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Recovering Structure from r-Sampled Objects

O. Aichholzer†, F. Aurenhammer‡ , B. Kornberger‡, S. Plantinga§, G. Rote¶, A. Sturm‖, G. Vegter¶

Abstract

For a surfaceF in 3-space that is represented by a set S of sample points, we construct a coarse approximating
polytope P that uses a subset of S as its vertices and preserves the topology ofF . In contrast to surface reconstruc-
tion we do not use all the sample points, but we try to use as fewpoints as possible. Such a polytope P is useful as
a ‘seed polytope’ for starting an incremental refinement procedure to generate better and better approximations
of F based on interpolating subdivision surfaces or e.g. Bézierpatches.
Our algorithm starts from an r-sample S ofF . Based on S, a set of surface covering balls with maximal radii
is calculated such that the topology is retained. From the weightedα-shape of a proper subset of these highly
overlapping surface balls we get the desired polytope. As there is a rather large range for the possible radii for the
surface balls, the method can be used to construct triangular surfaces from point clouds in a scalable manner. We
also briefly sketch how to combine parts of our algorithm withexisting medial axis algorithms for balls, in order
to compute stable medial axis approximations with scalablelevel of detail.

1. Introduction

This paper deals with recovering structural information for
a 3-dimensional object that is represented by a sample point
cloud. More specifically, given an objectO in 3-space and
an r-sampleS of its boundary, we want to find an approxi-
mating polytopeP that uses a subset of the points inSas its
vertices and preserves the topology ofO. Our goal is, on the
one hand, to use as few points ofS as possible and, on the
other, to get a flexible approximation whose level of detail
can be tuned from coarse to fine. We also (briefly) address
the problem of finding piecewise linear approximations of
the medial axis ofO. Motivation for studying these prob-
lems is based on open problems in object simplification and
surface reconstruction, two fundamental tasks in several ar-
eas of computer science, like geometric modeling, computer
graphics, and computational geometry.
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The main support structure we use is an approximation
of the object in question with a union of balls. In the con-
text of object simplification, this approach is used for many
purposes, e.g. collision detection [Hub96], shape matching
[SS04], and shape interpolation [RF96], to name a few. Re-
garding surface reconstruction, approximating objects with
balls also plays a major role, see for example the power crust
algorithm [ACK01], related work [AB99,AK00,AK01] and
also [CL08], naming again only a few.

In our approach, which is similar to work in [CL08],
we build a union of so-calledsurface balls, centered at the
points in ourr-sampleSon the surfaceF of O, whose radii
adapt to the local feature size ofF . The desired approxi-
mating polytopeP is then extracted from the weighted alpha
shape [Ede95] of a carefully chosen subset of these balls. In
contrast to [CL08], where prior knowledge of the local fea-
ture size ofF is assumed, we obtain an estimation of this
function from the data, by using distances to poles [AB99]
(certain vertices of the Voronoi diagram forS). Using a tai-
lored technique of pruning the surface balls, we obtain a
coarse-to-fine approximation ofF by polytopes. This is the
first result that uses, from a practical point of view, approxi-
mations of local feature size and medial axis to obtain locally
adaptive reconstructions of an unknown surface.

The polytopes we construct are topologically correct re-
constructions ofF . Thus our results differ from existing

c© 2009 The Author(s)
Journal compilationc© 2009 The Eurographics Association and Blackwell Publishing Ltd.
Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and
350 Main Street, Malden, MA 02148, USA.

mailto:oaich@ist.tugraz.at
mailto:bkorn@ist.tugraz.at
mailto:auren@igi.tugraz.at
mailto:simon@cs.rug.nl
mailto:gert@cs.rug.nl
mailto:rote@inf.fu-berlin.de
mailto:sturm@inf.fu-berlin.de


Aichholzer, Aurenhammer, Kornberger, Plantinga, Rote, Sturm, Vegter / Recovering Structure from r-Sampled Objects (p. 2)

multi-scale surface reconstruction techniques in [NSW08,
CL08, CCSL09, GO08] where topological filtering occurs.
At the coarsest level, the polytope we obtain is what we
call ’seed polytope’, as it provides not only a coarse ap-
proximation ofF but also a mapping of the non-used sam-
ple points inS to the vertices of the polytope. Such a map-
ping is needed for incrementally generating approximations
of F based on interpolating subdivision surfaces or Bézier
patches. We stress that the intended purpose of the seed
polytope is not primarily in approximatingF but rather in
serving as a (topologically correct and small) starting struc-
ture for subsequent approximations by patches. We thus do
not try to keep the approximation error small for the seed
polytope itself, and use this additional freedom to keep the
polytope small. In a previous related approach [BPR∗07],
point clouds in convex position are approximated by spheri-
cal patches.

Strongly related to the surface reconstruction is the me-
dial axis approximation; we refer to [ABE07] for a recent
survey paper on medial axes and their algorithmic construc-
tion. In this area, many algorithms are based on unions of
balls as well, for example [BO04, GMP07, YBM04]. We
briefly describe how a variant of our approach, now for
balls centered at poles instead on sample points, combines
with an existing medial axis algorithm for balls [AK01]
to an efficient and stable medial axis approximation algo-
rithm for general objects. It is known that sufficiently dense
r-samples lead to topologically correct medial axis approxi-
mations; see [AK00] and, for a result more general than for
poles, [AB03].

2. Definitions and notation

Throughout this paper, letO denote the original solid object
and letF denote its surface. The following definitions are
standard.

Definition 1

• The medial axis transformof O is the (infinite) set of
maximal balls that avoidO, where maximality is with
respect to inclusion. The set of the centers of these balls
forms themedial axisof O. The surfaceF splits the me-
dial axis in aninner medial axisand anouter medial axis.

• The local feature sizelfs(x) of a pointx∈ F is the min-
imum distance fromx to any point on the medial axis
of O.

• A finite point setS⊂ F is an r-sampleof F if every
point x ∈ F has at least one point ofS within distance
r · lfs(x) [AB99].

In this paper, we will assume thatS is anr-sample ofF
for r = 0.08.

For each sample points∈ S, we define two vertices of the
Voronoi diagram ofSas thepolesof s, see [AB99]: the inner
poleis the vertex of the Voronoi cell ofs farthest away froms

and in the interior ofO, and theouter poleis the farthest one
from s and outsideO. For the inner polep of each sites we
consider the ball with centerp and radius‖p− s‖. We refer
to the set of these polar balls as the(inner) discrete medial
axis transformDMAT in. Analogously, we generate a set of
outer polar balls and denote it by DMATout.

Definition 2

• The discrete medial axis DMin (DMout) is the medial
axis of the union of polar balls in the sets DMATin
(DMATout).

• Thediscrete local feature sizẽlfs(x) of a pointx ∈ F is
the minimum distance fromx to DMin ∪DMout.

• Thepole distanceD̂(x) of a pointx is the distance to the
nearest pole.

We will see thatD̂ is a good estimate of̃lfs (Corollary5.5),
as well as an upper bound on the true local feature size
(Lemma5.1). In practice,D̂ is easier to compute thañlfs,
and the true local feature size is not computable at all.

Theweightedα-shapeis the dual shape of a union of balls
[Ede95]. It is a simplicial complex whose vertices are the
centers of the balls, and which is homotopy-equivalent to
the union of balls. We will refer to the weightedα-shape of
DMAT in asAin and to the one of DMATout asAout.

Proposition 2.1 [AK01] Let Ain andAout be the weighted
α-shapes of DMATin,DMATout. Then we have

DMin ∪DMout ⊆Ain ∪Aout.

3. Our approach

The flowchart in Figure1 gives an overview of the work
flow for the three tasks considered in this paper: Comput-
ing a seed polytope, a scalable surface reconstruction, and
the medial axis.

In all cases we start with anr-sampleS of the objectO
as input and compute from it the two discrete medial axis
transforms DMATin and DMATout.

These sets serve two purposes: For seed polytopes and
scalable surface reconstruction we use them in order to esti-
mate bounds on the local feature size of the sample points.
For medial axis approximation, we use a pruned version of
DMAT in with slightly enlarged radii, representing the object
O in a compact and faithful way.

The union of surface balls. A surface ballis a ball with
center at a sample points∈S. For seed polytopes, our goal is
to represent the surfaceF of O in a topological correct way
with as few faces as possible. We try to make the surface
balls as large as possible, while guaranteeing correct topol-
ogy of the the unionU(BF ) of the setBF of surface balls. A
subsequent pruning step will throw away some of these balls
whenever the sample is denser than necessary. For surface
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Figure 1: Work flow

reconstruction, we will output meshes of scalable complex-
ity. The only modification necessary to reach this goal is to
choose surface balls with smaller radii.

Pruning. To decide which balls to keep, we solve a combi-
natorial problem. We (virtually) shrink the balls inBF and
compute a minimal subsetB′

F of BF such that the shrunk
balls cover the sampleS. This is aset covering problem,
which is solved by a heuristic. The advantage of this ap-
proach is that the selection of the pruned subset proceeds
now in a purely combinatorial manner, without regard to ge-
ometry and topology. The radii of the shrunk balls are cho-
sen in such a way that covering ofS by a subset of shrunk
balls guarantees that the original, unshrunk, surface balls
cover the surfaceF , and moreover, their union represents
the topology ofF correctly.

The polyhedral approximation. Finally we compute the
weightedα-shape ofB′

F , which has the same topology asF
and which gives the desired seed polytope. The vertices of
the weightedα-shape are points inS, because the centers of
the balls inB′

F have been chosen fromS. We use the power
diagram ofB′

F to find out which vertex of the polytope each
sample points∈ Sbelongs to and provide a list of pointers
representing this relation.

Medial axis approximation. The medial axis algorithm of
Amenta et al. [AK01] could be used to compute the medial
axis of the union of the balls in DMATin. However, medial
axes are in general unstable because of their disproportional
response to even small perturbations on the object surface.

α

F

Figure 2: A wiggly curveF with a point sample on a straight
line. (Adapted from [AK00].)

Therefore, and also due to noise and numerical inaccuracies,
DMAT in might contain balls far from a reasonably pruned
approximation of the medial axis ofO in practice, as small
details might be (correctly) approximated that nevertheless
are not needed in the application. Moreover, becauseS is a
denser-sample, the centers of the balls in DMATin sample
the medial axis in a much too dense way. We provide an ad-
equate input for the medial axis algorithm [AK01] by reduc-
ing the number of balls significantly and thereby stabilizing
DMAT in.

This is done by adding a small distanceε to the radii of
the balls in DMATin. Thus we get an enlarged set DMAT′

in
which we use to compute a covering matrix. Our set covering
algorithm finds a small subset DMAT′′in of DMAT ′

in which
covers all sample points (but not necessarilyF). The goal
of stabilization of DMATin is implicitly reached because the
set covering algorithm favors balls covering many sample
points (which have their center near the medial axis and are
therefore usually larger than unstable ones). The degree of
simplification (and thus the level of detail of the approxi-
mated medial axis) is scalable by the choice ofε.

No implementation of the algorithm developed in [AK01]
was available and so we have implemented it using CGAL
[CGA]. We obtain—in combination with our pruning
technique—stable and efficient medial axes. In practice, the
approach works even for poorly sampled inputs which do
not meet ther-sampling condition at all; see a companion
paper [AAHK09]. Of course, no theoretical guarantees can
be given in that case.

Obtaining the local feature size.A distinguishing feature
of our problem setting is that we cannot get a lower estimate
on the local feature size. Figure2 shows a section of a curve
F that consists of alternating short circular arcs. The hor-
izontal lines are part of the medial axis. The points of the
r-sampleS are aligned vertically. By reducing the angleα,
such an example can be built for anyr > 0. The algorithm
sees only these samples. Thus, to the algorithm, this input is
indistinguishable from a very densely oversampled straight
line.
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4. Technical results

In order to generate adequate sets of polar balls and surface
balls (in both cases, the topology must be maintained), we
need to derive certain information concerning the local fea-
ture size of the sampled object. The present and the subse-
quent section are devoted to this issue. We obtain several
new properties ofr-sampled objects for suitable values ofr.

Let Min andMout denote the inner and the outer medial
axis of the given objectO, respectively. We start by bound-
ing the distance of poles to the respective parts of the medial
axis—a result crucial for bounding the radii of surface balls
in Section5.

Theorem 4.1 For an r-sampleS, let p be an inner (resp.
outer) pole of a sample points∈ S, and denote withBp the
inner (outer) polar ball ofs, with radiusRp. The distance
from p toMin (Mout) is at mostO(r) ·Rp.

In the limit, when the sampling density approaches zero,
poles and the medial axis coincide, as has already been
shown by Amenta et al. [ACK01, Theorem 35]. In contrast to
this result, we give an explicit quantitative analysis in terms
of r. Results similar to Theorem4.1 have been shown (see
e. g. [ACK01, Lemma 34], on which Theorem 35 is based,
or [BC01, Proposition 16]). However, we could not use these
results, since they hold only when the angle between the two
closest surface points to a given point onMin (Mout) is not
too small, (These points form theγ-medial axis.)

Proof The idea of the proof is to turn the polar ballBp into
a medial ball, while not moving its center too much. The
proof is based on several technical lemmas which are given
subsequently. We proceed in three steps, see Figure3:

1. While keeping the center ofBp fixed we shrink the ra-
dius of Bp until the ball becomes empty, touching the
surfaceF of O at some pointx0. By Lemma4.2 below,
the difference∆1 between the new radius and the original
radiusRp is at most∆1 = O(r2) ·Rp.

2. We expand the shrunken ball from the touching pointx0

by moving its center in the direction
→

x0p until either

(2a) the ball has the original radiusRp of Bp, or
(2b) the ball touches the surface at another point. If this

occurs we have found a point ofMin within distance
∆1, and we are done.

3. In case (2a), we “roll” the new ballB′
p (with radiusRp)

on the surface. More precisely, letK1 be the component
of Bp∩F which containsx0. Consider the balls of radius
Rp that are tangent toF in a point ofK1 and lie on the
same side ofF as p. The locus of the centers of these
balls is the inner parallel surfacēF of K1. We claim that
the rolling ball touches another point ofF , and therefore
F̄ contains a point ofMin.

We prove this by contradiction. Let us suppose that the
ball can roll onK1 without ever touching a second point

p

F

K1

Bp

O(r2)

B′

p

p′ ∈ F
mx ∈ F

Rp
Rp

Rp

my ∈ F

x0

Figure 3: After shrinking and expanding the ball Bp we roll
the new ball B′p on K1 (e.g. the gray ball).

Bp
BT

t

cp x v

l
Rp

l · r l · sinα

α

Figure 4: Deepest penetration into Bp

of F . K1 cutsBp into two parts:B+ containingp, and
the restB−. By Lemma4.4below,B+ is completely cov-
ered by the tangent balls ofK1. Since by assumption these
balls never hit another point ofF , it follows that K1 is
the only component ofF ∩Bp. Let s∈ Bp be the sam-
ple point whose pole isp. This point must lie onK1 and
therefore we can roll the empty tangent ball of radiusRp

to s. The radiusRM of the medial ball ats is therefore
at leastRp. On the other hand, each point of the me-
dial axis is contained in the Voronoi cell of the nearest
sample point, therefore‖p− s‖= Rp ≥ RM. This implies
Rp = RM and the tangent ball ats has its center onMin,
and we are done. We remark that this last case can ac-
tually never arise, sinceRp > RM unless the medial axis
branches and the ball touchesF in several points.
We have established that̄F contains a pointmx of Min
which is the center of a medial ball with radiusRp touch-
ing K1 in x. We know by Lemma4.3a that the angle
γ = ∠mxxp is at most 3r + O(r). Thus, ‖p−mx‖ ≤
Rp · (3r +O(r2)).

In the following, we will assume thatp is an inner pole.
(The situation is symmetric for outer poles.)

Lemma 4.2Let p be a pole with polar radiusRp. The surface
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p

x

K1

F

T

nx

w

σ+

y

Figure 5: The tangent balls of K1 cover B+

F cannot get closer top than

Rp

(√
1−4(r2− r4

4 )− r2
)
≥ Rp

(
1−3r2−O(r4)

)
.

For anr-sample withr = 0.08 the distance between the cen-
ter p of a polar ball with radiusRp andF is larger than
0.9807·Rp.

Proof Let x be the point onF closest top. Let BT be
an empty outer ball tangent tox with centerc and radius
l = lfs(x). By the sampling condition, there must be a sam-
ple t within distancerl of x. t lies outside the ballsBp and
BT and therefore the distance fromx to the circle∂Bp∩∂BT
is at mostr · l (see Figure4). Thus, the angleα = ∠cpt is
bounded by sinα2 ≤ r

2 . For fixedl andRp, the pointx is clos-
est top whenα is maximized. We thus analyze the situation
for sin α

2 = r
2 :

sinα = 2sin
α
2

cos
α
2
≤ 2 ·

r
2

√
1− r2

4 =

√
r2− r4

4

‖v− p‖ =
√

R2
p− (l ·sinα)2 =

√
R2

p− l2 · (r2− r4

4 )

‖v− x‖ =
√

(l · r)2− (l ·sinα)2 =
√

(l · r)2− l2 · (r2− r4

4 ) =
l · r2

2

‖x− p‖ ≥ ‖v− p‖−‖v− x‖
√

R2
p− l2 · (r2− r4

4 )−
l · r2

2

The inner polar ballBp contains a point ofMin ( [ACK01,
Corollary 13]), thereforel ≤ 2Rp. It follows that the distance
betweenp andF is at least

√
R2

p−4 ·R2
p · (r2− r4

4 )−Rp · r
2 =

Rp ·
(√

1−4 · (r2− r4

4 )− r2
)
,

as claimed in the lemma.

Lemma 4.3Let x be a surface pointx inside a polar ballBp

with centerp.

a) The angleγ between−→xp and the surface normal atx is
bounded by 3r +O(r2) = O(r).

b) (The penetration bound) The distance fromx to the
boundary ofBp is is bounded by32 lfs(x)(r2 +O(r3)).

Part b of the lemma is similar to Lemma4.2, except that
the penetration of the surface pointx into the pole ballBp is
measured in terms of lfs(x), and not in terms of the radius of
Bp.

The proof of Lemma4.3 is omitted for lack of space.

To complete the proof of Theorem4.1, we still need to
show that the tangent balls ofK1 cover all parts ofB+. Re-
call thatK1 cutsBp in two parts:B+ containingp, and the
restB−.

Lemma 4.4The tangent balls ofK1 completely coverB+.

Proof Let w ∈ B+ and letx be the closest point ofK1. We
claim that the tangent ball atx coversw. If x lies in the in-
terior of K1, thenwx is perpendicular toF , and the claim
is obvious. Let us assume thatx is at the boundary ofK1,
that isBp∩F (see Figure5). Assume that the surface nor-
mal nx does not go throughp; otherwise it is obvious that
w is covered. Consider the planeσ throughnx and through
the pointp. Figure5 shows the projection on this plane. Lo-
cally aroundx, F is approximated by the tangent planeT
andBp∩F is the halfspace ofT that projects onto the rayxy
in Figure5. It follows thatx can only be the point ofK1 clos-
est tow, if w lies in the planeσ and in the closed halfplane
σ+ of σ which is bounded bynx and does not containp.

5. Construction of balls

5.1. Polar balls

For the set DMATin of inner polar balls, it is well
known [AK00] that the union of the balls in this set is home-
omorphic to the original objectO. Recall that each ball in
DMAT in is the circumball of a Delaunay tetrahedron and
therefore has at least four points ofS on its boundary and
no such point in its interior. From DMATin we generate a
set DMAT′in of slightly enlarged balls which are still cen-
tered onS. Such a ball typically covers tens or even hun-
dreds of points ofS. In a subsequent set covering step, this
redundancy in covering will be eliminated, and thereby only
a small and stable subset of DMAT′

in will be kept. We have
to ensure, for the goal of topologically correct medial axis
approximation, that the union of DMATin and the union
of DMAT ′

in are topologically equivalent. Using the lower
bound on the discrete local feature size of sample points de-
veloped in Lemma5.4 below, it is easy to check whether
DMAT ′

in ∩Aout = ∅.

5.2. Surface balls

In order to maintain correct topology of the piecewise linear
surface reconstruction, the surface balls we generate haveto
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Figure 6: Distance from pole p to the medial axis point mx

be large enough such that their union does not only coverS
but alsoF and, on the other hand, these balls avoid the me-
dial axis of the union of the balls in DMATin and DMATout.
The above restrictions limit the possible radii to a certain
range. Maximizing the radii within this range will lead to a
coarse result (which is desirable for seed polytopes), while
minimizing the radii of the surface balls will lead to a faith-
ful and detailed representation of the object. The choice of
the radii determines the degree by which the surface balls
are pruned in a subsequent set covering step.

5.2.1. Lower bound on the radii

To ensure thatF is completely covered by surface balls we
choose the radii of the surface balls such that they cover at
least the intersection of their site’s Voronoi cells withF . For
a point s in an r-sample, this intersection is covered by a
sphere aroundswhose radius isρ≥ r

1−r · lfs(s), see [AB99],
and so the surface balls need to have at least that radius. As
lfs(s) is unknown, we need to estimate it in terms of the dis-
tanceD̂(s) betweens and the nearest among the poles of all
sample points. Using Lemma5.1below, we get

lfs(s) ≤ 1.2802· D̂(s)

and so we must choose the radiusρ of a surface ball around
s to be at least

ρ ≥ r
1−r ·1.2802· D̂(s).

The distancêD(s) can be calculated relatively easily using a
spatial search structure.

Lemma 5.1Let s∈ Sbe a point of anr-sampleSwith r ≤
0.08, and letD̂(s) = ‖s− p‖ denote its distance to the nearest
pole p. Then

lfs(s) ≤ 1.2802· D̂(s).

Proof The local feature size ofs cannot be larger than̂D(s)
plus the distance fromp to the medial axis. To bound the
latter distance for a specific value ofr, we revisit the cases

developed in Theorem4.1 (and we use the notation intro-
duced there). If case (2a) occurs we know thatF̄ contains a
point mx ∈ Min (Mout); see Figure6. By Lemma4.3a, the
maximum angle between the touching pointx ∈ K1 of the
medial ball centered atmx and p is γ = ∠mxxp< 14.99◦ if
r ≤ 0.08. By Lemma4.2,

d = ‖x− p‖ ≥

(√
1−4(r2− r4

4 )− r2
)
·Rp > 0.9807·Rp.

Therefore

‖p−mx‖ ≤ 2 ·Rp ·sin(
γ
2
)+(1−0.9807)Rp < 0.2802·Rp

which is at most 0.2802· D̂(s) becauses lies outside the po-
lar ball centered atp. Otherwise, case (2b) occurs and by
Lemma4.2, p is not farther fromMin (Mout) than

Rp · (1−
√

1−4 · (r2− r4

4 )+ r2) < 0.0193·Rp.

The lemma follows.

5.2.2. Upper bound on the radii

To prevent surface balls from ”different” parts ofF from
intersecting we want to ensure that they don’t reach the dis-
crete medial axisDMin (resp.DMout). Thus, the discrete lo-
cal feature sizẽlfs(s) is an upper bound on the radius that
we can use. We will replacẽlfs(s) by a smaller value, that is
easier to compute, see Proposition2.1.

Consequently, the minimum distance froms to any of the
two weightedα-shapes is a lower bound oñlfs(s). Comput-
ingAin andAout and determining the minimum distance di-
rectly would consume too much time and memory, however.
We show how to estimate this distance, again using the dis-
tanceD̂(s) to the nearest pole tos.

Lemma 5.2Let sbe a sample point, and letv be a point with
the following properties

• v lies in the Voronoi cell ofs.
• v is not in the interior of the polar ball around the polep

of s that lies on the same side ofF asv.

Then

(a) ‖v−s‖ = O(r) · lfs(s). In particular, forr = 0.08, the dis-
tance tos is at most 0.123· lfs(s).

(b) The distance fromv to the closest point ¯v on the surface
is O(r2 lfs(s)) = O(r2 lfs(v̄)). For r = 0.08, the distance
‖v− v̄‖ is at most 0.0355· lfs(s) ≤ 0.0424· lfs(v̄).

Lemma 5.3Let pq be an edge of the weightedα-shapeAin
(Aout). Then the exterior angle of intersection between the
polar ballsBq, Bp aroundp andq is at least 120◦.

Based on the preceding lemmas, it is possible to derive
the following bound oñlfs(s).

Lemma 5.4 If m is a point on an edgepqof DMAT in (or in a
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trianglepqr of DMAT in) andv is outside or on the boundary
of U(DMAT in) then

‖m− v‖ ≥ 0.817·min{‖p− v‖,‖q− v‖},

(or‖m−v‖≥ 0.817·min{‖p−v‖,‖q−v‖,‖r−v‖}, respec-
tively).

The proofs for these lemmas are given in the appendix.

Corollary 5.5 Let s∈ Sbe a sample point, and let̂D(s) be
its distance to the nearest pole. Then

D̂(s) ≥ ˜lfs(s) ≥ 0.817· D̂(s).

Proof Since the poles are part of the discrete medial axis, the
inequality ˜lfs(s) ≤ D(s) is obvious. For the other direction,
we bound˜lfs by the distance fromv to the weightedα-shape
A of the polar balls, which contains the discrete medial axis.
The proof of the lower bound on the ratio

˜lfs(v)
D

=
‖v−m‖

D
≥ max

{
‖v−m‖

‖v− p‖
,
‖v−m‖

‖v−q‖

}
,

follows from Lemma5.4.

5.3. Topological Correctness

To show that the unionU(BF) of surface balls is homotopy-
equivalent to the surfaceF , we follow the standard approach
of using a fibration (a partition ofU(BF) into a continuous
family of curves, each intersectingF in a single point) and
moving the boundaries ofU(BF) along the fibers towardsF .

The usual fibration by surface normals does not work
since the medial axis might be closer than it appears from
looking at the sample points, see Figure2. Instead we use
the fibers of the unionU(DMAT in) of all polar balls. It is
known that this union is homotopy-equivalent toO, and its
boundary is homotopy-equivalent toF [AK00].

The boundary of the unionU(DMAT in) is not smooth,
but still, it is in a certain sense “smooth from the inside”
(it has no convex edges or vertices) and has therefore a rea-
sonable fibration connecting the boundary to its inner me-
dial axis DMATin, see Figure7. We concentrate on the in-
ner discrete medial axis DMATin; the outer discrete medial
axis DMATout is treated analogously. The fibers are line seg-
ments that partitionU(DMAT in)\DMin, and they run from a
surface pointv on the boundary to a pointmon the inner dis-
crete medial axisDMin. In three dimensions, there are three
types of fibers: from a pointv on a spherical patch of the
boundary to a vertexm of the medial axis; from a pointv on
a circular edge formed as the intersection of two spheres to a
pointmon an edge of the medial axis; and from a vertexv of
the boundary, formed as the intersection of three (or more)
spheres to a pointm on a face of the medial axis. Our proof
treats all three cases uniformly.

We take the radius of the surface balls asρD̂(s) where the
factorρ can be chosen in the interval

ρmin = 0.24≤ ρ ≤ ρmax = 0.56. (1)

v

m

v
′

m
′

Figure 7: Part of the fibration which is used to show isotopy.
The shaded area is the weightedα-shape.
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1
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Figure 8: A ball Bs that intersects the fiber vm improperly

The upper bound ensures that the surface balls do not inter-
sect the discrete medial axis, and the lower bound ensures
that they are large enough to cover the surface completely.
The bounds are stricter that would be required to reach only
these two goals, since we also want to achieve ensure topo-
logical correctness of the unionU(BF) of surface balls:

Lemma 5.6If ρ is chosen in the interval (1), every fiber from
a pointv on the boundary ofU(DMAT in) to a pointm on
the medial axis ofU(DMAT in) starts in the unionU(BF) of
surface balls and intersects the boundary ofU(BF) precisely
once.

The lemma implies that the boundary ofU(BF ) can be con-
tinuously deformed along the fibers into the boundary of
U(DMAT in), and thus the two boundaries are homotopy-
equivalent. The boundary ofU(DMAT in) is already known
to be homotopy-equivalent toF , and thus, the correct topol-
ogy is established.

Proof For simplicity we prove the bound forρ = 0.3. The
calculation for generalρ is slightly more involved.
Let Bs be a surface ball around a sample points such that
the segmentvm entersBs in a point x, see Figure8a. We
will show that this does not lead to a violation of the lemma,
because the segmentvx is covered by the union of surface
balls. We assume without loss of generality thatvm is verti-
cal and‖m−v‖ = 1. We first show thatx must have distance
‖x− v‖ ≤ k1 for k1 = 0.074.
Suppose that this is not true. The medial ball of radius 1
aroundm is inside the union of balls, and hence it does not
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Figure 9: A ball Bs that intersects the fiber vm improperly, v
lies either insideF (a) or outsideF (b)

contains: ‖s−m‖ ≥ 1. We claim that this implies

‖s− x‖ > 0.37· ‖s−m‖. (2)

We know thatsmust lie outside the ball of radius 1 aroundm;
s must also lie above the horizontal line throughx. Thus,s
is restricted to the shaded area in the figure. The ratio‖s−
x‖/‖s−m‖ is minimized whenx is as low as possible (‖x−
v‖ = k1) and s is at the lower right corners0 of this area.
Here we have‖s−x‖2 +(1−k1)

2 = 1, from which one can
compute‖s− x‖/‖s−m‖ = ‖s− x‖ > 0.37.
On the other hand, sincem∈ DMAT in ⊆ Ain, we have by
definition ‖s− m‖ ≥ ˜lfs(s) ≥ 0.817D̂(s), by Lemma5.4.
Thus, the radiusrs of Bs is rs = ‖s−x‖ ≤ ρD̂(s)≤ ρ/0.817·
‖s−m‖ < 0.368· ‖s−m‖, contradicting (2).
Let us denote the extreme positions ofs andx in the above
analysis bys0 and x0.We have established thatx ands lie
below horizontal lines0x0, see see Figure8b. For an arbitrary
x andswe now claim

‖s− x‖
‖x− v‖

≥
‖s0− x0‖

‖x0− v‖
≥ 5. (3)

We know thats must always lie higher thanx, For a fixed
point x, we can rotates aroundx until it lies at the same
height asx, without changing the above ratio, So we can
assume thats andx lie at the same height, with‖x− v‖ ≤
k1. The samples cannot lie in the polar ball aroundm, and
in particular,s must lie below the dotted line segment. The
claim (3) follows.
Now to complete the proof we will show that the segmentvx
is covered by a surface ball, namely by the ball around the
surface samplet closest tov. We are done if we can show
that the radiusrt of this ball is at least‖t − v‖+‖v− x‖:

rt = ρD̂(t) ≥ ‖t − v‖+‖v− x‖ (4)

This implies thatrt ≥ ‖t − v‖ and rt ≥ ‖t − x‖ (by the tri-
angle inequality), and thus ensures that the whole segment
vx is covered. It establishes also that the starting pointv of
the fiber is covered, irrespective of whether another ballBs

intersectsvm“in an improper way”.
First we show that there is a sample pointt with

‖t − v‖ ≤ 0.123· lfs(t) (5)

We distinguish two cases:
(a) v lies insideF (on the same side asm), see Figure9(a).

Let t be the sample point closest tov. The pointv satisfies
the assumptions of Lemma5.2 with respect tot: By defini-
tion, v lies in the Voronoi cell oft. Moreover,v lies in none
of the polar balls around the vertices of DMATin. Thus, by
Lemma5.2a,‖t − v‖ ≤ 0.123· lfs(t).
(b) v lies outsideF , see Figure9(b). By Lemma5.4, there is
a polep in DMAT in such that

‖p− v‖ ≤
1

0.817
· ‖m− v‖ ≤ 1.224· ‖m− v‖

The segmentvp must intersectF in some point ¯v.
Lemma4.3b limits the penetration of the surface point ¯v into
the ballBp:

‖v̄− v‖ ≤ (3/2 · r2 +O(r3)) · lfs(v̄).

In particular, forr = 0.08,

‖v̄− v‖ ≤ 0.0114· lfs(v̄).

The nearest sample pointt from v̄ is less thanr · lfs(t) away:

‖v̄− t‖ ≤ r · lfs(t)

The Lipschitz condition yields

lfs(v̄) ≤ lfs(t)+‖v̄− t‖ ≤ (1+ r) · lfs(t).

Therefore we get:

‖t − v‖ ≤ ‖v− v̄‖+‖v̄− t‖

≤ 0.0114· lfs(v̄)+ r · lfs(t)

≤ 0.0114· (1+ r) lfs(t)+ r · lfs(t)

≤ 0.093lfs(t) ≤ 0.123lfs(t)

proving (5).
We have, by Lipschitz continuity, and using (3),

D̂(t) ≥ D̂(s)−‖s− x‖−‖x− v‖−‖v− t‖

≥ ‖s− x‖/ρ−‖s− x‖−‖x− v‖−‖v− t‖

≥ 5(1/ρ−1)‖x− v‖−‖x− v‖−‖v− t‖

> 10.6 · ‖x− v‖−‖v− t‖ (6)

By (5) and Lemma5.1, we have‖v− t‖ ≤ 0.123· lfs(t) ≤
0.123·1.2802· D̂(t) < 0.1575D̂(t) and hence

D̂(t) > 6.3 · ‖v− t‖ (7)

Multiplying (6) by 0.095, (7) by 0.175, and adding them to-
gether yields

0.27D̂(t) ≥ ‖x− v‖+‖v− t‖, (8)

implying (4).

6. Pruning by set covering

If we have a sample that is much denser than required by our
conditions, we will get a correct “surface reconstruction”,
but we would like to obtain a coarser approximation to re-
duce the data, while maintaining topological correctness.We
will therefore only use a subset of the surface balls.
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Figure 10: The segment vm is covered by the enlarged ball
around u.

We establish a condition that is easy to check and guaran-
tees the correct topology: As before, we use balls of radius
ρD̂(u) around surface pointsu; for each ball we also con-
sider a shrunk copy of radius̄ρD̂(u), whereρ̄ = 0.03 < ρ.
We can then prove the following statement.

Theorem 6.1 If the shrunk balls around the pointsu of a
subsetS′ ⊆ S cover all sample pointsS, then the union of
the original balls (of radiusρD̂(u)) around these points is
homotopy-equivalent toF .

Proof The proof proceeds via the statement of Lemma5.6.
In that proof, we have established the existence of a sample
point t that is close enough tov such that the ball aroundt
covers the segmentvx. This is extended to the present setting
as follows: we can now no longer be sure that the ball around
t is used, but there must be a (shrunk) ball around some sam-
ple pointu that coverst. Then the (original) ball aroundu is
large enough to guarantee that it reachesvx.
We know, by the pruning condition, that the covering con-
tains a ball of radiusρD̂(u) around a sample pointu such
that the shrunk ball with radius̄ρD̂(u) coverst:

‖u− t‖ ≤ ρ̄D̂(u)

From this, together with the above bound (8) on‖t − x‖, we
obtain

‖u−x‖≤‖u−t‖+‖t−x‖ ≤ ρ̄D̂(u)+(ρ− ρ̄)D̂(u) = ρD̂(u),

and thus the ballBu coversx.

We try to select a minimum subset of surface balls whose
shrunk copies cover the whole sample. This is an instance of
the (in general NP-hard) set covering problem. In [AAH∗07]
and [AAHK09] a combination of exact and heuristic meth-
ods is described which yields not only an approximate solu-
tion but also a lower bound on the optimal solution, and in
our setting the gap between them is typically quite small.

To get the input data for the set covering problem, the
information about the sample points covered by each ball,
we use a simple spatial search structure, e.g. a kd-tree.

The lemma remains true if the shrinking factor 0.03 is
replaced by a smaller number. This parameter allows us to
scale the algorithm to different levels of coarseness or re-
finement of the approximation. If the shrinking factor ap-
proaches 0, each shrunk ball will contain no sample points
except its center, and thus the full sample will be used.

The small radius 0.03· D̂ that we have proved may not
seem very impressive, but it must be seen in relation with
the sampling constantr = 0.08. Thus, balls will start to be
eliminated as soon at the actual sampling density exceeds the
required minimum by a factor of about 4–5 (in terms of the
sampling radius).

The same approach works for approximating the me-
dial axis. Here we start with an enlarged set ofpolar
balls DMAT ′

in, and produce an (almost) minimum subset
DMAT ′′

in whose union coversS.

7. Experimental data

Due to lack of space, we only include two examples showing
the output produced by our implementations, one for surface
reconstruction and one for medial axis approximation.

Figure11illustrates how different choices of radii for sur-
face balls lead to different levels of detail in the approximat-
ing polyhedral surface mesh. The initial point cloud for this
‘double torus’ model consists of 85237 points. Due to the
effect of pruning, the mesh for the big ring is more and more
coarsened, whereas the necessary details are preserved for
the small ring. The running times for these computations (for
a single threaded application on a Core2 Duo E6700 CPU)
are shown in Table1. Filtered floating point arithmetic has
been used.

Figure 11abc 11def 11ghi
Surface balls 55s 55s 55s
Pruning - 35s 159s
# Remaining balls 85237 4198 549
Weightedα-shape 217s 7s 1s

Table 1: Runtimes for the double torus model in Figure11

We have implemented the medial axis algorithm for balls
in [AK01] with CGAL [CGA] and have used it to com-
pute the exact medial axis of the union of the balls in the
set DMAT′′in. The output is a topologically correct approx-
imation of the medial axis of the original object. The level
of simplification is tuned by the parameterε which specifies
how much to grow the radii before the pruning. Figure12
(model provided by the AIM@SHAPE Repository [AIM ])
shows four pruned medial axis transforms and medial axes,
computed from a set of 39779 polar balls using different val-
ues ofε. Table2 shows the elapsed runtimes (in seconds) on
the same computing platform as before.

The observed runtimes are practical for moderately large
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(a) Without pruning:
85237 balls

(b) Transparent (c) Mesh on top of
85237 vertices

(d) After moderate
pruning: 4198 balls

(e) Transparent (f) Mesh on top of
4198 vertices

(g) After heavy prun-
ing: 549 balls

(h) Transparent (i) Mesh on top of
549 vertices

Figure 11: Double torus reconstruction

Figure 12(a) 12(b) 12(c) 12(d)
Polar balls 87.1s 87.1s 87.1s 87.1s
Pruning 151.2s 207.5s 289.3s 340.9s
Medial axis 152.2s 25.7s 4.2s 1.3s

Table 2: Runtimes for the medial axes in Figure12

data sets, but naturally cannot compete with mesh recon-
struction methods that do not come with a topological guar-
antee (see e.g. [KBH06]) or with medial axis algorithms
which are not scalable [SFM07]. Still, our approach com-
pares well with mesh reconstruction methods with guaran-
tee; see e.g. [DGH01]. The strength of our method lies in
combining topological correctness with scalability.
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Appendix A: Proofs of technical lemmas

Lemma A.1 (Lemma5.2) Let s be a sample point, and letv
be a point with the following properties

O(r · lfs)

p

≥ lfs(s)

O(r)

≥ lfs(s)

n

O(r2 · lfs)

m

Bp

Bm

v

v̄ s

Figure 13: A point v that is not covered by the polar ball
must lie close to the surface.

• v lies in the Voronoi cell ofs.
• v is not in the interior of the polar ball around the polep

of s that lies on the same side ofF asv.

Then

(a) ‖v−s‖ = O(r) · lfs(s). In particular, forr = 0.08, the dis-
tance tos is at most 0.123· lfs(s).

(b) The distance fromv to the closest point ¯v on the surface
is O(r2 lfs(s)) = O(r2 lfs(v̄)). For r = 0.08, the distance
‖v− v̄‖ is at most 0.0355· lfs(s) ≤ 0.0424· lfs(v̄).

Proof We perform the calculation forr = 0.08, and only
indicate the asymptotic dependence onr. We will first
show part (a). Letp be the pole ofs on the same side
of the surface asv. If ‖v− s‖ > kr · lfs(s) for k = 1.536,
the angle betweensv and the surface normal is at most
arcsin 1

k(1−r) + arcsin r
1−r < 47.2◦, see [AB99, Lemma 4].

Similarly, the angle between the normal andsp is at most
2arcsin r

1−r < 12.8◦. In total the anglevspis less than 60◦.
Since‖v−s‖ ≤ ‖p−s‖, by the definition of the pole, it fol-
lows thatv must be contained in the polar ball aroundp,
whose radius is‖p− s‖, a contradiction. We thus conclude
thatv is contained in a ball of radius

kr · lfs(s) ≤ 0.123· lfs(s) (= O(r lfs(s)))

arounds. Sincev avoids the polar ballBp aroundp, it lies in
the shaded region indicated in Figure13. The directionspof
the polar ball deviates at most 2arcsinr1−r < 12.8◦ (= O(r))
from the normal directionn ats. Thus the “highest” possible
position ofv is as indicated in the figure. We know that the
surface must pass above the opposite medial ballPm of s,
and thus we can estimate the distance fromv to the surface
and prove (b). A straightforward calculation gives the bound
‖v− v̄‖ ≤ 0.0355lfs(s) (= O(r2 lfs(s))). By the Lipschitz
condition,

0.0355lfs(s) ≤ 0.0355
1−0.123−0.0355 lfs(v̄) ≤ 0.0424· lfs(v̄)

is obtained.
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Figure 14: Schematic figure of an intersection of two polar
balls such that their intersection point v is not covered by the
union of polar balls.

Lemma A.2 (Lemma5.3) Let pqbe an edge of the weighted
α-shapeAin (Aout). Then the exterior angle of intersec-
tion between the polar ballsBq, Bp around p and q is at
least 120◦.

Proof Sincepq is an edge of the weightedα-shape, there is
a pointv on the intersection of the boundaries of the two po-
lar ballsBp andBq which is not covered by any other polar
ball, see Figure14. Therefore, the neighborhood ofv con-
tains points outside all polar balls and, by Lemma5.2. v is
close toF : For the closest surface point ¯v we have

d = ‖v− v̄‖ ≤ 0.0424· lfs(v̄).

Without loss of generality, we assume lfs(v̄) = 1. Consider
the medial ballB of v̄ on the opposite site, with centerm
and radius‖v̄−m‖ ≤ lfs(v̄) = 1. By [ACK01, Lemma 17],
a polar ballBp or Bq intersects a medial ballD on the op-
posite site at angleβ ≤ 2arcsin2r. Let us focus on one ball
Bp and the angleφp between this ball and the surface normal
vm. The other ball is treated in the same way, and the total
exterior angle is thenφp +φq.
We haveφp = γ−π, whereγ = ∠pvm. To get an upper bound
on φp (or on γ), let us fix the angleγ and try to find circles
Bp andD that are consistent with this situation. We have the
following constraints:

(i) 1 = lfs(v̄) ≥ ‖v̄−m‖;
(ii) d := ‖v− v̄‖ ≤ 0.0424· lfs(v̄) ≤ 0.0424;

(iii) The intersection angle betweenBp and D is β ≤
2arcsin2r.

This gives us a distance‖c− v‖ = 1+ d, using the triangle
inequality we get‖q− v‖ = 1−d. For the triangleqcvonly
the segmentqc is of unknown length. We consider also a
second triangle, formed by the pointsq,c and one intersec-
tion point i of the medial ball with the polar ballBq. Again
only the distance of the segmentqc is unknown. From the

v
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Figure 15: The distance from the sample point s to the
weightedα-shape

triangles we get the following equations:

cosβ =
1+(1−d)2−‖c−q‖2

2(1−d) , cosγ =
(1+d)2+(1−d)2−‖c−v‖2

2(1−d)(1+d) ,

for β = ∠cvq = π − β = π − 2 arcsin2r, γ = ∠qic, d =
0.0355. Solving these equations forγ gives an angleϕ =
2 · (γ−π/2) > 120◦.

Lemma A.3 (Lemma5.4) If m is a point on an edgepq of
DMAT in (or in a trianglepqr of DMAT in) andv is outside
or on the boundary ofU(DMAT in) then

‖m− v‖ ≥ 0.817·min{‖p− v‖,‖q− v‖},

(or‖m−v‖≥ 0.817·min{‖p−v‖,‖q−v‖,‖r−v‖}, respec-
tively).

Proof We first consider the case whenm lies on anedge
pq,as illustrated in Figure15. Let m′ be the point onpq that
is closest tov. If m′ is one of the endpointsp or q, we are
done:

‖m− v‖ ≥ ‖m′− v‖ = min{‖p− v‖,‖q− v‖}.

Otherwise we know thatm′ − v is perpendicular topq. We
know from LemmaA.2 that the intersection of the two polar
balls Bp andBq cannot be too thin: their angle of intersec-
tion is at least 120◦. For fixed ballsBp andBq, the angles
and hence the ratios are minimized whens lies on the inter-
section between the balls (the pointv0 in the figure).
Now keepingv0 fixed at the intersection and considering
a variation of the ballsBp and Bq, maintaining min{‖v−
p‖,‖v−q‖}, it is clear that the distance fromv to the edge
pq is minimized when the angle∠pvq is at its upper bound
of 60◦ and the two distances are equal:‖v− p‖ = ‖v−q‖.
Then the ratio‖v− v‖/‖v− p‖ = cos30◦ > 0.866.
Now consider the case whenm lies in atriangle pqr. If the
point m′ on pqr that is closest tov lies on an edge or at a
vertex of the triangle, we have reduced the problem to the
previous case. Otherwise we know thatm′− v is perpendic-
ular to pqr. The remaining argument is similar as in the case
of an edge: The extreme situation is a triangular pyramid
with equal angles∠pvq= ∠qvr = ∠rvp = 60◦ at the apex
m and equal sides‖p− v‖ = ‖q− v‖ = ‖r − v‖. The ratio
between the height of this pyramid and the length‖p−v‖ is√

(1+2cos60◦)/3 > 0.817.
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