
allelism with data parallelism. They send bundles of coher-
ent rays to processors to request work and push incoherent
work from processor to processor to find the required data.
Ward [War94] bundled primary and shadow rays so both
would be run as demanded tasks and executed secondary
rays in a data-driven way. Kato and Saito [KS02] distributed
geometry across all nodes in the cluster semi-randomly, trac-
ing each ray through all nodes. They require all data to fit in
the memory of the cluster. In our path tracing application,
rays and other temporary data all remain on the node where
they originate, and we are able to handle scenes larger than
the memory of our combined render nodes.

To eliminate the need for going out-of-core at all, Chris-
tensen et al. [CLF∗03] cache tessellations of higher order
surfaces, which helps them avoid re-tessellation and allows
them to stay in-core. They extended this technique to allow
out-of-core photon maps [CB04]. Unfortunately these ap-
proaches cannot be used for large polygonal models. Yoon et
al. explored ray tracing of level-of-detail models in a method
called R-LOD [YLM06]. Techniques that might reduce data
size include using smaller ray acceleration structures, such
as Bounding Interval Hierarchies [WK06], and reduction of
mesh sizes via lossless compression [LI06].

Pharr et al. [PKGH97] reorder and cache rays to ensure
that rays are traced only against objects in memory. The
scheme pre-processes data so bundles of geometry with spa-
tial locality remain close together in memory. Navratil et
al. [NFLM07] proposed a finer-grained ray scheduling al-
gorithm than Pharr et al., improving cache utilization with
fewer rays in flight. Gribble and Ramani [GR08] stream-
filter ray tracing data to coherently process it on a SIMD
machine. We use a similar approach for our path tracing, but
our filtering occurs at a more granular level to aid out-of-
core access. Gribble et al. and Navratil et al. concentrate on
in-core data.

We extend Pharr et al.’s approach of caching rays by saving
all algorithmic computation until a time when sufficient co-
herence is achieved. This allows our system to not only han-
dle large geometry, but also large textures and complex ma-
terials on GPUs. The absence of virtual memory for GPUs
makes this a non-trivial extension of Pharr et al.’s approach.

GPGPU We leverage the general-purpose capabilities of
the modern GPU to accelerate complex, non-real-time ren-
dering tasks. Related work includes ray tracing, photon map-
ping, radiosity, and hybrid rendering [OLG∗07,WGER05].
The hybrid CPU-GPU approach advocated in this paper is
also characteristic of systems like Pixar’s Lpics [PVL∗05],
which achieves near-real-time performance on complex
scenes by evaluating light shaders on GPUs, and Light-
speed [RKKS∗07], which evaluates complex GPU shaders
for fast relighting.

c© 2008 The Author(s)

Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

B. Budge et al. / Out-of-core Data Management for Path Tracing on Hybrid Resources

Scheduling Arguably the most performance-critical and
complex component of our system is the scheduling of
tasks. Path tracing is a Monte Carlo algorithm, which
disqualifies scheduling techniques that require predictable
tasks [Ant06,CDM97,Nos98], however, recent work has in-
vestigated scheduling less predictable tasks. Boyer and Hura
schedule dependent tasks by using a random ordering tech-
nique combined with re-evaluation of estimated task exe-
cution times [BH04]. To keep the load balanced, they al-
low tasks to migrate to different processors if dependency
criteria are met. The need to migrate associated data with
the task makes this unsuitable for a high-throughput, out-
of-core system. Mehta et al. [MSS∗06] have also investi-
gated unpredictable scheduling in heterogeneous computing
environments, but their work requires independent tasks. A
previous paper describes a visualization of our scheduling
process, which allowed debugging and fine-tuning of our
scheduler [BBH08]. In Section 3.3 we describe our hybrid
data-dependent scheduling algorithm, which tries to maxi-
mize throughput at the expense of individual task latency
and temporal fairness.

3 System Architecture

The hybrid data-management system (Figure 2) forms the
backbone of out-of-core applications, and was designed with
a specific subset of problems in mind. It understands algo-
rithms that can map to three key concepts: kernels that en-
capsulate the processing logic to complete a task (e.g. ray
intersection); static data that provides unchanging persistent
application data (e.g. scene geometry); and transient data

that describes the actively manipulated workload (e.g. rays).
Components in the base system are agnostic to the specific
data or kernel functions of an application.

The execution of an application in our system is driven
by two concurrent modes: task management, which is pre-
dominately handled via queueing threads, and task execu-
tion, which is performed by execution threads. The queue-
ing threads are triggered to run by the availability of jobs
in the job buffer. Each job is destined for execution by a
specific kernel, and is further divided amongst the queues
of that kernel by the kernel’s queueing filter as described in
Section 3.2.

Task execution is triggered when an execution thread be-
comes idle. That thread starts the scheduling process which
determines an appropriate task for the requesting processor
as detailed in Section 3.3. The static and transient data is
moved to the required layer in the memory hierarchy and the
kernel executed. The output transient data is finally routed
as a new job to the job buffer and the cycle repeats.

The goals of the system are to manage memory allocation
and data migration, leverage coherence, and use processing
resources in the most efficient manner, all while maintaining
a generic interface through which applications can be imple-

mented. Without these features, performance and extensibil-
ity of out-of-core applications are lost. The remainder of this
section will explain how our components were designed to
match these goals.

Pending Jobs

Queueing
distribute w.r.t. kernel & static chunk

CPUs

Kernel 0
Queues . . .

Kernel n
Queues

Scheduling
select prioritized queue

& assign to processor

GPUs Disk

Static Data

Cache

application

startup

Figure 2: Transient data flow: Pending jobs are redirected

via the queueing filter to the appropriate kernel queues. As

processors become idle, the scheduler is asked to select the

most appropriate queue to run on the resource. The static

and transient data are made available to the processing unit,

the kernel is executed, and the kernel’s output is filtered by

destination kernel and placed back in the job buffer for rout-

ing.

3.1 Memory Allocation and Migration

NVIDIA’s CUDA [NVI06], our GPU computing platform
of choice, cannot directly use data resident in main memory
and it must be explicitly loaded into video memory before
processing. We designed the data-management layer to hide
such details from kernel programmers: memory is allocated
where it is needed and migrated according to kernel needs.
Upon initialization, the system partitions the video RAM
into several regions: one region becomes part of a static-
data cache, the remainder is reserved for input and output of
transient data, as well as scratch space for filtering and com-
paction of output jobs. Allocations are organized in pools in
system RAM, which are configured at start-up according to
the needs of the application’s kernels. Pools allow for fast,
thread-safe allocations with low fragmentation.

As a task is assigned to a processor, the data-management
layer gathers information about the task requirements, in
particular the need for static data and the type of the pro-
cessor. With this information, static data is potentially read

c© 2008 The Author(s)

Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

B. Budge et al. / Out-of-core Data Management for Path Tracing on Hybrid Resources

from disk and migrated to system RAM in the case of a CPU
or video RAM for a GPU. The transient data region of the
GPU is repartitioned to accommodate the task and input data
is transferred for execution, and output data is copied back
after execution. CPU kernels directly use the pool buffers.

We also designed a hybrid static-data cache that spans the
main and GPU RAM. The cache is used to keep data close to
the preferred execution unit, minimizing data transfers and
improving scalability. For efficiency reasons, we avoid du-
plication of static data chunks in the cache (see Section 3.3).
This is especially important since CUDA does not allow di-
rect transfer of data between GPUs.

3.2 Leveraging Coherence

A single kernel can potentially access many different static
data chunks. For example, the geometry of a scene could
be partitioned into several chunks, such that a ray intersec-
tor processes them depending on rays’ starting locations and
their paths through the scene. We use a transient data queue-
ing scheme to optimize for this behavior. In it, each kernel
exposes several queues, and each queue is associated with a
specific static chunk. When a kernel receives transient work
from the queueing thread, the work is divided based on the
static data necessary for operating on that work, and it is
queued for later processing. This queueing-filter is invoked
by the queueing thread, and the functionality is integrated
into the data management layer through a generic interface
implemented by each kernel. We present some examples of
queueing filters in Section 4.

The queueing mechanism provides two core features of the
data management layer: Buffering related work increases the
coherency of processing, and organizing work not only into
kernel-specific tasks but also into static data-specific ones
provides a basis for data-driven execution. When paired with
an appropriate scheduler, both are critical to enabling effi-
cient out-of-core applications.

3.3 Utilizing Processing Resources

We manage execution through a central scheduling compo-
nent. Its purpose is to assign tasks to processors, moving data
in the memory hierarchy as needed. The scheduler aids ef-
ficient out-of-core access because of the following design
tenets:

• Lazy access to storage: We utilize static data chunks in the
fast layers of the memory hierarchy as much as possible.
We delay access to storage memory until it is inevitable.

• Maximize coherence: We strive to process tasks that ex-
pose the most coherency or those that may aid the co-
herency of other tasks.

• Maximize processor utilization: We prioritize tasks based
on a processor’s proficiency for performing a task and its
access to the required data.

• Maximize cache resources: Execution directly influences
the locality of static data chunks in the memory hi-
erarchy. We avoid chunk replication in the hierarchy
when scheduling tasks and strongly favor tasks for which
chunks are present.

The efficient, automatic assignment of tasks to hybrid re-
sources without intimate knowledge of the algorithm do-
main is a key difference between a traditional out-of-core
approaches and our hybrid out-of-core scheme.

General Scheduler Design. Initially our scheduling com-
ponent was designed with a task-queue for each processor.
In a typical producer/consumer approach a separate sched-
uler thread filled task-queues with appropriate tasks and ex-
ecution threads retrieved them as they became ready. Task-
queues were three tasks deep. This design proved inefficient
because the execution of a single task could drastically alter
the workload, outdating the tasks already committed to the
queues. We now use a serial “on-demand” scheme. As a pro-
cessor becomes available it (1) locks the scheduler; (2) scans
all the kernel-queues for tasks and (3) prioritizes them; (4)
selects the highest priority task allowed; (5) marks selected
kernel-queue as processed; and (6) releases the scheduling
lock.

General Prioritization Design. Prioritizing the workload
is the most involved step of the scheduling process. We
considered a cost-driven model where memory transfers in-
curred a cost and workload size attributed a benefit. This
model was not effective in promoting cooperation between
the hybrid processing resources, because each greedily eval-
uated independent costs. To allow finer tuning of the prioriti-
zation we chose an empirically-driven classification scheme.
We define several prioritized categories for binning tasks,
and further differentiate by workload. To compare tasks to
one another, we evaluate and tag them based on the avail-
ability of required static data in the memory hierarchy, the
processor preference, and the size of the workload. More
specifically we tag each task with

N No static data is required for this task.

G Data resides on scheduling GPU or any GPU when
scheduling a CPU.

O Data resides on a GPU other than the scheduling GPU.

C Data resides in system RAM.

T Data is being transfered to system RAM.

P This task prefers to run on this kind of processor.

S Like P, but the workload is too small to run efficiently.

The categories, representing an ordered subset of tag combi-
nations, are presented in order of priority in Table 1. Over-
lined tags denote that a criterion is not met. In general, the
categories are ordered to favor preferred tasks (P > S > P),

c© 2008 The Author(s)

Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

B. Budge et al. / Out-of-core Data Management for Path Tracing on Hybrid Resources

tasks that require no static data or having the data in the
closest memory hierarchy (N > G > C > T > GCT), and
tasks that support cooperative processing. Tasks are binned
in a filtering process, where a task begins testing against the
highest-priority category and continues through categories
until the criteria for a category are met.

Prioritization Adjustments. We hand-tuned the catego-
rizations to satisfy our design tenets. The first two adjust-
ments in the CPU case are PC and SC which are favored over
static data independent PN. N-tasks can always be executed
whereasC-tasks depend on static data availability, which can
be lost when another thread schedules work. We trade-off
coherency to avoid losing the cache availability. The S and
P cases avoid stealing GPU work by filtering G-tasks to the
lowest categories PG and an implicit final category includ-
ing SG. This is whyG shows up in STG, PCG, SG and PTG.
To improve coherency and delay out-of-core access, S-tasks
which are notC fall below non-preferred tasks with resident
data, so SG is after PC.

The GPU scheduling case presents similar adjustments.
Small tasks are relegated to the bottom of the prioritization
to avoid costly transfers to GPU memory with small work-
load. The exception is SGC as the static data is only available
in GPU memory and a more costly transfer would be needed
to move it to main RAM for CPU access. The categories
SGC, PCO, PTO, P and PO are arranged to avoid duplicat-
ing static data chunks within the GPU memory layer of the
static data cache, opting to fetch new data instead. We avoid
executing P tasks, but if no other tasks are available we favor
running such tasks that most benefit from the current cache:
(PGC and PG over PN).

Some constraints exist that cannot be handled through prior-
itization alone. Examples are tasks that have no implemen-
tation for the scheduling processor or tasks that need to be
executed serially.

3.4 Algorithm Genericity

The system has no understanding of what an algorithm does.
It reads configuration files at runtime that specify cache
sizes, the number of CPU, GPU, and queueing threads, the
location of dynamic libraries that support our kernel inter-
face, and state machines that describe how to transfer data
between kernels.

Genericity is maintained by keeping a very simple kernel in-
terface, where each kernel must provide functions to perform
initialization, data queueing, execution, and post-execution-
filtering. All data passing through the interfaces are associ-
ated with a base data location (a pointer and whether it is
GPU or CPU) and a size. Kernels are responsible for know-
ing how to deal with that data once received.

Ray
tracing

Control*

Eye-ray
generation

Material

stage n

Material

stage 2

Material

stage 1
. . .

Light
sampling

Shadow
tracing

shaded resultsearly termination

rays image sample

image specification

rays

rays

hit info
temp temp

shadow
requests back-facing

shadow
rays

shadow results

shadow
rays

Figure 3: Modular path tracing algorithm and transient

data communication. The asterisk indicates that the Control

shader can only run on CPUs. All other kernels are capable

of running at least some of their computation on GPUs.

4 Path Tracer Design

Using the system architecture described in the previous sec-
tion, we implemented a path tracer that uses both CPUs
and GPUs and scales with system resources. Path trac-
ing [PH04, SM03] is a global illumination algorithm that
begins by tracing samples from the eye. Eye rays are gen-
erated for each sample from the eye and then traced into
the scene to determine the first hit location, and rays are re-
flected or refracted as appropriate. We also trace shadow rays
to light samples among all of the light sources and shade at
the traced rays’ hit locations. This process continues recur-
sively with the reflected ray in place of the eye ray. Path
tracers tend to show fairly incoherent behavior with regard
to memory access, and require substantial computation for
image convergence. Contrast this with ray tracing and poly-
gon projection, where large amounts of natural coherence
can be more easily exploited.

In the stream processing model [RDK∗98], data is expressed
as streams—long arrays of data of the same datatype—and
computation is expressed as kernels—programs that operate
on streams. Our system is not required to use a stream pro-
cessing model, but much of our efficiency can be attributed
to this kind of design, and our system lends itself naturally
to this computational pattern. We constructed our path tracer
application from a collection of kernels that plug into our
data management system. These kernels form a state dia-
gram like the one in Figure 3 that shows the general flow of
data.

c© 2008 The Author(s)

Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

B. Budge et al. / Out-of-core Data Management for Path Tracing on Hybrid Resources

cpu PC SC PN PT P SN STG PN PCG PC SG PTG P PG

gpu PN PG SGC PCO PTO P PO PGC PG PN PC PT P S

Table 1: Binned classification of tasks prioritized from left to right by the task properties and the type of scheduling processor.

The Control kernel handles many tasks including making
path tracing decisions (e.g. eliminating or continuing paths),
communicating with outside components (e.g. master MPI
process), and constraining the number of concurrent paths
in flight. The kernel receives requests for image samples and
sends compact sub-image information to the EyeRayGener-
ation kernel. The rays are intersected in the RayTracing ker-
nel, potentially many times, as the ray traverses the scene.
Rays can intersect many different materials. The material
kernels run in several stages depending on static-data de-
pendencies. The RayTracing kernel forwards hits to the first
stage of the appropriate material kernel. The first stage deter-
mines if a ray is terminated (eliminating light source double
counting), a shadow ray is generated (diffuse bounce) via
stochastic light-source sampling in the LightSampling ker-
nel, or the point can be directly shaded and the ray reflected
or refracted (specular). Finally, shade values and new rays
are looped to the Control kernel for further decision making.

In our path tracer, the Control kernel is the source and sink of
all transient data, while all kernels (Control kernel included)
convert transient data from one type to another. For example,
the RayTracing kernel takes rays as input and outputs rays,
early termination, or hit points, and the LightSampling ker-
nel receives sample requests, and outputs shadow rays or oc-
clusion (due to back-facing geometry). We strived to design
simple kernels to perform straightforward tasks rather than
complex kernels combining several types of work, with only
the Control kernel carrying out multiple tasks; the Control

kernel handles the generation of new eye-ray requests, path
propagation and termination, and image generation. Due to
light computation and heavy logic, the Control kernel is the
only kernel in our implementation that runs only on the CPU.

The RayTracing kernel is a good example of a fairly general
kernel with complex incoming and outgoing connectivity,
and so it is ideal for illustrating data flow through our sys-
tem. The RayTracing kernel can receive new incoming rays
to trace from either the EyeRayGeneration kernel or from
the Control kernel (due to reflections and refractions). As
the RayTracing kernel receives incoming ray data, the data
must pass through a queueing filter, which redirects this data
into queues based on the memory chunk that contains the
geometry and the origin of each ray. A large scene may have
hundreds to thousands of these chunks and will have a cor-
responding number of input queues. When the RayTracing

kernel is scheduled to operate on a particular queue, the sys-
tem removes rays from the appropriate queue, ensures that
the static data for this queue is in the scheduled processing
resource’s memory, and then executes the kernel.

Figure 4: The Starship Troopers dataset from Tippett Stu-

dio. Top: RenderMan. Bottom: Our path traced image. Most

differences between the two images are because we use area

light sources, while RenderMan is using spotlights. Render-

Man tessellates to the same level as our geometry (˜243

M triangles), and uses 64 stochastic hemisphere samples per

shade point for single-bounce global illumination, requiring

several days to render on 2 CPUs. We use 1024 paths per

pixel with full path tracing, taking just over two hours using

1 CPU and 1 GPU for execution. We use 2 CPU threads for

filtering data into queues, which requires less than 9% of the

runtime.

When the RayTracing kernel runs, it traces the rays in one
of its input queues and outputs hit information, ray termi-
nation, or copies of the original rays (advanced to the next
kd-tree cell). These data are all destined for different kernels,
and they are grouped together by type in the post-schedule
filtering process. Hit information is forwarded to the appro-
priate material kernel, early termination notification is sent
to the Control kernel, and ray copies are filtered back into
the RayTracing kernel’s input queues.

The geometry chunks associated with the RayTracing kernel
are each part of the higher level of a two-level kd-tree. The
high level kd-tree is based on a medial split build heuristic.
Each geometry chunk contains a kd-tree that has been highly

c© 2008 The Author(s)

Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

B. Budge et al. / Out-of-core Data Management for Path Tracing on Hybrid Resources

optimized for ray tracing. We use the typical node layout
from the thesis ofWald [Wal04], adding slight enhancements
for triangle list traversal from leaf nodes. Our triangle for-
mat is also the 48-byte triangle format from Wald’s thesis;
however, we also utilize the unused bytes to store texture co-
ordinate and material indices. Because the median split kd-
tree is highly inefficient for geometry culling, we try to keep
the top-level tree shallow. This typically results in geometry
chunks of ˜200MB. In the future, a surface area heuristic
approach should be used at both levels. This would have two
effects: Less disk reads would be required to traverse empty
space, and chunks could be smaller (˜10MB) to allow fine-
grained cache usage.

Some material kernels may require reads frommultiple large
textures, and due to memory restrictions, only a subset of the
textures can be read in a single pass. In such cases, we split
the kernel during preprocessing into several incremental ker-
nels. Each stage will perform texture reads on some portion
of the texture data, and will implement a queueing-filter that
uses incoming texture coordinates to decide which chunks of
texture (and corresponding queues) a transient data element
belongs to. This process can be seen in Figure 3. We com-
pute each subpart kernel and output the result into a queue
of the next subpart for further computation. The intermedi-
ate values are used to complete future stages. The final stage
of the material will generate a shaded point paired with a re-
flection/refraction ray direction and send shaded points back
to the Control kernel for framebuffer accumulation and ray
propagation.

5 Results

In this section we present experiments that characterize our
system’s ability to scale with the scene size in geometry and
texture, the resources present, the amount of work to be com-
puted, and the scene’s global illumination complexity.

Our rendering nodes each have two dual-core AMD
Opterons running at 2.4GHz and 4GB of main memory, two
NVIDIA QuadroFX 5600s with 1.5GB of video RAM, and
four disk drives in a RAID-0 configuration. The measured
bandwidth to our RAID is 220MB/s. The master node con-
sists of four dual-core AMD Opterons running at 2.4GHz,
with 16GB of main memory, and an eight-disk RAID-0.

Our system can run on any single node, or on multiple
nodes networked together via MPI (message passing inter-
face). The system is running Gentoo Linux with kernel ver-
sion 2.6.24. Except in the case of the resource-scaling ex-
periment, all experiments were run on a single node. Addi-
tionally, we have designed the system so that filtering into
queues occurs in separate threads. All experiments were run
with two filtering threads, and the processing time of these
threads is generally a few percent of the overall runtime for
the Troopers scene, and 10 to 15% for the Boeing scenes.

Figure 4 shows our first test case. This scene is from the

Scene Triangles
Light

Sources
Materials Texture

Total

Size

Starship

Troopers

4,8 M

19.6 M

66.8 M

134.6 M

242.6 M

13

Lambertian,

Ashikhmin/

Shirley+

PRMan

tweaks

108 MB

393 MB

1.3 GB

4.2 GB

8.3 GB

15.1 GB

4.4 GB

4.6 GB

5.6 GB

8.5 GB

12.6 GB

19.5 GB

Boeing Nose
337.1 M 2

Lambertian none

21 GB
Boeing Cockpit

Boeing Split 340 M 56 19 GB

Table 2: The configurations used for our experiments.

movie Starship Troopers from Tippett Studio. The geometry
and scene data was provided in a RIB file as NURBS surface
patches and RenderMan shaders utilizing a set of 35 textures
(˜50MB total). We preprocessed the scene to generate tes-
sellated versions that contained roughly 5, 19, 67, 134 and
243 million triangles. We also created two sets of texture
from the original: The first set is stitched into a single tex-
ture of 108 MB (with fragmentation), and the second set is
scaled by 8x8 or by 16x16 to give 4.4 GB of data in 35 dis-
tinct textures. We attempted to model the materials to be as
close as possible to the original materials. The specular sur-
faces were modeled with an Ashikhmin-Shirley BRDF with
parameters generated via code from the original RenderMan
shader. The 13 provided spotlights were also converted into
triangular area lights with normals pointing in the spotlight
directions. These light differences and the small changes to
the materials account for the majority of visual differences
in the images.

Figure 1 shows our second scene comprised mainly of the
337-million-triangle Boeing 777 dataset from the Boeing
Corporation. The Boeing scene configurations were created
to expose different levels of global illumination complex-
ity. The outside view allows many rays to exit the scene. The
cockpit keeps rays contained and increases path lengths. The
split scene is also mostly contained, but increases visibility
of all geometry and light sources. Each of the first two se-
tups are lit with one simple area light source. For the split
Boeing scene, we split the model about a plane and placed
the result into a box with an open front face, and we light
the scene with 56 area light sources (Figure 1). Because of
the exposure of geometry and the use of more light sources,
this is our most difficult scene. We believe this is the first
time that the highly-complex Boeing 777 model has been
rendered with full global illumination.

5.1 Resource Utilization

Figure 5 shows how the resources were used for differ-
ent tasks in the path tracer for the Split Boeing scene and

c© 2008 The Author(s)

Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

B. Budge et al. / Out-of-core Data Management for Path Tracing on Hybrid Resources

Figure 5: The top pair of graphs shows the breakdown of ex-

ecution times on a per-kernel basis of our split-Boeing 777

scene, with a total runtime of 62,668 seconds. The bottom

pair of graphs show execution times for the Starship Troop-

ers scene with 243 million triangles and large partitioned

textures with a total runtime of 2966 seconds.

the Troopers scene tessellated to 243 million triangles with
large textures. Both the CPU and the GPU perform sizable
amounts of computation; the Boeing scene uses the CPU
primarily for running the LightSampling kernel, which was
specified to prefer running on the CPU, and the Control ker-
nel. The GPUs primarily traced rays and shadow rays. The
Troopers scene exhibits slightly different utilization: The
CPUs are used heavily for material shading, especially the
first phases of shading, where typically data is read from
texture and stored in transient data for processing at a later
phase. GPU utilization for the Troopers scene is similar to
the Boeing scene.

Figure 6 provides resource usage characterization plots.
When rendering the Boeing scene, the CPU resources are
well utilized, and because of virtual memory, it is easy to
switch tasks and not have to explicitly wait for data before
processing. The GPUs are also fairly utilized since we allow
them to work on other tasks while they wait for disk reads,
but they still exhibit more stalling than the CPUs. This shows
that one of our main bottlenecks is still waiting for disk,
with waiting for data transfer across the PCI-Express bus a
secondary bottleneck. We have good cache utilization since
only a few thousand out-of-core accesses occur. However,
these out-of-core accesses account for a large percentage of
the runtime, and this gives us a feeling of how poorly the
path tracer could perform without the caching mechanisms
in our data-management layer. The cache hit rate is low in
the case of the Troopers scene, due to the highly fragmented
nature of the material textures. The CPU and GPU utilization
is much worse than the Boeing scene, because we serialize
disk reads, and there is not enough work in the system, but

the overall runtime is still quite good at 2966 seconds for
512 samples per pixel (2551 seconds are spent reading static
data).

5.2 Scaling with Scene Size and Texture

Figure 7: Scaling with scene size. The images of the 134

million triangle Troopers scene were generated at 1280x720

resolution with 64 samples per pixel. The inset is a zoom-out

of the graph to show full scale. The (large texture) config-

uration shows how scaling changes when 35 textures com-

prising 4.4 GB data replace a single texture of 108 MB.

In order to demonstrate scalability with scene size, we addi-
tionally implemented a simple multi-threaded in-core CPU
path tracer built on a state-of-the-art ray tracer [WH06] as
a separate piece of software. This standard path tracer can
consume our pre-processed scenes as input with only mi-
nor data modifications (our system uses a two-level kd-tree,
but the standard path tracer uses a traditional single-level
tree; the second level of the two-level tree is built exactly
as the single-level tree is). We emulated unlimited mem-
ory for our in-core path tracer by running it on our mas-
ter node, which has enough main memory to hold each of
the Troopers scenes without shading data. The scenes are
mapped from disk using the Linux mmap function call in or-
der to allow scenes larger than main memory, and it is left to
the operating system to swap the data in and out of core.
Both applications solve essentially the same problem, the
primary difference being the overhead of the data manage-
ment layer of our system, the storage of transient data, and
more expensive shading. This standard path tracer performs
only monochrome shading using Lambertian materials, and
so it should be noted that a “production-level” path tracer
of this type is likely to be much slower, particularly when
large textures are incorporated. Despite these disadvantages
to our system, we perform well when compared to the stan-
dard path tracer.

Figure 7 shows the trends as scene size increases. The stan-
dard path tracer, unfettered by memory limitations, shows
sub-linear scaling with scene size, which is common in ray

c© 2008 The Author(s)

Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

B. Budge et al. / Out-of-core Data Management for Path Tracing on Hybrid Resources

Figure 6: Resource characterization. Top row: split-Boeing scene. Bottom row: 243 M Troopers scene with partitioned textures.

tracing applications. Under more hostile memory conditions,
however, the standard path tracer scales very poorly with
scene size, taking roughly 100 times as long to compute the
image on the largest scene. Our solution, when run only on
CPUs presents a good middle ground. The solution is ro-
bust to out-of-core scene sizes, and while it does not scale
sub-linearly, the super-linear scaling is more graceful. Our
solution with GPUs is faster even than the unlimited stan-
dard solution for medium sized scenes, and is always twice
as fast as our CPU-only configuration. Because this is true
even for the smaller in-core scenes, this implies that while
the extra GPU memory for caching may be beneficial, the
compute resources of the GPU are also helpful. Our system
clearly alleviates much of the disk bandwidth bottleneck.

As a second scaling characterization, we compared the 134-
million-triangle Troopers scene with one versus multiple
textures. In the small texture case, all of the texture can be
packed into a single out-of-core chunk, while the large par-
titioned textures are each represented by a chunk. This trend
can be seen in Figure 7. The trend to out-of-core begins
slightly sooner with the larger set of textures. It is important
to show scalability with texture size, and with the number
of textures in order to ensure that larger and more complex
scenes will continue to perform well with our system design.
The scalability shown is similar to adding more geometry
(for example, the 134-million-triangle Troopers scene with
large texture is roughly the same size, and takes roughly the

same amount of time as the 243-million-triangle Troopers
scene with small textures).

Figure 8: Top graph: System scaling with increasing com-

puting resources. Here ’C’ means CPU and ’G’ means GPU.

‘xN’ denotes the number of nodes run with two CPUs and

two GPUs. Images were run with 1024 samples per pixel.

Bottom graph: System scaling with increasing samples per

pixel, clearly showing that our efficiency increases with sam-

ples. Both graphs use the 134 million triangle Troopers

scene, and the rays/second values are obtained by count-

ing the total number of rays and shadow rays which are

spawned, and dividing by the runtime of the program. All

images were rendered at 1280x720.

c© 2008 The Author(s)

Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

B. Budge et al. / Out-of-core Data Management for Path Tracing on Hybrid Resources

5.3 Scaling with Resources and Work

The top of Figure 8 shows how we scale with additional
resources. Scalability with a single node begins to slow at
three CPUs; however, the addition of GPUs again increases
scalability due to the superior processing capabilities, and
also due to the extension of the static data cache. Up to four
nodes, we show nearly linear scaling. This is unlikely to
scale beyond many more nodes because we rely on garner-
ing natural coherency, and because of naive load balancing.
However, we have found that if more work (such as sam-
ples per pixel or larger image sizes) is added to the system,
scalability will get better, as shown in Figure 8. As we re-
quest more samples per pixel, the throughput of the system
increases dramatically. Taking 16 samples vs. four samples
is three times as efficient, while taking 1024 samples vs. 256
samples is about 1.4 times as efficient.

5.4 Scene Layout Complexity

Table 3 shows the rendering times for six configurations of
the Boeing 777 scene. We rendered the three scenes, each
viewed with both simple ray tracing and with full unbiased
global illumination via path tracing. As one would expect,
the view of the Nose of the Boeing from outside in space
is the cheapest rendering configuration. There are two rea-
sons: several geometry chunks are never seen from any path;
and most paths have a very short depth, as statistically it is
very easy for bounced rays to traverse into space. Only a few
regions, inside the turbine for example, show global illumi-
nation for this scene. For the same reasons, ray tracing is not
much cheaper for this scene. Additionally, because of the
simple lighting, few samples are needed for convergence.

The Cockpit view of the Boeing 777 is the next highest
in scene complexity. Although the eye can only see a few
geometry chunks directly, because of global illumination,
nearly every chunk is visited during simulation. Global illu-
mination is highly visible in this scene (see Figure 9). Sim-
ple ray tracing of this scene is relatively inexpensive because
only a small percentage of the geometry chunks are touched
during rendering; very few chunks comprise the cockpit, and
the light source is also inside the cockpit.

The split view of the Boeing 777 is the most complex scene
of the three. Through global illumination, every geometry
chunk in the scene can see every other geometry chunk in
the scene through some number of indirections. The scene
is made somewhat worse because of our choice to use a me-
dial splitting kd-tree as our high-level scene subdivision. Be-
cause of this, although the scene from our eye to the plane
is empty, we are still traversing through many geometry
chunks, each of which is required to be in-core during ray
tracing. This, coupled with the 56 light sources, is also why
the ray tracing is still so expensive for this incarnation of the
Boeing 777.

Scene Samples Ray Traced Path Traced
Boeing Nose 512 1139 1600
Boeing Cockpit 1024 2544 23461
Boeing Split 1536 22160 62688

Table 3: Timing in seconds for 1280x720 rendering the var-

ious Boeing 777 configurations.

6 Discussion

Implementation for Hybrid Resources Our GPU kernels
are written in NVIDIA’s CUDA framework for general-
purpose computation [NVI06]. CUDA exposes a program-
ming model of parallel threads grouped into thread blocks
that run kernel programs on input data. CUDA threads have
access to both global GPU memory as well as a local per-
block shared data cache.

CUDA contexts are associated with a CPU thread and cannot
be accessed from other CPU threads, hence in our system
we control each GPU context from a distinct CPU thread.
This limits our data management capabilities, because al-
though CUDA can allocate special main memory buffers
that allow faster transfer speeds to and from GPU, as well
as asynchronous copy operation, we are unable to make use
of them between contexts. Our graphics hardware is not
capable of concurrently copying data and running kernels.
Newer hardware providing this functionality should allow
for much more efficient engineering of the data flow to and
from GPUs. We estimate at least a 25% speedup on the ren-
dering of some scenes from data transfer alone with next-
generation Tesla GPUs if the thread-data sharing restrictions
are relaxed.

Certain tasks will run better than others on the GPU. Gen-
erally tasks with limited intermediate data, that perform a
large amount of computation, and that are mostly indepen-
dent have the most to gain with having a GPU implementa-
tion. As an example, the performance of our LightSampling
kernel suffers since it computes a large amount of interme-
diate data to be used for importance sampling. On the other
hand, ray tracing requires very little intermediate computa-
tion to be stored for reuse, and the performance is very good.

Takeaway Points Our system scales well with resources,
and efficiency increases as more work is introduced to the
renderer. The renderer also scales gracefully as scene geom-
etry and texture increase. Based on our results, at some level
it may be necessary to introduce more work to continue scal-
ing. At 1024 samples per pixel, our system scales quite well
to four nodes with two CPUs and two GPUs each.

The basis for our scalability is our static data cache com-
bined with our scheduler, which, like Pharr et al. [PKGH97],
allows coherent computation and reduces disk access. Our
extension of this queueing and caching to data other than

c© 2008 The Author(s)

Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

B. Budge et al. / Out-of-core Data Management for Path Tracing on Hybrid Resources

Figure 9: A cockpit view of the Boeing 777. Left: Ray tracing. The dark areas correspond to geometry that cannot see the light

source. Right: Path tracing. Those same areas are illuminated due to indirect lighting.

rays allows us to use GPUs for general computation, drasti-
cally increasing computing power and further extending the
static data cache for even fewer disk reads.

Despite good performance, the system is quite complex and
if possible, an in-core implementation is desirable. The hy-
brid resources are clearly beneficial whether the target is in-
core or out-of-core rendering. Even on our in-core scenes,
the GPU configurations were twice as fast as those with-
out GPUs. If data transfer costs can be hidden or allevi-
ated, GPUs could provide an even larger boost. Tests on our
stand-alone RayTracing kernel show that GPU ray casting is
roughly 6 to 12 times faster than CPU ray casting.

7 Conclusions and Future Work

We have presented a system that enables the rendering of
globally illuminated images of large, complex scenes. We
achieved this goal by developing an efficient out-of-core
data-management layer, and coupling this with an applica-
tion layer containing a path tracer. The system effectively
exploits hybrid resources to accelerate rendering and opti-
mize memory utilization, resulting in robust scalability when
compared to related systems.

Although we are mostly interested in leveraging our
data management framework for graphics applications, the
framework should work well in situations where there is a
large amount of static data used, and where the application
can benefit from GPU acceleration. The only requirement
for algorithms is that they map to the concepts of transient
and static data and kernels.

The system is currently implemented in such a way that all
transient data is assumed to be in-core. This assumption can
fail, and in this case we rely on the operating system to han-
dle swapping for us. As a consequence, we limit the amount
of concurrent work generated in our Control kernel, in order
to keep the queues in-core. In the future, efforts should gen-

erate out-of-core queues, which would allow running more
tasks concurrently.

Currently each node’s cache is independent of one another,
and each node has a copy of all data in its local disk. If
a high-speed interconnect is employed, sharing caches be-
tween nodes may be faster than reading from disk. Future
work could investigate this extension of the static data cache.

Our application scales well with scene size, and also shows
reasonable scalability with single node resources as well
as scalability with additional nodes. However, as with all
frameworks of this type, scheduling improvements, such as
disk-load-aware pre-fetching, coupled with intelligent assis-
tance of cache eviction policy are important for increasing
both the scalability and performance of the system, and we
will continue to pursue these improvements.

8 Acknowledgments

We would like to thank Ben Serebrin and AMD for the do-
nation of Opteron CPUs, David Luebke and NVIDIA for
our Quadro GPUs, Doug Epps and Tippett Studio for the
Starship Troopers model, and David Kasik and the Boeing
Corporation for the 777 model. Thanks also to Per Chris-
tensen at Pixar for assistance with RenderMan, and to the
anonymous reviewers for their excellent comments. The
authors gratefully acknowledge funding from the Depart-
ment of Energy’s Early Career Principal Investigator Award
(DE-FG02-04ER25609), the National Science Foundation
(Award 0541448), the DoE SciDAC Institute for Ultrascale
Visualization, and the DoE SciDAC Visualization and Ana-
lytics Center for Emerging Technologies (VACET).

References

[Ant06] ANTICONA M. T.: A GRASP algorithm to solve the
problem of dependent tasks scheduling in different machines. In
IFIP AI (2006).

[BBH08] BERNARDIN T., BUDGE B. C., HAMANN B.: Stacked-

c© 2008 The Author(s)

Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

B. Budge et al. / Out-of-core Data Management for Path Tracing on Hybrid Resources

widget visualization of scheduling-based algorithms. In SoftVis

’08 (2008), pp. 165–174.

[BH04] BOYER W. F., HURA G.: Dynamic scheduling in dis-
tributed heterogeneous systems with dependent tasks and impre-
cise execution time estimates. In Parallel and Distrib. Comp. and
Sys. (2004).

[CB04] CHRISTENSEN P. H., BATALI D.: An irradiance atlas for
global illumination in complex production scenes. In Eurograph-
ics Symposium on Rendering (June 2004), pp. 133–142.

[CDM97] CHAN Y.-N., DANDAMUDI S. P., MAJUMDAR S.:
Performance comparison of processor scheduling strategies in a
distributed-memory multicomputer system. In International Par-
allel Processing Symposium (Apr. 1997).

[CLF∗03] CHRISTENSEN P. H., LAUR D. M., FONG J.,
WOOTEN W. L., BATALI D.: Ray differentials and multireso-
lution geometry caching for distribution ray tracing in complex
scenes. Computer Graphics Forum 22, 3 (Sept. 2003), 543–552.

[DGP04] DEMARLE D. E., GRIBBLE C. P., PARKER S. G.:
Memory-savvy distributed interactive ray tracing. In Eurograph-
ics Symposium on Parallel Graphics and Visualization (June
2004), pp. 93–100.

[FMH05] FRADIN D., MENEVEAUX D., HORNA S.: Out of core
photon-mapping for large buildings. In Eurographics Symposium
on Rendering (June 2005), pp. 65–72.

[GR08] GRIBBLE C., RAMANI K.: Coherent ray tracing via
stream filtering. In Interactive Ray Tracing (Aug. 2008), no. 3,
pp. 59–66.

[Kaj86] KAJIYA J. T.: The rendering equation. In Computer

Graphics (Proceedings of SIGGRAPH 86) (Aug. 1986), pp. 143–
150.

[KS02] KATO T., SAITO J.: “Kilauea”—parallel global illumi-
nation renderer. In Fourth Eurographics Workshop on Parallel

Graphics and Visualization (Sept. 2002), pp. 7–16.

[Lef93] LEFER W.: An efficient parallel ray tracing scheme for
distributed memory parallel computers. In ACM SIGGRAPH

Symposium on Parallel Rendering (Nov. 1993), pp. 77–80.

[LI06] LINDSTROM P., ISENBURG M.: Fast and efficient com-
pression of floating-point data. IEEE Transactions on Visual-

ization and Computer Graphics 12, 5 (Sept./Oct. 2006), 1245–
1250.

[MSS∗06] MEHTA A. M., SMITH J., SIEGEL H. J., MACIEJEW-
SKI A. A., JAYASEELAN A., YE B.: Dynamic resource man-
agement heuristics for minimizing makespan while maintaining
an acceptable level of robustness in an uncertain environment.
ICPADS 2006 (2006).

[NFLM07] NAVRATIL P., FUSSELL D., LIN C., MARK W.: Dy-
namic ray scheduling to improve ray coherence and bandwidth
utilization. In Interactive Ray Tracing (Sept. 2007), pp. 95–104.

[Nos98] NOSSAL R.: An evolutionary approach to multiproces-
sor scheduling of dependent tasks. Future Gener. Comput. Syst.
14, 5-6 (1998).

[NVI06] NVIDIA CORPORATION: NVIDIA CUDA
compute unified device architecture programming guide.
http://developer.nvidia.com/cuda, 2006.

[OLG∗07] OWENS J. D., LUEBKE D., GOVINDARAJU N.,
HARRIS M., KRÜGER J., LEFOHN A. E., PURCELL T. J.: A
survey of general-purpose computation on graphics hardware.
Computer Graphics Forum 26, 1 (Mar. 2007), 80–113.

[PH04] PHARR M., HUMPHREYS G.: Physically Based Render-

ing: From Theory to Implementation. Morgan Kaufmann Pub-
lishers Inc., 2004.

[PKGH97] PHARR M., KOLB C., GERSHBEIN R., HANRAHAN

P. M.: Rendering complex scenes with memory-coherent ray
tracing. In Proceedings of SIGGRAPH 97 (Aug. 1997), Com-
puter Graphics Proceedings, Annual Conference Series, pp. 101–
108.

[PVL∗05] PELLACINI F., VIDIMČE K., LEFOHN A., MOHR A.,
LEONE M., WARREN J.: Lpics: a hybrid hardware-accelerated
relighting engine for computer cinematography. ACM Transac-

tions on Graphics 24, 3 (Aug. 2005), 464–470.

[RCJ99a] REINHARD E., CHALMERS A., JANSEN F. W.: Hybrid
scheduling for parallel rendering using coherent ray tasks. In
Symposium on Parallel Visualization and Graphics (Oct. 1999),
pp. 21–28.

[RCJ99b] REINHARD E., CHALMERS A., JANSEN F. W.: Hybrid
scheduling for realistic image synthesis. In Proceedings of the

International Conference on Parallel Computing, Fundamentals

and Applications (Aug. 1999), Imperial College Press, pp. 21–
28.

[RDK∗98] RIXNER S., DALLY W. J., KAPASI U. J., KHAILANY

B., LOPEZ-LAGUNAS A., MATTSON P., OWENS J. D.: A
bandwidth-efficient architecture for media processing. In Inter.

Symp. on Microarch. (Dec. 1998).

[RKKS∗07] RAGAN-KELLEY J., KILPATRICK C., SMITH

B. W., EPPS D., GREEN P., HERY C., DURAND F.: The light-
speed automatic interactive lighting preview system. ACM Trans-

actions on Graphics 26, 3 (July 2007), 25:1–25:11.

[SM03] SHIRLEY P., MORLEY R. K.: Realistic Ray Tracing. A.
K. Peters, Ltd., 2003.

[TFFH94] TELLER S., FOWLER C., FUNKHOUSER T., HANRA-
HAN P.: Partitioning and ordering large radiosity computations.
In Proceedings of SIGGRAPH 94 (July 1994), Computer Graph-
ics Proceedings, Annual Conference Series, pp. 443–450.

[Wal04] WALD I.: Realtime Ray Tracing and Interactive Global

Illumination. PhD thesis, CG Group, Saarland University, 2004.
http://www.mpi-sb.mpg.de/~wald/PhD/.

[War94] WARD G. J.: The RADIANCE lighting simulation
and rendering system. In Proceedings of SIGGRAPH 94 (July
1994), Computer Graphics Proceedings, Annual Conference Se-
ries, pp. 459–472.

[WDS04] WALD I., DIETRICH A., SLUSALLEK P.: An interac-
tive out-of-core rendering framework for visualizing massively
complex models. In Eurographics Symposium on Rendering

(June 2004), pp. 81–92.

[WGER05] WEXLER D., GRITZ L., ENDERTON E., RICE J.:
Gpu-accelerated high-quality hidden surface removal. In Graph-
ics Hardware 2005 (July 2005), pp. 7–14.

[WH06] WALD I., HAVRAN V.: On building fast kd-trees for ray
tracing, and on doing that in O(N logN). In IEEE Symposium on

Interactive Ray Tracing (Sept. 2006), pp. 61–69.

[WK06] WÄCHTER C., KELLER A.: Instant ray tracing: The
bounding interval hierarchy. In Rendering Techniques 2006: 17th
Eurographics Workshop on Rendering (June 2006), pp. 139–150.

[YLM06] YOON S.-E., LAUTERBACH C., MANOCHA D.: R-
lods: fast lod-based ray tracing of massive models. The Visual

Computer 22, 9-10 (2006), 772–874.

c© 2008 The Author(s)

Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

http://www.mpi-sb.mpg.de/~wald/PhD/

