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Recovering Structure from r-Sampled Objects

0. Aichholzef, F. Aurenhammér, B. Kornberget, S. Planting®, G. Rotd, A. Sturnl, G. Vegtef'

Abstract

For a surfaceF in 3-space that is represented by a set S of sample points, wewona coarse approximating
polytope P that uses a subset of S as its vertices and presiwéopology ofF. In contrast to surface reconstruc-
tion we do not use all the sample points, but we try to use apémts as possible. Such a polytope P is useful as
a ‘seed polytope’ for starting an incremental refinementceiure to generate better and better approximations
of F based on interpolating subdivision surfaces or e.g. Bzi¢ches.

Our algorithm starts from an r-sample S &f. Based on S, a set of surface covering balls with maximal radi
is calculated such that the topology is retained. From théghted a-shape of a proper subset of these highly
overlapping surface balls we get the desired polytope. Atls a rather large range for the possible radii for the
surface balls, the method can be used to construct triamgulefaces from point clouds in a scalable manner. We
also briefly sketch how to combine parts of our algorithm weitisting medial axis algorithms for balls, in order
to compute stable medial axis approximations with scaléblel of detail.

1. Introduction

This paper deals with recovering structural information fo

a 3-dimensional object that is represented by a sample point

cloud. More specifically, given an obje€ in 3-space and
anr-sampleS of its boundary, we want to find an approxi-
mating polytopeP that uses a subset of the pointsSas its
vertices and preserves the topologydfOur goal is, on the
one hand, to use as few points s possible and, on the

other, to get a flexible approximation whose level of detail
can be tuned from coarse to fine. We also (briefly) address

The main support structure we use is an approximation
of the object in question with a union of balls. In the con-

text of object simplification, this approach is used for many

purposes, e.g. collision detectioH(jb9q, shape matching
[SS04, and shape interpolatioiR[F94, to name a few. Re-
garding surface reconstruction, approximating objecth wi
balls also plays a major role, see for example the power crust
algorithm [ACKO1], related work AB99, AK0OO, AKO1] and

also [CLO8], naming again only a few.

In our approach, which is similar to work inCLO08g],

the problem of finding piecewise linear approximations of we build a union of so-calledurface balls centered at the

the medial axis of0. Motivation for studying these prob-

points in ourr-sampleS on the surfacer of O, whose radii

lems is based on open problems in object simplification and adapt to the local feature size @f. The desired approxi-
surface reconstruction, two fundamental tasks in several a mating polytopeP is then extracted from the weighted alpha
eas of computer science, like geometric modeling, computer shape Ede93 of a carefully chosen subset of these balls. In
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contrast to CLO8], where prior knowledge of the local fea-
ture size ofF is assumed, we obtain an estimation of this
function from the data, by using distances to pol&B99]
(certain vertices of the Voronoi diagram f8). Using a tai-
lored technique of pruning the surface balls, we obtain a
coarse-to-fine approximation gf by polytopes. This is the
first result that uses, from a practical point of view, approx
mations of local feature size and medial axis to obtain lgcal
adaptive reconstructions of an unknown surface.

The polytopes we construct are topologically correct re-
constructions ofF. Thus our results differ from existing
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multi-scale surface reconstruction techniques NBWO08
CL08, CCSL09 GO0§ where topological filtering occurs.
At the coarsest level, the polytope we obtain is what we
call 'seed polytope’, as it provides not only a coarse ap-
proximation of F but also a mapping of the non-used sam-
ple points inSto the vertices of the polytope. Such a map-
ping is needed for incrementally generating approximation
of F based on interpolating subdivision surfaces or Bézier

and in the interior 0®, and theouter poleis the farthest one
from sand outside?). For the inner pole of each siteswe
consider the ball with centgr and radiug|p— s||. We refer
to the set of these polar balls as ffiener) discrete medial
axis transformDMAT j,. Analogously, we generate a set of
outer polar balls and denote it by DMA{:.

Definition 2

patches. We stress that the intended purpose of the seed

polytope is not primarily in approximating but rather in
serving as a (topologically correct and small) startingestr
ture for subsequent approximations by patches. We thus do
not try to keep the approximation error small for the seed
polytope itself, and use this additional freedom to keep the
polytope small. In a previous related approa&@PR*07],
point clouds in convex position are approximated by spheri-
cal patches.

Strongly related to the surface reconstruction is the me-
dial axis approximation; we refer t?ABEQ7] for a recent
survey paper on medial axes and their algorithmic construc-
tion. In this area, many algorithms are based on unions of
balls as well, for exampleB0O04, GMP07, YBM04]. We
briefly describe how a variant of our approach, now for

e The discrete medial axis DM (DMout) is the medial
axis of the union of polar balls in the sets DMAT
(DMAT ouy). -

Thediscrete local feature sizés(x) of a pointx € F is
the minimum distance fromto DM;,, U DMout.

Thepole distanced(x) of a pointx is the distance to the

nearest pole.

We will see thaD is a good estimate dfs (Corollary5.5),

as well as an upper bound on the true local feature size
(Lemma5.1). In practice,D is easier to compute thafs,

and the true local feature size is not computable at all.

Theweighteda-shapes the dual shape of a union of balls
[Ede9]. It is a simplicial complex whose vertices are the
centers of the balls, and which is homotopy-equivalent to

balls centered at poles instead on sample points, combinesine ynion of balls. We will refer to the weightedshape of

with an existing medial axis algorithm for ball&\iK01]

to an efficient and stable medial axis approximation algo-
rithm for general objects. It is known that sufficiently dens
r-samples lead to topologically correct medial axis approxi
mations; seeAKO00] and, for a result more general than for
poles, ABO3].

2. Definitions and notation

Throughout this paper, 1€ denote the original solid object
and letF denote its surface. The following definitions are
standard.

Definition 1

e The medial axis transfornof O is the (infinite) set of
maximal balls that avoid), where maximality is with
respect to inclusion. The set of the centers of these balls
forms themedial axisof O. The surfaceF splits the me-
dial axis in arinner medial axisand arouter medial axis
Thelocal feature sizéfs(x) of a pointx € F is the min-
imum distance fronx to any point on the medial axis
of O.

A finite point setS C F is anr-sampleof F if every
pointx € F has at least one point & within distance
r-Ifs(x) [AB99].

In this paper, we will assume th&tis anr-sample ofF
for r =0.08.

For each sample poiste S, we define two vertices of the
Voronoi diagram ofSas thepolesof s, see AB99]: theinner
poleis the vertex of the Voronoi cell affarthest away frons

DMAT , asAj, and to the one of DMAgut as.Aout-

Proposition 2.1 [AK01] Let Aj, and.Aout be the weighted
a-shapes of DMAT,,DMAT qut. Then we have

DMjn U DMout € Ain U Aout.

3. Our approach

The flowchart in Figurel gives an overview of the work
flow for the three tasks considered in this paper: Comput-
ing a seed polytope, a scalable surface reconstruction, and
the medial axis.

In all cases we start with arsampleS of the objectO
as input and compute from it the two discrete medial axis
transforms DMAT, and DMATout.

These sets serve two purposes: For seed polytopes and
scalable surface reconstruction we use them in order to esti
mate bounds on the local feature size of the sample points.
For medial axis approximation, we use a pruned version of
DMAT ,, with slightly enlarged radii, representing the object
O in a compact and faithful way.

The union of surface balls. A surface ballis a ball with
center at a sample poist S. For seed polytopes, our goal is

to represent the surfacE of O in a topological correct way

with as few faces as possible. We try to make the surface
balls as large as possible, while guaranteeing correct-topo
ogy of the the uniotJ (B+) of the seB ~ of surface balls. A
subsequent pruning step will throw away some of these balls
whenever the sample is denser than necessary. For surface

(© 2009 The Author(s)
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Input: r-Sampling

L]

Compute poles
and polar balls
T

Largest possible Surface balls Enlarge inner
surface balls within some range polar balls
) L] L]
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A A Y
Seed Scaleable surface Medial axis
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Figure 1: Work flow

reconstruction, we will output meshes of scalable complex-
ity. The only modification necessary to reach this goal is to
choose surface balls with smaller radii.

Pruning. To decide which balls to keep, we solve a combi-
natorial problem. We (virtually) shrink the balls By= and
compute a minimal subs&- of Bx such that the shrunk
balls cover the sampl& This is aset covering problem
which is solved by a heuristic. The advantage of this ap-

Figure 2: Awiggly curveF with a point sample on a straight
line. (Adapted fromAKOQ.)

Therefore, and also due to noise and numerical inaccuracies
DMAT j, might contain balls far from a reasonably pruned
approximation of the medial axis @ in practice, as small
details might be (correctly) approximated that nevertele
are not needed in the application. Moreover, bec&isea
denser-sample, the centers of the balls in DMATSample

the medial axis in a much too dense way. We provide an ad-
equate input for the medial axis algorithiK01] by reduc-

ing the number of balls significantly and thereby stabilizin
DMAT .

This is done by adding a small distanc¢o the radii of
the balls in DMAT,,. Thus we get an enlarged set DMAT
which we use to compute a covering matrix. Our set covering
algorithm finds a small subset DMATof DMAT{,, which
covers all sample points (but not necessaiy. The goal
of stabilization of DMAT, is implicitly reached because the
set covering algorithm favors balls covering many sample
points (which have their center near the medial axis and are
therefore usually larger than unstable ones). The degree of

proach is that the selection of the pruned subset proceedssimplification (and thus the level of detail of the approxi-

now in a purely combinatorial manner, without regard to ge-
ometry and topology. The radii of the shrunk balls are cho-
sen in such a way that covering 8fby a subset of shrunk
balls guarantees that the original, unshrunk, surfaces ball
cover the surface”, and moreover, their union represents
the topology ofF correctly.

The polyhedral approximation. Finally we compute the
weighteda-shape oB'z, which has the same topology &s

and which gives the desired seed polytope. The vertices of
the weightedx-shape are points i, because the centers of
the balls inB’- have been chosen fro We use the power
diagram ofB’- to find out which vertex of the polytope each
sample poins € Shbelongs to and provide a list of pointers
representing this relation.

Medial axis approximation. The medial axis algorithm of
Amenta et al. AKO1] could be used to compute the medial
axis of the union of the balls in DMAJ. However, medial
axes are in general unstable because of their dispropattion

response to even small perturbations on the object surface.

(© 2009 The Author(s)
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mated medial axis) is scalable by the choice.of

No implementation of the algorithm developed Ai{01]
was available and so we have implemented it using CGAL
[CGA]. We obtain—in combination with our pruning
technique—stable and efficient medial axes. In practiee, th
approach works even for poorly sampled inputs which do
not meet the-sampling condition at all; see a companion
paper AAHKO09]. Of course, no theoretical guarantees can
be given in that case.

Obtaining the local feature size. A distinguishing feature

of our problem setting is that we cannot get a lower estimate
on the local feature size. FiguBeshows a section of a curve
F that consists of alternating short circular arcs. The hor-
izontal lines are part of the medial axis. The points of the
r-sampleS are aligned vertically. By reducing the angie
such an example can be built for any>- 0. The algorithm
sees only these samples. Thus, to the algorithm, this isput i
indistinguishable from a very densely oversampled sttaigh
line.
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4. Technical results

In order to generate adequate sets of polar balls and surface
balls (in both cases, the topology must be maintained), we
need to derive certain information concerning the local fea
ture size of the sampled object. The present and the subse-
guent section are devoted to this issue. We obtain several
new properties of-sampled objects for suitable valuesrof

Let M, and Mout denote the inner and the outer medial
axis of the given objeaD, respectively. We start by bound-
ing the distance of poles to the respective parts of the rhedia
axis—a result crucial for bounding the radii of surface $all
in Sectionb.

Theorem 4.1For anr-sampleS, let p be an inner (resp.
outer) pole of a sample poiste S, and denote wittBp the
inner (outer) polar ball ok, with radiusRp. The distance
from p to M, (Mour) is at mostO(r) - Rp.

In the limit, when the sampling density approaches zero,
poles and the medial axis coincide, as has already been
shown by Amenta et alACKO01, Theorem 35]. In contrast to
this result, we give an explicit quantitative analysis imts
of r. Results similar to Theorem.1 have been shown (see
e.g. JACKO1, Lemma 34], on which Theorem 35 is based,
or [BCOY, Proposition 16]). However, we could not use these
results, since they hold only when the angle between the two
closest surface points to a given point.®fi, (Mout) is not
too small, (These points form tlyemedial axis)

Proof The idea of the proof is to turn the polar b&l} into

a medial ball, while not moving its center too much. The
proof is based on several technical lemmas which are given
subsequently. We proceed in three steps, see FRjure

1. While keeping the center @, fixed we shrink the ra-
dius of Bp until the ball becomes empty, touching the
surfaceF of O at some poinkg. By Lemma4.2 below,
the difference); between the new radius and the original
radiusRp is at mostd; = O(r?) - Rp.

2. We expand the shrunken ball from the touching pggnt
by moving its center in the directiorgp until either

(2a) the ball has the original radi& of Bp, or

(2b) the ball touches the surface at another point. If this
occurs we have found a point 8ft;, within distance
A1, and we are done.

3. In case (2a), we “roll” the new baIB’p (with radiusRp)
on the surface. More precisely, l€f be the component
of BpNF which contains¢. Consider the balls of radius
Rp that are tangent t in a point ofK; and lie on the
same side ofF as p. The locus of the centers of these
balls is the inner parallel surfadeof K;. We claim that
the rolling ball touches another point &, and therefore
F contains a point of\j,.

We prove this by contradiction. Let us suppose that the
ball can roll onK; without ever touching a second point

Figure 3: After shrinking and expanding the balpBve roll
the new ball % on K; (e.g. the gray ball).

Figure 4: Deepest penetration intopB

of F. Ky cutsBp into two parts:B™ containingp, and
the resB~. By Lemma4.4below,B™ is completely cov-
ered by the tangent balls Kf. Since by assumption these
balls never hit another point of, it follows thatK; is
the only component off N Bp. Let s € Bp be the sam-
ple point whose pole ip. This point must lie ork; and
therefore we can roll the empty tangent ball of radRgs

to s. The radiusRy of the medial ball at is therefore

at leastRp. On the other hand, each point of the me-
dial axis is contained in the Voronoi cell of the nearest
sample point, thereforp — s|| = Rp > Ru. This implies

Rp = Rwv and the tangent ball athas its center oMy,
and we are done. We remark that this last case can ac-
tually never arise, sincBp > Ry unless the medial axis
branches and the ball touch&sin several points.

We have established th&t contains a pointmy of Mi,
which is the center of a medial ball with radiRg touch-
ing K1 in x. We know by Lemma4.3a that the angle
y = Zmkxp is at most 8+ O(r). Thus, |[p—my|| <
Rp- (3r+0(r?)).

O

In the following, we will assume thab is an inner pole.

(The situation is symmetric for outer poles.)

Lemma 4.2Let p be a pole with polar radiuRp. The surface

(© 2009 The Author(s)
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Figure 5: The tangent balls of Kcover B"

F cannot get closer tp than
Rp( 1-4(r2— ) rz) > Rp (173r2 - O(r4)> .

For anr-sample withr = 0.08 the distance between the cen-
ter p of a polar ball with radiusR, and F is larger than
0.9807- Rp.

Proof Let x be the point onF closest top. Let Bt be

an empty outer ball tangent towith centerc and radius

| =Ifs(x). By the sampling condition, there must be a sam-
ple t within distancerl of x. t lies outside the ball8p and

Br and therefore the distance fronto the circledBp N oBt

is at mostr -1 (see Figured). Thus, the angler = Zcpt is
bounded by si§ < 5. For fixedl andRp, the pointxis clos-
est top whena is maximized. We thus analyze the situation
forsing = %:

S|na—25|ngcos <2 f\/ 7—:\/ %
[v—p|| = /RE— (I -sina)2 = \/RE— 12 (
(1r)?-
4 |.r2
Vinz—iz 2=~

R —12.(r2 ﬁ)_i
4 2

The inner polar balBp contains a point o\, ( [ACKO1,
Corollary 13]), thereforé < 2R. It follows that the distance
betweenp and F is at least

VRo-aR -5
Ro- (y/1-4-02=13) =r?),

as claimed in the lemma. ]

[lv—x| = (I-sina)2 =

[x=pll = [lv=pll = Iv=x]

Rp-rz =

Lemma 4.3Letx be a surface pointinside a polar balBp
with centerp.

(© 2009 The Author(s)
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a) The angley betweenxp and the surface normal atis
bounded by 8+ O(r?) = O(r).

b) (The penetration bound) The distance fronto the
boundary oy, is is bounded b)% Ifs(x)(r? +0O(r%)).

Part b of the lemma is similar to Lemn#a2, except that
the penetration of the surface poininto the pole balBp is
measured in terms of Ifg), and not in terms of the radius of
Bp.

The proof of Lemmat.3is omitted for lack of space.

To complete the proof of Theoreshl, we still need to
show that the tangent balls &f cover all parts oB™. Re-
call thatK; cutsBp in two parts:B* containingp, and the
restB—.

Lemma 4.4The tangent balls dk; completely coveB™.

Proof Letw € B' and letx be the closest point df;. We
claim that the tangent ball atcoversw. If x lies in the in-
terior of K1, thenwx is perpendicular taF, and the claim
is obvious. Let us assume thais at the boundary oKy,
that isBp N F (see Figures). Assume that the surface nor-
mal ny does not go througip; otherwise it is obvious that
w is covered. Consider the plawethroughny and through
the pointp. Figure5 shows the projection on this plane. Lo-
cally aroundx, F is approximated by the tangent plame
andBpN F is the halfspace of that projects onto the ragy

in Figureb. It follows thatx can only be the point df; clos-
est tow, if w lies in the planes and in the closed halfplane
o of o which is bounded by and does not contaip. [

5. Construction of balls
5.1. Polar balls

For the set DMAT, of inner polar balls, it is well
known [AKOO] that the union of the balls in this set is home-
omorphic to the original objea®. Recall that each ball in
DMAT, is the circumball of a Delaunay tetrahedron and
therefore has at least four points $fon its boundary and
no such point in its interior. From DMAJ we generate a
set DMAT;,, of slightly enlarged balls which are still cen-
tered onS. Such a ball typically covers tens or even hun-
dreds of points ofS. In a subsequent set covering step, this
redundancy in covering will be eliminated, and thereby only
a small and stable subset of DMATwill be kept. We have

to ensure, for the goal of topologically correct medial axis
approximation, that the union of DMAJ and the union
of DMAT/, are topologically equivalent. Using the lower
bound on the discrete local feature size of sample points de-
veloped in Lemmab.4 below, it is easy to check whether
DMAT . N Aout = 0.

5.2. Surface balls

In order to maintain correct topology of the piecewise linea
surface reconstruction, the surface balls we generatetbave
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Figure 6: Distance from pole p to the medial axis poirnt m

be large enough such that their union does not only c8ver
but alsoF and, on the other hand, these balls avoid the me-
dial axis of the union of the balls in DMAT and DMATout.

The above restrictions limit the possible radii to a certain
range. Maximizing the radii within this range will lead to a
coarse result (which is desirable for seed polytopes),enhil
minimizing the radii of the surface balls will lead to a faith
ful and detailed representation of the object. The choice of
the radii determines the degree by which the surface balls
are pruned in a subsequent set covering step.

5.2.1. Lower bound on the radii

To ensure thaf is completely covered by surface balls we

developed in Theorem.1 (and we use the notation intro-
duced there). If case (2a) occurs we know tRatontains a
pointmy € Min (Mout); see Figures. By Lemma4.3a, the
maximum angle between the touching paint K; of the
medial ball centered aty andpis y = Zmxxp < 14.99° if

r <0.08. By Lemm&4.2,

d=|[x—pl > (\/TZ—Q)— rz) -Rp > 0.9807- Ry.

Therefore

Ip—my|| < 2-Ro- sin(%) +(1-0.9807)Rp < 0.2802:Rp
which is at most @802 D(s) becauss lies outside the po-
lar ball centered ap. Otherwise, case (2b) occurs and by

Lemma4.2, pis not farther fromMi, (Mout) than

Rp-(1—1/1—4-(r2— &) +r?) < 0.0193 Ry.

The lemma follows. []

5.2.2. Upper bound on the radii

To prevent surface balls from "different” parts &f from
intersecting we want to ensure that they don'’t reach the dis-
crete medial axi®Mi, (resp.DMouy). Thus, the discrete lo-
cal feature sizéfs(s) is an upper bound on the radius that
we can use. We will repladé(s) by a smaller value, that is
easier to compute, see Propositif.

Consequently, the minimum distance fraito any of the
two weighteda-shapes is a lower bound tfis(s). Comput-

choose the radii of the surface balls such that they cover at ing Ain and.Aout and determining the minimum distance di-

least the intersection of their site’s Voronoi cells with For
a points in an r-sample, this intersection is covered by a
sphere aroundwhose radius ip > ﬁ -Ifs(s), see AB99],

and so the surface balls need to have at least that radius. As

Ifs(s) is unknown, we need to estimate it in terms of the dis-
tanceD(s) betweers and the nearest among the poles of all
sample points. Using Lemntalbelow, we get

Ifs(s) < 1.2802-D(s)

and so we must choose the radjusf a surface ball around
sto be at least

p> 1 -1.2802 D(s).

rectly would consume too much time and memory, however.
We show how to estimate this distance, again using the dis-
tanceD(s) to the nearest pole ®

Lemma 5.2Let sbe a sample point, and lebe a point with
the following properties

e Vvliesinthe Voronoi cell o&.
e Vis notin the interior of the polar ball around the pge
of sthat lies on the same side &fasv.

Then

(@) |lv——9|| = O(r)-Ifs(s). In particular, for = 0.08, the dis-

tance tosis at most 0123. Ifs(s).

The distanc&(s) can be calculated relatively easily using a (P) The distance fronv to the closest point on the surface

spatial search structure.

Lemma 5.1Lets € Sbe a point of am-sampleSwith r <
0.08, and leD(s) = ||s— p|| denote its distance to the nearest
pole p. Then

Ifs(s) < 1.2802-D(s).

Proof The local feature size afcannot be larger thab(s)
plus the distance fronp to the medial axis. To bound the
latter distance for a specific value nfwe revisit the cases

is O(r?Ifs(s)) = O(r?Ifs(V)). Forr = 0.08, the distance
|[v—V]| is at most 00355 Ifs(s) < 0.0424 Ifs(v).

Lemma 5.3Let pgbe an edge of the weightedshapeA,
(Aout). Then the exterior angle of intersection between the
polar ballsBg, Bp aroundp andq is at least 120.

Based on the preceding lemmas, it is possible to derive
the following bound orifs(s).

Lemma 5.4 If mis a point on an edgpqof DMAT i, (orin a

(© 2009 The Author(s)
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! =
ad

triangle pgr of DMAT j;) andv is outside or on the boundary
of U(DMAT;,) then

[[m—v|| = 0.817-min{|[p— V||, [[a—V|[},

(or [|m—v|| > 0.817-min{[|p—V|[, [q— V]|, [[r —V|[}, respec-
tively).

7

The proofs for these lemmas are given in the appendix.

Corollary 5.5 Lets < Sbe a sample point, and 18(s) be
its distance to the nearest pole. Then

D(s) > Ifs(s) > 0.817-D(s). Figure 7: Part of the fibration which is used to show isotopy.
Proof Since the poles are part of the discrete medial axis, the The shaded area is the weighteeshape.
inequalitylfs(s) < D(s) is obvious. For the other direction,
we boundfs by the distance from to the weightedi-shape
A of the polar balls, which contains the discrete medial axis.
The proof of the lower bound on the ratio

ifs(v) _ [v—m] {IIV—mH I\V—mll}
—— =11 >max , ,
D D~ [v—=mpll " [v—dl

follows from Lemmas.4 [

5.3. Topological Correctness Figure 8: A ball Bs that intersects the fiber vm improperly

To show that the uniob) (Bg) of surface balls is homotopy-

equivalent to the surfacg, we follow the standard approach

of using a fibration (a partition df (Bg) into a continuous

family of curves, each intersectirg in a single point) and The upper bound ensures that the surface balls do not inter-

moving the boundaries &f (Br ) along the fibers towards. sect the discrete medial axis, and the lower bound ensures
that they are large enough to cover the surface completely.

The bounds are stricter that would be required to reach only
these two goals, since we also want to achieve ensure topo-
logical correctness of the unidh(Bg ) of surface balls:

The usual fibration by surface normals does not work
since the medial axis might be closer than it appears from
looking at the sample points, see Fig@elnstead we use
the fibers of the uniotd (DMAT ) of all polar balls. It is
known that this union is homotopy-equivalentd and its Lemma 5.6If pis chosen in the interval], every fiber from
boundary is homotopy-equivalent 0 [AK0O]. a pointv on the boundary o) (DMAT;,) to a pointm on

The boundary of the uniob) (DMAT ) is not smooth, the medial axis ot_J(DMATin) starts in the uniohJ(BF_) of
but still, it is in a certain sense “smooth from the inside” surface balls and intersects the boundary () precisely

(it has no convex edges or vertices) and has therefore a rea-O"nce-

sonable fibration connecting the boundary to its inner me- The |emma implies that the boundarylfBg ) can be con-
dial axis DMAT;,, see Figur&r. We concentrate on the in-  tinyously deformed along the fibers into the boundary of
ner discrete medial axis DMAT; the outer discrete medial  ((DMAT;,), and thus the two boundaries are homotopy-
axis DMATot is treated analogously. The fibers are line seg-  equivalent. The boundary of (DMAT ;) is already known

ments that partitiot) (DMAT )\ DMiy, and they runfroma 4 he homotopy-equivalent t5, and thus, the correct topol-
surface point’ on the boundary to a point on the inner dis- ogy is established.

crete medial axi®M;,. In three dimensions, there are three S
types of fibers: from a poing on a spherical patch of the  Proof For simplicity we prove the bound fgy = 0.3. The

boundary to a vertem of the medial axis; from a pointon calculation for generap is slightly more involved.
a circular edge formed as the intersection of two spheres to a Let Bs be a surface ball around a sample parguch that
pointmon an edge of the medial axis; and from a vexex the segment/m entersBs in a pointx, see FigureBa. We

the boundary, formed as the intersection of three (or more) will show that this does not lead to a violation of the lemma,
spheres to a poinh on a face of the medial axis. Our proof ~—because the segmewit is covered by the union of surface
treats all three cases uniformly. balls. We assume without loss of generality thiattis verti-

cal and||m—v|| = 1. We first show thax must have distance
||X—V|| < k]_ for kl =0.074.

Suppose that this is not true. The medial ball of radius 1
Pmin = 0.24 < p < pPmax= 0.56. 1) aroundm is inside the union of balls, and hence it does not

We take the radius of the surface ball&¥s) where the
factorp can be chosen in the interval

(© 2009 The Author(s)
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Figure 9: A ball Bs that intersects the fiber vm improperly, v
lies either insideF (a) or outsideF (b)

contains: ||s— m|| > 1. We claim that this implies

ls—x|| > 0.37-||s—m||.

@)

We know thas must lie outside the ball of radius 1 aroumd
s must also lie above the horizontal line throughThus,s
is restricted to the shaded area in the figure. The fitie
X||/||s— m|| is minimized wherx s as low as possible|x—
v|| = ki) ands is at the lower right corneg, of this area.
Here we havé{s— x||> + (1—k;)? = 1, from which one can
compute||s—x||/[|s—m|| = ||s—x|| > 0.37.

On the other hand, sinaa € DMAT, C Aj,, we have by
definition ||s— m|| > Ifs(s) > 0.817D(s), by Lemma5.4.
Thus, the radiuss of Bsisrs = ||s—x|| < pD(s) < p/0.817-
|[s—m|| < 0.368: ||s— m||, contradicting ).

Let us denote the extreme positionssandx in the above
analysis bysp andxp.We have established thatands lie
below horizontal linespXp, see see Figui@b. For an arbitrary
x andswe now claim

[x=vIl — lxo =Vl
We know thats must always lie higher thar, For a fixed
point X, we can rotates aroundx until it lies at the same
height asx, without changing the above ratio, So we can
assume thas andx lie at the same height, witjix — v|| <
k1. The samples cannot lie in the polar ball around, and
in particular,s must lie below the dotted line segment. The
claim (3) follows.
Now to complete the proof we will show that the segment
is covered by a surface ball, namely by the ball around the
surface samplé closest tov. We are done if we can show
that the radius of this ball is at leasft — v|| + ||v— X]|:

4)
This implies thatry > ||t — v|| andrt > ||t — x|| (by the tri-

re=pD(t) > [[t—vi|+[[v—X]|

angle inequality), and thus ensures that the whole segmentimplying (4).

vx is covered. It establishes also that the starting poioft
the fiber is covered, irrespective of whether another Ball
intersectaym*“in an improper way”.

First we show that there is a sample pdimtith
It —v|| <0.123-Ifs(t) 5)

We distinguish two cases:
(a)v lies insideF (on the same side am), see Figuré(a).

Lett be the sample point closest ¥oThe pointv satisfies
the assumptions of Lemnta2 with respect td: By defini-
tion, v lies in the Voronoi cell ot. Moreover,v lies in none
of the polar balls around the vertices of DMAT Thus, by
Lemmab5.2a, [t —v|| < 0.123-Ifs(t).

(b) v lies outsideF, see Figuré(b). By Lemma5.4, there is
a polepin DMAT , such that

1PVl < g gpz- Im—V < 1224 [m—v]|

The segmentvp must intersect in some pointv.
Lemma4.3b limits the penetration of the surface poirihto
the ballBp:

V=] < (3/2:1%+0(r%)) - Ifs (V).
In particular, forr = 0.08,
[IV—v| <0.0114- Ifs(v).
The nearest sample pointrom vis less tham - Ifs(t) away:
IV—t]] < r-s(t)
The Lipschitz condition yields
Ifs(v) <Ifs(t) +||v—t]| < (1+r)-Ifs(t).
Therefore we get:
e =Vl < v — V]| + [Vt
< 0.0114- Ifs(v) +r - Ifs(t)
<0.0114 (1+r)lfs(t) +r-Ifs(t)
< 0.093fs(t) < 0.123f(t)

proving ).
We have, by Lipschitz continuity, and using) (

B(t) > B(S) — [ls— x| — x—v]| - [Iv—t]
> lls=x|/p— lIs— x| — x| — [v—t|
> 5(1/p— 1)l|x— V]| — [x—vi| - [v—t|
> 106- [x—v] - [v—t| (6)

By (5) and Lemmab.1, we have||v —t|| < 0.123. Ifs(t) <
0.123-1.2802-D(t) < 0.1579D(t) and hence

D(t) > 6.3-[[v—t|| (7

Multiplying (6) by 0.095, 7) by 0.175, and adding them to-
gether yields

0.27D(t) > [[x— V]| + [[v—t]I,
O

(8)

6. Pruning by set covering

If we have a sample that is much denser than required by our
conditions, we will get a correct “surface reconstruction”
but we would like to obtain a coarser approximation to re-
duce the data, while maintaining topological correctnéss.

will therefore only use a subset of the surface balls.

(© 2009 The Author(s)
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The lemma remains true if the shrinking facta0® is
replaced by a smaller number. This parameter allows us to
scale the algorithm to different levels of coarseness or re-
finement of the approximation. If the shrinking factor ap-
proaches 0, each shrunk ball will contain no sample points
except its center, and thus the full sample will be used.

The small radius @3- D that we have proved may not
seem very impressive, but it must be seen in relation with
the sampling constamt= 0.08. Thus, balls will start to be
eliminated as soon at the actual sampling density exceeds th
required minimum by a factor of about 4-5 (in terms of the
sampling radius).

Figure 10: The segment vm is covered by the enlarged ball

around u. The same approach works for approximating the me-
dial axis. Here we start with an enlarged set mjlar
balls DMAT{,, and produce an (almost) minimum subset

) o . DMAT /. whose union covers.
We establish a condition that is easy to check and guaran-

tees the correct topology: As before, we use balls of radius )
pD(u) around surface points; for each ball we also con- 7. Experimental data
sider a shrunk copy of radiysD(u), wherep = 0.03 < p.

X Due to lack of space, we only include two examples showing
We can then prove the following statement.

the output produced by our implementations, one for surface

Theorem 6.11f the shrunk balls around the pointsof a reconstruction and one for medial axis approximation.
subsetS C S cover all sample point§; then the union of Figurel1lillustrates how different choices of radii for sur-

the original balls (of radiupD(u)) around these points is  face balls lead to different levels of detail in the approaim
homotopy-equivalent tg". ing polyhedral surface mesh. The initial point cloud foisthi
Proof The proof proceeds via the statement of LenBré ‘double torus’ model consists of 85237 points. Due to the

In that proof, we have established the existence of a sample fféct of pruning, the mesh for the big ring is more and more
pointt that is close enough tosuch that the ball around coarsened, whereas the necessary details are preserved for

covers the segmenk This is extended to the present setting  the small ring. The running times for these computations (fo
as follows: we can now no longer be sure that the ball around 2 Single threaded application on a Core2 Duo E6700 CPU)

tis used, but there must be a (shrunk) ball around some sam-are shown in Tabld. Filtered floating point arithmetic has
ple pointu that coverg. Then the (original) ball aroundis been used.

large enough to guarantee that it reachves - -
We know, by the pruning condition, that the covering con- glj]rl:;ie balls ll;ié);: 115(156; 11595hsl
tains a ball of radiupD(u) around a sample point such Prunin i 355 | 159
that the shrunk ball with radiysd (u) coverst: 9
# Remaining balls| 85237 4198 549

lu—t| < pD(u) Weighteda-shape| 217s 7s 1s
From this, together with the above bour@) ¢n ||t —x||, we Table 1: Runtimes for the double torus model in Figure
obtain
Ju—x|| < [lu=t]+t—x]| < pD(u)+(p—p)D(u) = pD(u), We have implemented the medial axis algorithm for balls
and thus the baBy, coversx. L[] in [AKO1] with CGAL [CGA] and have used it to com-

pute the exact medial axis of the union of the balls in the
We try to select a minimum subset of surface balls whose set DMAT;,. The output is a topologically correct approx-

shrunk copies cover the whole sample. This is an instance of imation of the medial axis of the original object. The level
the (in general NP-hard) set covering problem AAH *07] of simplification is tuned by the parametewhich specifies
and JAAHKO09] a combination of exact and heuristic meth- how much to grow the radii before the pruning. Figdi
ods is described which yields not only an approximate solu- (model provided by the AIM@SHAPE RepositorIM])
tion but also a lower bound on the optimal solution, and in  shows four pruned medial axis transforms and medial axes,
our setting the gap between them is typically quite small. computed from a set of 39779 polar balls using different val-
ues ofe. Table2 shows the elapsed runtimes (in seconds) on

To get the input data for the set covering problem, the the same computing platform as before.

information about the sample points covered by each ball,
we use a simple spatial search structure, e.g. a kd-tree. The observed runtimes are practical for moderately large

(© 2009 The Author(s)
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(a) Without pruning:
85237 balls

(b) Transparent (c) Mesh on top of
85237 vertices

(d) After moderate (e) Transparent (f) Mesh on top of
pruning: 4198 balls 4198 vertices

(g) After heavy prun-
ing: 549 balls

(h) Transparent (i) Mesh on top of

549 vertices

Figure 11: Double torus reconstruction

Figure 12(a) | 12(b) 12(c) | 12(d)
Polar balls 87.1s| 87.1s| 87.1s| 87.1s
Pruning 151.2s| 207.5s| 289.3s| 340.9s
Medial axis | 152.2s| 25.7s 4.2s 1.3s

Table 2: Runtimes for the medial axes in Figur2

data sets, but naturally cannot compete with mesh recon-

struction methods that do not come with a topological guar-
antee (see e.gKBHO06]) or with medial axis algorithms
which are not scalableSFM07. Still, our approach com-
pares well with mesh reconstruction methods with guaran-
tee; see e.g.0GHO01. The strength of our method lies in
combining topological correctness with scalability.
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Appendix A: Proofs of technical lemmas
Lemma A.1 (Lemmab.2) Let sbe a sample point, and let
be a point with the following properties
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Figure 13: A point v that is not covered by the polar ball
must lie close to the surface.

e Vvliesin the Voronoi cell of.
e Vvis notin the interior of the polar ball around the pge
of sthat lies on the same side &f asv.

Then

(@) |lv—=—s|| =O(r) -Ifs(s). In particular, for = 0.08, the dis-

tance tosis at most 0123. Ifs(s).

(b) The distance from to the closest point on the surface

is O(r?Ifs(s)) = O(r?Ifs(v)). Forr = 0.08, the distance
[[v—V]| is at most 00355- Ifs(s) < 0.0424-Ifs(v).

Proof We perform the calculation for = 0.08, and only
indicate the asymptotic dependence nnWe will first
show part (a). Letp be the pole ofs on the same side
of the surface as. If ||[v—g|| > kr-Ifs(s) for k = 1.536,
the angle betweessv and the surface normal is at most
arcsink(l—l_r) + arcsinﬁ < 47.2°, see pB99, Lemma 4].
Similarly, the angle between the normal asiis at most
2arcsin’+ < 12.8°. In total the anglesspis less than 60.
Since||v—s|| < ||p—s||, by the definition of the pole, it fol-
lows thatv must be contained in the polar ball aroupd
whose radius i§p— §||, a contradiction. We thus conclude
thatv is contained in a ball of radius

kr-Ifs(s) < 0.123-Ifs(s) (= O(rlfs(s)))

arounds. Sincev avoids the polar baBp aroundp, it lies in
the shaded region indicated in Figur& The directiors pof
the polar ball deviates at most 2arcsfy < 12.8° (= O(r))
from the normal directiom ats. Thus the “highest” possible
position ofv is as indicated in the figure. We know that the
surface must pass above the opposite medial Balbf s,
and thus we can estimate the distance froto the surface
and prove (b). A straightforward calculation gives the lbun
[v—V] < 0.0355lfgs) (= O(r?lfs(s))). By the Lipschitz
condition,

0.03551fg(s) < 1—goresmass Ifs(V) < 0.0424 Ifs(V)

is obtained. [
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Figure 14: Schematic figure of an intersection of two polar
balls such that their intersection point v is not coveredhsy t
union of polar balls.

Lemma A.2 (Lemma5.3) Let pgbe an edge of the weighted
a-shapeAj, (Aout). Then the exterior angle of intersec-
tion between the polar ballBgq, Bp aroundp andq is at
least 120.

Proof Sincepgis an edge of the weightemtshape, there is

a pointv on the intersection of the boundaries of the two po-
lar ballsBp andBg which is not covered by any other polar
ball, see Figurel4. Therefore, the neighborhood wfcon-
tains points outside all polar balls and, by Lemma v is
close toF: For the closest surface pointve have

d = [[v—V]| <0.0424 Ifs(V).

Without loss of generality, we assume(ifs= 1. Consider
the medial ballB of v on the opposite site, with centen
and radiug|v—mj|| < Ifs(v) = 1. By [ACKO1, Lemma 17],

a polar ballBp or By intersects a medial bald on the op-
posite site at anglf < 2arcsin2. Let us focus on one ball
Bp and the anglgp between this ball and the surface normal
vm The other ball is treated in the same way, and the total
exterior angle is themp + @.

We havegp =y— T, wherey= Zpvm To get an upper bound
on @p (or ony), let us fix the angley and try to find circles
Bp andD that are consistent with this situation. We have the
following constraints:

(i) 1=1fs(¥) > [[v—ml;
(i) d:=|v—V] <0.0424 Ifs(v) < 0.0424;

(iii) The intersection angle betweeBp and D is B <
2arcsin2.

This gives us a distandic — v|| = 1+d, using the triangle
inequality we get|q— v|| = 1—d. For the trianglegcvonly
the segmengc is of unknown length. We consider also a
second triangle, formed by the poirgsc and one intersec-
tion pointi of the medial ball with the polar baBq. Again
only the distance of the segment is unknown. From the

>120°

Figure 15: The distance from the sample point s to the
weighteda-shape

triangles we get the following equations:

cosp =

for = Zevg= 11— B = m— 2 arcsin2, y = Zqic, d =
0.0355. Solving these equations fprgives an angle) =
2-(y-m/2)>120°0. O

Lemma A.3 (Lemmab5.4) If mis a point on an edgeq of
DMAT, (or in a trianglepgr of DMAT;,) andv is outside
or on the boundary dff (DMAT i) then

[[m—v|| > 0.817-min{|[p—v], |[d—V|[},

1+(1—d)’—||lc—q])?
2(1—d) )

(1+d)?+(1—d)?— || c—v]]?
2(1—d)(1+d) )

cosy =

(or||m—vl| > 0.817-min{||p—Vl|, [[q— VI [Ir —V||}, respec-
tively).

Proof We first consider the case whenlies on anedge
pg,as illustrated in Figuré5. Letm’ be the point orpq that
is closest tov. If M is one of the endpointg or g, we are
done:

Im =i > ||’ = v]| = min{||p— v, llg—v|I}.

Otherwise we know that' — v is perpendicular tpg. We
know from LemmaA.2 that the intersection of the two polar
balls Bp andBg cannot be too thin: their angle of intersec-
tion is at least 120. For fixed ballsBp andBg, the angles
and hence the ratios are minimized wtsdies on the inter-
section between the balls (the poigtin the figure).
Now keepingvy fixed at the intersection and considering
a variation of the ball88p and Bg, maintaining mif ||v —
pll,|lv—q]}, itis clear that the distance fromto the edge
pqis minimized when the anglg pvqis at its upper bound
of 60° and the two distances are equih— p|| = [[v—q]|.
Then the ratid|lv— V|| /|[v— p|| = cos 30 > 0.866.
Now consider the case whenlies in atriangle pqr. If the
point m’ on pgr that is closest tw lies on an edge or at a
vertex of the triangle, we have reduced the problem to the
previous case. Otherwise we know thdt— v is perpendic-
ular to pgr. The remaining argument is similar as in the case
of an edge: The extreme situation is a triangular pyramid
with equal angles/ pvg= Zqvr = Zrvp = 60° at the apex
m and equal side§p—v|| = ||g— V|| = ||r — Vv||. The ratio
between the height of this pyramid and the length- v|| is
(142cos60)/3>0.817. [
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