
Eurographics/ IEEE-VGTC Symposium on Visualization 2009
H.-C. Hege, I. Hotz, and T. Munzner
(Guest Editors)

Volume 28 (2009), Number 3

Scalable, Versatile and Simple Constrained Graph Layout

Tim Dwyer†1

1Microsoft Research, Redmond, USA

Abstract
We describe a new technique for graph layout subject to constraints. Compared to previous techniques the pro-
posed method is much faster and scalable to much larger graphs. For a graph with n nodes, m edges and c
constraints it computes incremental layout in time O(n logn+m+ c) per iteration. Also, it supports a much more
powerful class of constraint: inequalities or equalities over the Euclidean distance between nodes. We demonstrate
the power of this technique by application to a number of diagramming conventions which previous constrained
graph layout methods could not support. Further, the constraint-satisfaction method—inspired by recent work in
position-based dynamics—is far simpler to implement than previous methods.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.3]: Display algorithms—
Optimization [G.1.6]: Constrained optimization—

1. Introduction

Automatic layout of network (or graph) node-link diagrams
is usually tackled as an optimization problem. Some objec-
tive function is defined over the positions of nodes (and pos-
sibly over the routing of edges) based on various aesthetic
criteria, such as the optimal length of edges or the num-
ber of crossings between them. A configuration of nodes
and edges that corresponds to a minimum in this objective
function should therefore correspond to an “optimal” lay-
out, at least with respect to the aesthetic criteria that the goal
function was designed to capture. There are two fairly obvi-
ous limitations of such optimization. First, many commonly
considered graph drawing aesthetics—such as minimizing
crossings—give rise to NP-hard optimization problems, so
non-optimal heuristics must be used to give a “good enough"
solution. Second, algorithm designers cannot possibly an-
ticipate all the possible layout requirements of end users.
Aesthetics which may seem reasonable for abstract graphs
are often less important to users than their own application-
specific drawing conventions.

Recent work has recast the layout problem as one of
continuous, incremental layout subject to user-defined con-
straints over node positions. This approach addresses the two

† t-tdwyer@microsoft.com

problems above by: (1) providing users with interactive con-
trol over the layout so that they can guide it out of obvious
local minima (corresponding to suboptimal layout); and (2)
allowing users to achieve layout customized for their specific
application or diagram. Dwyer et al. [DKM06] use quadratic
programming techniques in the context of force-directed lay-
out to support a simple class of equality or inequality con-
straints over pairs of either x- or y-position variables:

xi +a≤ x j, yi +b≤ y j (1)

These mean, respectively, that node i is required to be at least
a (units) to the left of node j and at least b below y j. Al-
though simple, these so-called “separation constraints” can
be combined into systems of more high-level user-defined
placement constraints or automatically generated style con-
straints. Examples of such placement and style constraints
[DMW09a] are:

• Horizontal or vertical alignment of nodes
• Non-overlapping rectangular node boundaries
• Containment of nodes within a page boundary
• Variable-sized hierarchical rectangular group boundaries
• Downward pointing directed edges

There are two problems with this technique however:

1. The approach treats the horizontal and vertical axes sep-
arately, so that the separation constraints are over pairs
of x- or y-position variables exclusively. Arbitrary linear

c© 2009 The Author(s)
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.
Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and
350 Main Street, Malden, MA 02148, USA.

Tim Dwyer / Constrained Graph Layout

constraints combining x- and y-position variables are not
possible, nor are non-linear constraints such as circles.

2. The approach does not scale well to large graphs with
thousands of nodes or constraints, with both the optimiza-
tion and constraint satisfaction steps requiring at least
quadratic time complexity.

In some respects these limitations are due to mathemati-
cal rigor. All the methods in the separation constraint layout
family are provably convergent to stable local minima. How-
ever, it is not clear that such rigor is necessary simply to
obtain an aesthetically appealing layout. On the other hand,
it is clear that users have diagramming conventions that are
not always neatly captured by this limited class of constraint
and that the networks they want to visualize may easily have
more than just a hundred or so nodes.

A parallel field that has made great advances in recent
years by eschewing mathematical rigor in favor of very
fast (if more ad-hoc) methods, is computer game charac-
ter animation. For example, position-based dynamics ap-
proaches [MHHR06] use a very simple scheme of iteratively
solving simple one-degree of freedom constraints (at each
step clobbering the result of any previous constraint satis-
faction), and by a miracle routinely attributed to either Ja-
cobi or Gauss-Seidel the method usually converges to a sta-
ble state in very few iterations. Note that Gauss-Seidel and
Jacobi methods are usually associated with unconstrained
optimization. As of this writing the authors are unaware of
formal proofs of correctness or convergence for so called
cyclic-coordinate relaxation methods for the class of con-
straints often used in character animation.

In this paper we introduce a method for constrained layout
based on a state-of-the-art force-directed layout approach
combined with a simple constraint relaxation scheme in-
spired by position-based dynamics methods. This allows us
to perform fast, scalable layout subject to a new, more gen-
eral, class of constraint. The new class of constraint—a sep-
aration constraint over Euclidean distance or distance pro-
jected on an arbitrary direction vector—is able to reproduce
all of the placement and style constraints described by ear-
lier work and is also able to provide a host of new placement
constraints. In this paper we demonstrate three novel types
of constraint:

• unoriented or fixed (arbitrary) orientation linear align-
ment;
• circular constraints, e.g. for drawing cycles in directed

graphs;
• non-overlap constraints for nodes or clusters with bound-

aries that are circular, rectangular, capsule-shaped or arbi-
trary convex hulls.

2. A simple and versatile class of layout constraint

The basic building block of our constraint layout system is
a very simple class of constraint over the Euclidean distance
between the 2D positions p and q of two nodes:

|p−q|= d (2)

We can also handle inequality constraints (≤,≥) which
specify a minimum or maximum distance allowed between
the two nodes. As reviewed in Section 6 such constraints
appear in cloth simulation and rigid body dynamics, such
as computer game animation. We also allow distance con-
straints oriented with some arbitrary unit-length direction
vector v of the form:

|(p−q) ·v|(=,≤,≥)d (3)

3. Performing layout subject to constraints

Our basic layout method is a force-directed approach using
a fast-multipole [Lau07] approximation of long-range repul-
sive forces. This can be viewed as a kind of gradient-descent
optimization where at each iteration nodes are moved ac-
cording to a descent vector based on the gradient of the po-
tential energy function. After unconstrained movement in
the descent direction constraints must be satisfied using a
projection operation. Before explaining the method we use
to project against constraints of the form (2), we briefly re-
view how constraints of the form (1) were handled by earlier
constrained graph layout techniques.

In [DMW09b] gradient projection is used for layout sub-
ject to simple horizontal or vertical separation constraints
like (1). From a given starting configuration (x,y), the gra-
dient of the goal function f with respect to the x-position
variables is found giving a descent vector −∇ fx. An uncon-
strained step in the descent direction is taken x′ = x−α∇ fx
with the step size α chosen to ensure f (x′) ≤ f (x). A pro-
jection step is then applied to x′, i.e. the solution of a least
squares problem subject to the horizontal separation con-
straints, to obtain positions x̄′ that are feasible with respect
to the constraints. It is important that x̄′ corresponds to the
smallest possible move from x′ required to satisfy the con-
straints. This ensures that f (x̄′) ≤ f (x) (assuming x was
also feasible) and therefore that the layout converges. This
process is then repeated for the y-position variables and
vertical separation constraints, and repeated again, alternat-
ing between axes, until some convergence criteria are met.
The simple structure of the horizontal or vertical separation
constraints—and the fact that constraints on separate axes do
not interact—means that efficient techniques can be used to
solve the constrained least squares problem over each axis
exactly in worst case O((n + c)2) for n variables and c con-
straints.

In performing gradient-projection optimization subject to
the new class of Euclidean distance constraint (2), we aban-
don the axis-separation approach, and at the start of each
iteration, take an unconstrained step in a descent direction

c© 2009 The Author(s)
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

Tim Dwyer / Constrained Graph Layout

Figure 1: Projection of the constraint |p−q|= d. The small-
est position delta required to satisfy the constraint is r.

in 2D coordinates and then satisfy the constraints via pro-
jection. Unfortunately, projection of a system of Euclidean
distance constraints over 2D coordinates is much more dif-
ficult to solve exactly than the 1D projection over separa-
tion constraints described above. The square root required to
compute the norm is non-linear and the boundary of many
such constraints taken together may not be convex. However,
a very simple, naïve and yet effective heuristic is proposed
by Jakobsen [Jak01] for performing computer-game skeletal
animation of characters, where the “bones” are modeled by
constraints like (1). The two ends of a single constraint are
moved minimally (projected) to satisfy the constraints. That
is, the smallest r is found such that:

|(p− r)− (q+ r)|= d

It is easy to see (from Fig. 1) that the smallest such r must
lie along the line pq, and therefore:

r =
(d−|p−q|)pq

2|p−q| (4)

Each constraint in the system is projected in turn, cycling
m times. For inequality constraints, we need only project if
the inequality is violated at the current position. Oriented
constraints of the form (3) are projected in the same way,
except that direction of projection is v instead of pq. Surpris-
ingly, although solving each constraint by projection can po-
tentially undo progress made by an earlier projection, these
methods seem to converge quite reliably after cycling over
all constraints relatively few times (see Fig. 2), e.g. m = 10
gives quite rigid constraint satisfaction.

In the context of position-based dynamics, Müller et al.
[MHHR06] couch stable satisfaction of distance constraints
such as (2) in terms of conservation of linear and angular
momentum. However, the process above can also be viewed
as a kind of gradient projection to optimize a goal function
subject to constraints. That is, starting from a feasible config-
uration (x,y) with potential energy f (x,y), we take a step in
the steepest descent direction −α∇ f (x,y) to obtain (x′,y′).
The stepsize α is found through the simple trust-region
heuristic of Hu [Hu05]. We then attempt to find a feasible
(x̄′, ȳ′) as close as possible to (x′,y′). For convergence we
require that f (x̄′, ȳ′)≤ f (x,y). To strictly prove convergence

0.1

1

10

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

D
is
p
la
ce
m
e
n
t

Iteration

Figure 2: The total displacement of nodes due to projec-
tion of all constraints for the first 15 iterations of layout for
the citric acid cycle graph (Fig. 4), with m = 10 iterations
of cyclically satisfying constraints for each layout iteration.
Each “spike” corresponds to the increase in error on con-
straints after taking an unconstrained step in a descent di-
rection of the energy function which is rapidly reduced as
the constraints are projected. Note that the units of displace-
ment are proportional to the ideal edge length and that the
Displacement axis is log-scale. For the first 10 iterations the
circular cycle constraint is rotating, hence the “step-down”
in displacement once it is oriented such that the edges con-
necting it to the rest of the graph are close to their ideal
lengths.

we need to show that the method always makes progress to-
wards a solution where the KKT conditions [NW06, 321]
are met. Further analysis of convergence is beyond the scope
of this paper, but the plot of displacement versus constraint
projection iteration in Figure 2 gives an indication of the be-
havior of the iterative relaxation method in practice.

In summary, layout subject to constraints proceeds as fol-
lows:

1. compute steepest descent direction −∇ f (x,y)
2. compute trust-region step-size α

3. move all nodes by −α∇ f (x,y)
4. repeat m constraint-satisfaction iterations:

- project each constraint
5. repeat from Step 1, until convergence or maximum number of

layout iterations.

4. Applications of Distance Constraints in Graph
Layout

4.1. Fixed Position Constraints

In interactive applications with dynamic layout it is very use-
ful to allow the users to “pin” or fix the positions of particu-
lar nodes. When manipulating nodes directly with the mouse
the node should be positioned exactly at the position of the

c© 2009 The Author(s)
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

Tim Dwyer / Constrained Graph Layout

(a) Even number of nodes (b) Odd number of nodes

Figure 3: Construction of distance constraints to position
nodes equidistantly around a circle.

mouse cursor. Providing such fixed position constraints in
conventional force-directed layout approaches is trivial. We
simply disregard any forces on nodes that are fixed. How-
ever, when such nodes are involved in constraints we want
the projection operation to be applied only to the free end
of the constraint and we want the position found for the free
end to completely satisfy the constraint. To achieve this (and
also to facilitate cluster overlap resolution, see 4.5) we use a
weighted form of (4):

rp =
wq(d−|p−q|)pq
(wp +wq)|p−q| (5)

where rp is the displacement of node p due to the projection
of the constraint constraint |p−q|= d and where wp and wq
are the weights of nodes p and q respectively. The displace-
ment of q is computed symmetrically. By default all nodes
have unit weight. If a node’s position is fixed then we assign
it a very large weight (several orders of magnitude larger
than that of unfixed nodes), and hence its displacement as
computed by (5) will be negligible.

4.2. Oriented Directed Edges

In [DKM06] separation constraints over y-position variables
are used to draw directed acyclic graphs with strictly down-
ward pointing edges. A constraint of the form: yi + gi j ≤ y j
is defined over each directed edge from node j to node i so
that node j must be at least gi j above node i.

We can achieve the same type of vertical constraint us-
ing oriented distance constraints of the form (3), taking
v = (0,1). Edges oriented left-to-right or at any other angle
are just as easy.

4.3. Circular cycles

The most commonly used technique for drawing directed
graphs is the layered layout method of Sugiyama [STT81].
It handles graphs with directed cycles by trying to find a
minimal set of edges to reverse in order to make the graph
acyclic. Unfortunately, this tends to hide the cycles, often
resulting in drawings with very long upward pointing edges.

Figure 4: A metabolic pathway using constraints of the form
(3) to require directed edges (not involved in a cycle) to point
downwards and using a wheel constraint to make the cycle
circular.

As discussed in [DMS∗08], when drawing directed graphs
with oriented distance constraints, we can simply leave
edges involved in cycles unconstrained so that an orientation
is not forced on the edge where there is no real precedence
in the graph structure. However, cycles in process charts or
biological pathways may be very important features and di-
agram authors may want to highlight them. In many appli-
cations the convention for drawing such cycles is to arrange
them equidistantly around the perimeter of a circle.

Such an arrangement is easy to construct with a system of
rigid distance constraints as in Figure 3. We use a “wheel”
type arrangement. The constraints on the outer “rim” keep
the nodes spaced equidistantly, and the “struts” keep the
wheel rigid. Note that the required lengths for each con-
straint must be computed exactly from the chord lengths of
the inscribed circle or the system will be unsatisfiable result-
ing, for example, in a perpetual motion machine. For a circle
of n nodes, if n is even n + n

2 constraints are required (see
Fig. 3(a)) and if n is odd then 3n constraints are required
(see Fig. 3(b)).

Figure 4 shows a metabolic pathway
showing conversion of citrate in the citric
acid cycle into α-KG in mitochondria (see
www.uky.edu/˜dhild/biochem/24/lect24.html).

c© 2009 The Author(s)
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

Tim Dwyer / Constrained Graph Layout

Figure 5: A 400 node lattice with the outside nodes con-
strained to a circle.

4.4. Non-overlap of Simple Node Boundaries

Two nodes p and q with circular boundaries of radii rp and
rq can be prevented from overlapping with a constraint of
the form:

|p−q| ≥ rp + rq (6)

Rectangular node boundaries of dimensions widthp ×
heightp,widthq×heightq can be prevented from overlapping
by generating either a horizontally or vertically aligned dis-
tance constraint, ie:

|(p−q) · (1,0)| ≥ (widthp +widthq)/2

or:

|(p−q) · (0,1)| ≥ (heightp +heightq)/2

depending on which requires smaller displacement.
Rounded corner rectangles such as those used in Fig. 4 can
be handled by a straightforward combination of the above.

When finding an initial layout such non-overlap con-
straints would not be applied since they may prevent the
graph from “untangling”. Rather, they would be used in a
separate refinement phase. Assuming there are fewer than
O(n) overlaps left after the initial layout (which is reason-
able if the ideal edge length is proportional to the aver-
age node size), a minimal but sufficient set of non-overlap
constraints can be generated for each layout iteration in
O(n logn) time using an efficient region query data struc-
ture such as a quad- or KD-tree. In practice, the same KD-
tree data structure used in the multipole-force approxima-

Figure 6: A large biological pathway with non-overlapping
convex hull boundaries around clusters. The clusters indi-
cate functional partitions, such as parts of the carbohy-
drate metabolism (glycolysis, gluconeogenesis) and several
amino acid synthesis pathways derived from the MetaCrop
database. Network courtesy Falk Schreiber.

tion [Lau07] can be used to detect overlapping node bound-
aries.

4.5. Non-overlap of Convex Polygonal Node and Cluster
Boundaries

The general problem of projecting two polygonal boundaries
to resolve overlap is akin to finding the minimal penetration
depth which arises in collision detection in rigid-body sim-
ulations and computer games [DHKS93]. The Minkowski
Difference A−B of two polygons A and B is the Minkowski
Sum of A and−B (the reflection of B across an arbitrary ori-
gin, e.g. one of the vertices of B). Intuitively, A−B is built
by “wrapping” −B around the boundary of A. The minimal
penetration depth is then the distance from the origin of B to
the boundary of A−B. The minimal penetration depth vector
mpd between two convex polygonal boundaries with s and
t vertices respectively, can be found from their Minkowski
Difference in O(s+ t) time. Once the Minkowski Difference
for a pair of shapes has been computed it can be cached such
that subsequent queries to find pv take O(log(s + t)) time.
This gives us a non-overlap constraint:

|(p−q) · mpd
|mpd| | ≥ |mpd| (7)

Such polygonal boundaries are useful for clustered graph
layout. We compute the convex hull of a cluster of nodes

c© 2009 The Author(s)
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

Tim Dwyer / Constrained Graph Layout

Figure 7: A randomly generated tree with 768 nodes and
several small clusters. Fixed orientation constraints are used
to require the edges to point downwards and constraints are
generated to prevent overlap between the convex-hulls of
clusters.

after each layout iteration and generate non-overlap con-
straints like (7) between cluster boundaries and the bound-
aries of nodes (and other clusters) external to the cluster.
When projecting apart two clusters or a node and a cluster
using (5) we take the weight of a cluster to be the number of
nodes it contains. The displacement of the cluster hull due to
projection is then applied to each of its constituents.

5. Results and Discussion

The method described in this paper was implemented in
C# and run on a standard desktop PC with an Intel Core2
2.4GhZ processor and 4 GB of RAM.

We give a summary of layout time for a range of graphs
of various sizes in Table 1. The graphs range from practical
biological examples (such as Figures 4 and 6) to completely
artificial examples (such as Figures 5, 7 and 8) invented to
better show the various types of constraints discussed in Sec-
tion 4. In practice we perform layout in three stages. First we
compute an initial unconstrained layout using the fast Pivot
Multidimensional Scaling method which was demonstrated
to provide excellent unfolding and initial layout for general
force-directed layout by Brandes and Pich in [BP09]. Then
we ran 50 iterations of layout with constraints. Finally, we
ran 10 iterations of the constrained-layout with an additional
set of non-overlap constraints generated at each iteration, as
described in Section 4.4.

Instead of running a fixed number of iterations one could

also stop after convergence criteria, such as the step-size
falling below some small threshold, are reached. In prac-
tice however, we find the fixed number of iterations provides
reasonably satisfactory results and for the timings it gives a
better indication of the running time per iteration.

Following the recommendations of [MHHR06] and
[Jak01] and also our own experiments (see Fig. 2) we typi-
cally project across all constraints a small, fixed number of
times each iteration, e.g. in our experiments we did this 10
times per iteration. Note that this does not remove all error,
and for example, large “wheel constraints” as described in
Section 4.3 may appear a little “squashable” when the user is
allowed direct interaction (dragging of nodes) as the layout
is running. One can dial-up the apparent stiffness by increas-
ing the number of times the constraints are projected.

To give an indication of the relative performance of the
new method compared to previous constraint layout meth-
ods, the layout in Figure 8 took 4.09 seconds including an
initial layout with Pivot MDS (not including layout adjust-
ment with rectangular non-overlap constraints which took a
further 4.31 seconds). The same graph, with the same set
of constraints (but not non-overlap constraints), took 19.97
seconds using a scaled gradient projection method (imple-
mented in native C++ as opposed to managed C#) as re-
ported in [DM08].

In our experiments, by far the slowest part of layout was
the final step with non-overlap constraints for convex hull
clusters, particularly when the clusters are large. Figure 6
for example, with clusters of up to 277 nodes took more than
double the amount of time required by Figure 7 which had
more nodes but smaller clusters. We have not experimented
a great deal with optimization of this part of the layout, but
many optimizations are possible. For example, caching of
Minkowski sums for pairs of hulls and lazy update of con-
vex hulls and the KD-tree used for region queries only after
significant movement.

6. Related Work

An early effort to give users more control over automatic
graph-layout through a constraint definition language was by
Böhringer and Paulisch [BP90]. They augmented the pop-
ular Sugiyama [STT81] framework for layered drawing of
directed graphs with user-specified constraints over the rela-
tive horizontal and vertical positions of nodes. Of course the
Sugiyama layout scheme already has quite rigid constraints
(e.g. downward pointing edges, strict node layering) and any
control ceded to the user must be within this framework.

Another fairly popular combinatorial optimization ap-
proach to graph drawing is the orthogonal layout style. Like
most other layout algorithms, this approach was conceived
as a batch process (from abstract graph definition to layout
with no user intervention), but orthogonal layout methods
have also been retrofitted to support some degree of user

c© 2009 The Author(s)
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

Tim Dwyer / Constrained Graph Layout

Time
Pivot With Without

Graph n m c MDS Constraints Overlap Total
Citrate Cycle (Fig. 4) 57 83 49 0.16 0.62 0.65 1.43
Circular Grid (Fig. 5) 400 760 114 0.68 0.71 NA 1.39
1138Bus (Fig. 8) 1138 1458 1458 1.22 2.87 4.31 8.40
Tree with Clusters (Fig. 7) 758 757 757 0.69 1.67 6.69 9.05
Large biological (Fig. 6) 432 481 NA 0.72 NA 15.7 16.4

Table 1: Running times for the examples shown in figures, where n is the number of nodes, m is the number of edges and c is
the number of constraints. Times are in seconds.

Figure 8: The Bus1138 graph from [DKM06] with down-
ward pointing edge constraints and non-overlapping rectan-
gular node boundaries. The graph has 1,138 nodes, 1,458
edges and therefore 1,458 oriented distance constraints.
Layout subject to constraints took 4.09 seconds. Layout ad-
justment subject to rectangular non-overlap constraints then
took 4.31 seconds.

control [BEKW02, EFK00]. Again, however, the degree of
user control is limited by the strict constraints imposed by
the layout model.

By contrast, the very popular force-directed layout
approaches—which treat layout as optimization over a con-
tinuous goal function—are incremental by nature since the
goal function is defined over all possible starting configu-
rations. Ryal et al. [RMS97] made an early attempt at in-
corporating user defined placement constraints into force-
directed layout. However, their system modeled constraints
as springs which could not be strictly enforced without in-
troducing stiffness and instability into their local descent
solver. He and Marriott [HM98] augmented the Kamada-
Kawai [KK89] spring layout method with constraints us-
ing quadratic programming techniques. However, their tech-

nique did not use efficient solver techniques and hence was
only demonstrated with trivially small graphs.

Dwyer et al. [DKM06] demonstrated that the numerically
stable stress-majorization approach could be made to sup-
port user defined constraints by, at each iteration, treating
the majorizing functions as quadratic programs. Since suc-
cessive quadratic programs in this iterative process could be
very similar, any solver used needs to take advantage of the
previous solution in order to provide timely layout. For sim-
ple two-variable inequality or equality constraints over pairs
of x- or y-position variables they were able to solve these
quadratic programs very quickly using a gradient-projection
approach and their own active-set solver for the projec-
tion problem. In [DMW09b] Dwyer et al. proposed a new
objective function and optimization method which worked
better with highly constrained graphs and which could be
more easily extended with new objective terms (for exam-
ple, to optimize over the length of routed edges rather than
straight edges). However, the axis separation and the under-
lying solver technique and hence the class of constraints that
can be supported, is the same as their earlier work. Despite
this limitation the utility of the approach and the potential of
constraint-based layout was demonstrated in the context of
online graph navigation in [DMS∗08] and in an interactive
diagram authoring tool in [DMW09a].

Highly related to force-directed graph layout techniques
are particle-based physics simulations. Indeed, many ad-
vances in making force-directed layout scale to larger graphs
have been adapted from techniques in use by physicists. The
most recent of these is the elegant fast-multipole method
[HJ05] for approximating long-range repulsive forces due to
a group of particles (or in graph-layout, nodes).

This paper also represents an adaptation of techniques
used in physical simulations to graph layout and is in-
fluenced in particular by the position-based dynamics ap-
proaches to skeletal animation in games, introduced by
Jakobsen [Jak01] and described more formally by Müller
et al. [MHHR06]. Merrick and Dwyer [MD04] and Murray
et al. [MMT04] discussed some early experimentation with
this kind of skeletal animation in the context of 3D graph
layout but the constraints were used to provide a rigid span-

c© 2009 The Author(s)
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

Tim Dwyer / Constrained Graph Layout

ning tree, an application that did not turn out to be partic-
ularly useful. This paper is the first to recognize the poten-
tial flexibility and scalability of a general framework for 2D
graph layout built on Euclidean distance constraints.

7. Further Work

In Section 4 we describe several ways that systems of Eu-
clidean distance constraints can be used in graph layout ap-
plications. However, many more are possible. The ad-hoc
cyclical projection of constraints could conceivable be ap-
plied to other types of constraints where the projection oper-
ation is relatively straightforward for a single constraint but
would be difficult to achieve optimally for all constraints.
For example, alignment of nodes to an unoriented line could
be achieved by perpendicular least-squares regression. An-
other example may be circular constraints with unfixed ra-
dius, where the projection operation would involve a least
squares fit of radii from the barycenter.

If the network of constraints can be divided into vertex-
disjoint groups then projection of these constraints can be
completed in parallel. Therefore, efficient identification and
management of such disjoint sets of constraints should make
the method highly amenable to GPU or cloud-computing ac-
celeration.

7.1. Acknowledgements

The implementation of the Minkowski minimum penetra-
tion depth algorithm was provided by Lev Nachmanson. The
large clustered biological network shown in Figure 6 was
provided by Falk Schreiber. Additional thanks to George
Robertson and Ted Hart for the comments and suggestions.

References
[BEKW02] BRANDES U., EIGLSPERGER M., KAUFMANN M.,

WAGNER D.: Sketch-driven orthogonal graph drawing. In
Proc. of the 10th Intl. Symp. on Graph Drawing (GD’02) (2002),
vol. 2528 of LNCS, Springer, pp. 1–11.

[BP90] BÖRINGER K., PAULISCH F. N.: Using constraints to
achieve stability in automatic graph layout algorithms. In Proc.
of ACM Conf. on Human Factors in Computing Systems (1990),
ACM, pp. 43–51.

[BP09] BRANDES U., PICH C.: An experimental study on
distance-based graph drawing. In Proc. 16th Intl. Symp. Graph
Drawing (GD’08) (2009), vol. 5417, Springer, pp. 218–229.

[DHKS93] DOBKIN D., HERSHBERGER J., KIRKPATRICK D.,
SURI S.: Computing the intersection-depth of polyhedra. Algo-
rithmica 9 (1993), 518–533.

[DKM06] DWYER T., KOREN Y., MARRIOTT K.: IPSep-CoLa:
an incremental procedure for separation constraint layout of
graphs. IEEE Transactions on Visualization and Computer
Graphics 12, 5 (2006), 821–828.

[DM08] DWYER T., MARRIOTT K.: Constrained stress majoriza-
tion using diagonally scaled gradient projection. In Proc. 15th
Intl. Symp. Graph Drawing (GD ’07) (2008), vol. 4875 of LNCS,
Springer.

[DMS∗08] DWYER T., MARRIOTT K., SCHREIBER F.,
STUCKEY P. J., WOODWARD M., WYBROW M.: Exploration
of networks using overview+detail with constraint-based cooper-
ative layout. IEEE Transactions on Visualization and Computer
Graphics 14, 6 (2008), 1293–1300.

[DMW09a] DWYER T., MARRIOTT K., WYBROW M.: Dunnart:
A constraint-based network diagram authoring tool. In Proc. 16th
Intl. Symp. Graph Drawing (GD’08) (2009), vol. 5417 of LNCS,
Springer, pp. 420–431.

[DMW09b] DWYER T., MARRIOTT K., WYBROW M.: Topol-
ogy preserving constrained graph layout. In Proc. 16th Intl.
Symp. Graph Drawing (GD’08) (2009), vol. 5417 of LNCS,
Springer, pp. 230–241.

[EFK00] EIGLSPERGER M., FÖSSMEIER U., KAUFMANN M.:
Orthogonal graph drawing with constraints. In SODA ’00: Pro-
ceedings of the eleventh annual ACM-SIAM symposium on Dis-
crete algorithms (Philadelphia, PA, USA, 2000), Society for In-
dustrial and Applied Mathematics, pp. 3–11.

[HJ05] HACHUL S., JÜNGER M.: An experimental comparison
of fast algorithms for drawing general large graphs. In Proc.
13th Intl. Symp. on Graph Drawing (GD’05) (2005), vol. 3843
of LNCS, Springer, pp. 235–250.

[HM98] HE W., MARRIOTT K.: Constrained graph layout. Con-
straints 3 (1998), 289–314.

[Hu05] HU Y.: Efficient and high quality force-directed graph
drawing. The Mathematica Journal 10, 1 (2005), 37–71.

[Jak01] JAKOBSEN T.: Advanced character physics. In San Jose
Games Developers’ Conference (2001), www.gamasutra.com.

[KK89] KAMADA T., KAWAI S.: An algorithm for drawing gen-
eral undirected graphs. Inf. Process. Lett. 31, 1 (1989), 7–15.

[Lau07] LAUTHER U.: Multipole-based force approximation re-
visited - a simple but fast implementation using a dynamized
enclosing-circle-enhanced k-d-tree. In Proc. 14th Intl. Symp. on
Graph Drawing (GD’06) (2007), vol. 4372 of LNCS, pp. 20–29.

[MD04] MERRICK D., DWYER T.: Skeletal animation for the
exploration of graphs. In Australian Symp. on Information Visu-
alisation 2004 (2004), vol. 35 of CRPIT, ACS, pp. 61–70.

[MHHR06] MÜLLER M., HEIDELBERGER B., HENNIX M.,
RATCLIFF J.: Position based dynamics. In Proc. of Virtual
Reality Interactions and Physical Simulations (VRIPhys) (2006),
pp. 71–80.

[MMT04] MURRAY C., MERRICK D., TAKATSUKA M.: Graph
interaction through force-based skeletal animation. In Australian
Symp. on Information Visualisation 2004 (2004), vol. 35 of CR-
PIT, ACS, pp. 81–90.

[NW06] NOCEDAL J., WRIGHT S. J.: Numerical Optimization,
2 ed. Springer Series in Operations Research. Springer, 2006.

[RMS97] RYALL K., MARKS J., SHIEBER S. M.: An interactive
constraint-based system for drawing graphs. In ACM Symposium
on User Interface Software and Technology (1997), pp. 97–104.

[STT81] SUGIYAMA K., TAGAWA S., TODA M.: Methods for
visual understanding of hierarchical system structures. IEEE
Transactions on Systems, Man, and Cybernetics 11, 2 (1981),
109–125.

c© 2009 The Author(s)
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

