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Abstract

We present an algorithm for the reconstruction of a surfadh Wwoundaries (including a non-orientable one)
in three dimensions from a sufficiently dense sample. It éanieed that the output is isotopic to the unknown
sampled surface. No previously known algorithm guarantsetpic or homeomorphic reconstruction of sur-
faces with boundaries. Our algorithm is surprisingly simplt ‘peels’ slivers greedily from an-complex of a
sample of the surface. No other post-processing is necgséér provide several experimental results from an
implementation of our basic algorithm and also a modifiedsiar of it.

Categories and Subject Descript¢ascording to ACM CCS) |.3.3 [Computer Graphics]: Surface Reconstruction—

1. Introduction

This paper is concerned with the design of a provably cor-
rect algorithm that can reconstruct surfaces withund-
aries in three dimensions. In the last decade a number of
algorithms for the problem of surface reconstruction have
been proposedyB99,ACDL02,ACSTD07BC00,FCOS05
HDD*92, JWS08 KBH06, OBA*03, PKKG03 WOKO035).
Among them, the ones that come with theoretical guaran-
tees AB99, ACDL02, BC00, Dey07 assume that the sam-
pled surface is smooth araosed(compact and no bound-
ary). The proofs and the algorithms fail if boundaries are
allowed.

For a provably correct reconstruction algorithm, typigall
one looks for guarantees on the geometric and topological
similarities between the output and the sampled surface. Ge
ometric guarantees generally mean small Hausdorff distanc
between the sampled surfake— R® and the output. Topo-
logical guarantee, however, may be of homotopy equiva-
lence, homeomorphism, or isotopy—listed in the increasing
order of topological similarity. It is desirable that thetput
be isotopic tax. Isotopymeans that there is a smooth defor-
mation ofR® that brings the output t& while maintaining a
homeomorphism between the two all the time.

The case of closed smooth surfaces is now well under-
stood. There exist established algorithms and software tha
can reconstruct such surfaces with isotopy guarantee from
point data AB99, ACDLO02] even if they are contaminated
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with noise Dey07. However, the important case &lr-
faces with boundarieis less understood. The theory of com-
pact reconstruction put forward by Chazal, Cohen-Steiner,
and Lieutier CCSL0§ applies to such surfaces. However,
this result only guarantees a homotopy equivalence between
the sampled surface and the output. In fact, the algorithm
which constructsi-complexes may return a single point for

a disk. In this paper we show that a very simple algorithm
can reconstruct all smooth surfaces- ]R3, with or with-

out boundary, while guaranteeing an isotopy and a small
Hausdorff distance between the output and he algorithm
computes am-complex and then ‘peels’ tetrahedra from it
greedily. No other post-processing is necessary. We argue
mainly about the isotopy since Hausdorff distance claim fol
lows from dense sampling.

For closed surface reconstructions, a fundamental prop-
erty used for proofs is that a closed surface is homeomorphic
(and isotopic) to the restricted Delaunay triangulatioraof
sufficiently dense point sample. (See Secohfor a defi-
nition of the restricted Delaunay triangulation.) As shawn
Section 4.1 and illustrated in FiguB this is not true for a
surfaceZ with boundary. To overcome this problem we use
a collar extension ok. We show that a restricted Delaunay
triangulation of a sufficiently dense point sampleads iso-
topic to this collar extension. We emphasize that the c@lar
only needed for the proof of correctness, it does not need to
be sampled or used in any way by the algorithm.

Reconstruction algorithms such as Crust and Co-
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cone AB99, ACDLO02] identify candidate triangles for the

reconstructed surface and then use a prune-and-walk ap-

proach to extract a manifold. Such an approach fails when
boundaries are present, since the pruning repeatedly e=smov
boundary triangles until no triangles are left. We present a
‘sliver peeling’ approach based on the following idea. We
prove the existence of@nonical peeling sequencétetra-
hedra from ar-complex induced by deformation retrac-
tion of the associated union of-balls. For a closed surface
>, this sequence peels thecomplex to the restricted Delau-
nay triangulation which is known to be isotopic ¥o Even

union ofa-balls for a seP is
Ba(P) = | B(p, ).
peP

The a-complexCq (P) of P is the restricted Delaunay com-
plex of P with respect td3q (P). That is,

Ca(P) ={o e DelP:VoNBa(P) #0}.
It is well-known thatBq(P) and Cq(P) have the same

homotopy type Ede9]. If P is a sufficiently dense sam-
ple from a shape, it is known thatBq(P) and Cq(P)

though one cannot compute the canonical peeling sequencepaye topological similarity t& for appropriatex [CCSLO6

in absence oE, we show that a greedy peeling produces an
output isotopic to that produced by the canonical peeling se

CSEHO05NSWO04. In particular,Bq (P) andCq (P) become
homotopy equivalent t& when the sample is sufficiently

quence. For surfaces with boundaries, the argument remainsgense CCSLOGNSWO0Y, a fact we need for our results.

essentially the same except that now one has to argue with

the restricted Delaunay triangulation of a collar extensio

Another problem that arises in reconstructing surfaces
with boundaries is the existence of non-unique solutions.
For instance, it can be impossible to distinguish between th
point sample of a sphere with a small disk removed and a

sphere which happens to not have any sample points in a

small disk. We use an input parametemwhich allows us
to distinguish between boundary regions and small regions
which have no sample points.

One noteworthy feature of our algorithm is that it can re-
construct non-orientable surfaces (necessarily open ames
they are embedded ﬂRs). Since there is no global orien-
tation of normals for such surfaces, it is difficult to extrac
such a surface from a complex by any consistent walk. The
technique of sliver ‘peeling’ resolves this problem.

Our algorithm works nicely for dense uniform samples in
practice as the theory predicts. However, it faces problems
when the sample is not uniform. We extend our basic ‘peel-
ing’ algorithm to handle non-uniform samples and show ex-
perimental results for this modification. Our algorithm @ n
geared to handle noise in data.

2. Preliminaries

Local feature size: We consider a smooth surfagewith
smooth boundarie®Z. The surface normahy to Z at x

is then well-defined in the surface interior and also on the
boundary by taking thémit. At a boundary poiny € 0%,
there is also an open half-circle of normal directions whid t
two orientations of the surface nornrglas thelimit points.

The local feature size functiois a measure of the local
level of detail. For a closed surface, it is defined as the dis-
tanced(x, M), to the medial axis\ of the surface AB99)].

For a smooth surface with smooth boundaries, this is still
well-defined but does not capture the required minimum
sampling (to see this, consider for example a flat disk). We
considerM’, the medial axis of the boundadg separately
and define:

Ifs(x) = min{d(x, M), (d(x, M") +d(x,0Z)) /2}.

Note that theM’ can intersect the surfageand sad(x, M)
may be zero. However, '[ll(x,./\/l’) is zero, therx is “far”
from 0% and so If$x) is still non-zero.

With the above definition of Ifs, Propositioh extends
three essential properties of closed surfaces to surfaites w
boundaries. For a triangtewe usen: to denote its normal.
Unless specified otherwise we measure angles between vec-
tors by the acute angle made by their supporting lines. The
notationO(€) means a value that is less thesfor some

We set up some basic notations and concepts that are neede&ons’[an'C > 0 whene is sufficiently small.

to describe the reconstruction algorithm.

2.1. Complexes, feature size, and sampling

Voronoi and Delaunay Complexes: For a point seP C R,
we use VoP and DeP to denote the Voronoi and Delaunay
complexes ofP. The Voronoi cell ofp is Vp. The Voronoi
face dual to a Delaunay simplexc DelP is denoted/s. The
restricted Delaunay complexf P with respect to a topolog-
ical spaceX C R?is Dely (P) = {0 € DelP : Vg NX # 0}.

Alpha-Complex: For a > 0, the a-ball of p, denoted
B(p,a), is the closed ball centered pnd of radiusx. The

Proposition 1 Let ¢ <1 andxy,ze Z. If |x—y|| =
O(¢)lfs(x) and the circumradius of = Axyzis at most
O(¢g)lfs(x), then:

(i) (Normal variation is smallynxny = O(g),

(i) (Short edges are close to tangertxxy > 11/2 — O(¢),

(iiYSmall triangles are almost parallel to the surface)
Zngny = O(g).

Essentially the same prooAB99, ACDL02] applies here

as for the same properties for closed surfaces once (i) is
established. The proof of (i) can be carried out along the
lines presented inGDRO0Y. Although the definition of Ifs

in [CDROY differs from the one used here, for a poi Z,
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Ifs(x) remains smaller than the medial balls touchigt x
which is essential for the proof to go through. See appendix
for the proof.

Sampling condition: The standard sampling condition re-
quires that for anyx € %, B(xelfs(x)) contains a sam-
ple [AB99]. In the presence of boundaries, this is not suf-
ficient for correct reconstruction. There is no unique tight
ening of the condition. We use a global measgre=
infyes Ifs(x) and defineP to be ane-sample ofZ if B(x,p)
contains a point irP for any x € X. We do not require the
boundaries to be sampled by poihtig on them. Requiring
such a sampling of the boundaries would make the problem
easier but less realistic.

2.2. Pedling tetrahedra

Our idea is to compute a subcomplxof an alpha complex
Ca(P) for sufficiently smalla and then peel tetrahedra from

it to arrive at a triangulated surface. The existence and com
putation of the peeling order are justified by a deformation
retraction of the ball uniorBq(P). Before describing this
retraction, we elaborate on tetrahedra peeling and observe
some of its key properties.

Let 0 € K be a tetrahedron with an edgeandty,t, be
two triangles ofo incident toe. We sayo is peelableby e
if no triangles other thaty andt, are incident toe in K.
A new complexC’ is obtained by removing the collection
of simplices{o,ty,t5,€} from K. In that case we sai’ is
obtained bypeeling efrom K and write/C SK.A peeling
takes out two triangles of a tetrahedron while leaving the
other two. IfK’ is obtained fromiC by peeling a sequence
edgeser, e, ..., &, We write I S A peeling does
not delete any vertex and therefore the vertex sé€ @ind
K’ remains the same.

We need one more definition before stating our generic
results on peeling. Two edge sequendées and {g;} by
which a complexC is peeled are callecompatibleif for all
pair of edge® € {g} andg € {gi} wheree andg peel the
same tetrahedron i, eithere = g or eandg are vertex dis-
joint. Essentially two compatible peeling sequences peel a
tetrahedron either at the same edge or at two vertex disjoint
edges if both of them peel it. Two such sequences may dif-
fer in length. Figurel illustrates how compatibility ensures
isotopy. The peeling of vertex disjoint edges andes in
sequence$ey, e1 } and{es, e»} leads to isotopy.

Our main observation is Propositi@below which says
that if a simplicial 3-complex is peeled by two compatible
sequences both of which remoatt tetrahedra, the resulting
2-complexes are necessarily isotopic. Notice that we do not
require any extra condition on the input 3-complex for this
proposition. Its proof by induction uses Proposit®whose
proof appears in the appendix.
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Figure1l: The sequencele,, e} and{e3, e} are compati-
ble, but{es,e; } is not compatible with either of them.

Proposition 2 SupposelCy is a simplicial 3-complex with
""" % Ky and Ko %259k,

for two compatible sequences of edgs, ey, ...,e&} and
{01,92,...,0k}, thenK; andK; are isotopic.

Proof We prove by induction ok. Fork = 1, g has a sin-
gle tetrahedron which is peelable by andg;. If e; = g1,

K1 = Ko. If &1 # g1, they are opposite edges of the single
tetrahedron inCq. Clearly, peeling bye; andg; gives two
isotopic complexes. We now assume that for khy. k the
proposition is true and verify it fok. Let Kg % K’. Since
{01} and{ey, e, ..., &} are compatible, by Propositi&be-
low there is a sequende, &5, ...,6_,} of edges compati-
bl

ble with {ey,...,a]} so thatk’ TSt o whereKs is
isotopic tok;. By assumptiork’ %%57% 15, and also the
sequence$gy,gs, ..., Ok} and{€}, &b, ..., 6, } are compat-
ible since both of them are compatible wifh;, e, ..., &}.

Then, by inductive hypothesiS, and/C3 are isotopic which

implies thatC,; andC1 are isotopic. [

Proposition 3 Supposey is a simplicial 3-complex with
o By K1 foredgesy, ..., &. Letebe an edge compatible

with ey, ..., & S0 thatq £ K’ ande peels a tetrahedron that

is peeled by some edge in the sequesce., e. Then, there
is a sequence, ...,&_,; compatible withey, .., so that

= A o .
K' = — Kz andKq is isotopic tolCo.

3. Closed surface

For simplicity first we assume that the sampled surface has
no boundary and then describe the modifications needed to
accommodate boundaries. Propositbmotivates the fol-
lowing approach:

a. Consider an-complexk spanning the input point set



. Prove that there is@nonical edge sequenagich peel
all tetrahedra fromC and the resulting complex is the
restricted Delaunay triangulation B€P).

. Unfortunately, this canonical sequence is impossible to
compute in absence &t So, algorithmically find another
peeling sequence which peels all tetrahedra fiom

. Prove that the peeling sequence adopted by the algorithm
is compatible with the canonical sequence. Appeal to
Proposition2 to claim that the resulting complex is iso-
topic to Dels (P).

3.1. Canonical edge sequence

If a is sufficiently small, this deformation retraction is a wit-
ness to the homotopy equivalence betw&gnand. This
deformation retraction is reminiscent of the flow function
used in Ede03 GJ0J. However, a key difference is that
we consider distances to the surfacestead of distances to
the sampléP.

We are interested in the interpretation of the retraction
ret(x,t) in the context of sub-complexes of eIWe define

Bat(P)={ret(x,t) :x€ Ba(P)} andCa t(P) = Delg, p)(P).
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Figure 2: Sweeping a Voronoi vertex.

To show the existence of a canonical edge sequence, we de-2t the edge, sag, dual to the Voronoi facet containirg

fine a deformation retraction ratt) on R® which retracts
Ba(P) to the surfac&. For any non medial axis pointe R®,
let X be its closest point oB. Define

ret(x,t) =X+ (1—t)- (x—X) fort € [0,1].

andey. The subsequence of edges l&é&om the canonical
simplex sequence form the desired canonical edge sequence.

The above argument dwells on two facts: (i) Voronoi

facets and edges intersédiq + (P) transversally, and (ii) all

tetrahedra it€q (P) are slivers. We show these two facts.

3.2. Transversal intersections

To talk about transversal intersections between \Voronoi
edges, facets andBq t(P), we need to define a notion of
normals todBq t (P) since it is not necessarily a smooth sur-
face. ConsidedBq(P) = 0By o(P). This is the boundary
of a spherical polyhedron. The boundaries of the facets in
this spherical polyhedron constitute non-smooth regions i
0Ba(P). A pointx(t) € 0Bq.t(P) is given byx(t) = X+ (1—

t)(x—X) wherex € 0B84 (P). It follows thatx(t) is a smooth

Observe thatBq(P) = By o(P) retracts toX = By 1(P).

In the dual a-complex Ca(P) = Cq,0(P) retracts to the
restricted Delaunay triangulation B€P) = Cqy1(P). Let
01,...,0n denote the sequence of simplices removed from
Cat(P) as Ca(P) = Cqo(P) transforms to Det(P) =
Cq,1(P). We callay, ...,0n the canonical simplex sequence
for Ca(P). We argue that the subsequence of edges in this
simplex sequence indeed peels all simplices in the sequence
and thus form a canonical edge sequence we are looking for.

Let us look at howdBq t(P) sweeps over the Voronoi di-
agram. WheBq 1 (P) sweeps over a Voronoi vertex, edge,
or a facet completely, their dual simplices get removed from
the restricted triangulatioda + (P). If all Voronoi edges and
facets intersectingq t(P) intersect its boundargBq t(P)
transversally, they go out dfq t(P) only when a Voronoi
vertex is swept over. This meaés(P) only changes when
a tetrahedron is removed. Now let us look at ha#e t (P)
sweeps over a Voronoi vertex In Figure2, the vertexv is
about to be swept when the dual tetrahedsas peeled. Itis
proved in Propositiol thatc is aslivertetrahedron (see sec-
tion 3.3for definition) if a is small. In particular, this means
two of the Voronoi edges incident tanake large angle close
to Ttwith W and the other two make small angle close to 0
with it. As a result wherv is swept over, exactly two of the
Voronoi edges, sag; andey, incident tov leave Byt (P).
Interpreting dually, the tetrahedranis peeled fronCq t (P)

pointindBq ¢ (P) if xis smooth iMBq (P). For a non-smooth
pointx(t) € 0Ba.t(P), consider the set of normalg, that
are limit points of the normals to the smooth points in any
neighborhood ok(t). The normal cone at(t) is given by
the convex hull ©nv Ny).

We first establish a bound on the angles between normals
to 0Bq (P) at smooth points and the normalsdfand then
extend the bound for all points 83« ¢(P), t € [0, 1]. Propo-
sition4 is proved in the appendix. Recall thatis assumed
to be are-sample ofz.

Proposition 4 Leta = kep andke < 1/2. Letx be any point
in 0Bq.t(P). The normal 0B84 t(P) atx and the normal to
¥ atxform an angle of at most 4sirt (2/k).

Let us now consider a pointon a Voronoi facet or edge
thatoBq t (P) is about to sweep. Leep < a < 6ep+ O(ep).
For this choice ofx, we havek = 6 in Proposition4 which
assures that a normal to a poiton 0584 (P) makes an
angle of at most 4sin'(1/3) ~ 80° with the surface nor-
mal atX. By Propositionl, the Voronoi edges and facets
intersectingBq ¢t (P) make an angle 0O(g) with the sur-
face normals. A standard calculation reveals that they-inte
sectdBq t(P) with an angle of at most 4sirt(1/3) + O(g)
which is smaller thang if € is sufficiently small. There-
fore, Voronoi edges and facets cannot interdékt: (P) tan-
gentially implying that all peelings are associated with a

© 2009 The Author(s)
Journal compilation © 2009 The Eurographics Associaticth Biackwell Publishing Ltd.



T. K. Dey et al. / Isotopic Reconstruction of Surfaces withrRlaries 5

Voronoi vertex going out oBq.t(P). Thus, a canonical sim-
plex sequenceq, ..., 0n induces a canonical edge sequence
at which tetrahedra are peeled which effectively removes al
of {01, ...,0n}. We have:

Proposition 5 For 6pe < a < 6ep + O(ep), let IC = Ca (P).
There is a canonical edge sequen@,e,...,e} where
K ®%5% pels (P).

=

3.3. Sliversand top-down peeling

Now we show that all tetrahedra & (P) are 2-2flat. We
also refer to them asliversalthough strictly speaking they
may not be slivers by standard definition in meshing. A tetra-
hedrono is callede-flat if all normals to its triangles differ
by O(¢) angle. For a sufficiently smad| ane-flat tetrahedron
can only be in two configurations with respect to the internal
dihedral angles at its edges. These internal dihedral angle
are eitherrt— O(g) or O(¢). If two angles arat— O(g) and
other four areéD(€), we say it is a 2-Flat tetrahedron (corre-
sponds to slivers.) Otherwise, when three anglestar®(€)

and the other three af@(€), we say it a 1-JFat tetrahedron.

No other configuration is possible for afflat tetrahedron.

Proposition 6 Leta = O(g)p. Fort € [0,1] let 6 € Ca t(P).
(i) If ois a triangle Zngnp = O(€) wherep is any vertex of
o. (ii) If ois atetrahedron, itis 2-2-flat.

Proof (i) Since the dual Voronoi edge is intersected by
Bat(P), the circumradius ob is at mosta = O(g)p. The
claim follows from Propositiori(iii). (ii) First observe that

o is ane-flat tetrahedron due to (i). & were 1-3-flat, there is

a vertexp of o which subtends a solid angle close @ Zhe
line of the normahy intersects the opposite trianglef o,

for otherwisenp has to be almost parallel tocontradicting
Propositioni(iii). We now apply the argument of Lemma 11
of [ACDLO2] to claim that this is impossible. []

Let us now go back to the scenario when a Voronoi vertex
v is about to be swept over. The edgat which the dual
tetrahedron of/ is peeled, subtends a large dihedral angle
11— O(€g). We use this observation to ensure a compatible
edge sequence in the algorithm. The following definition
helps. We say a 2-2-flat tetrahedron is peeiggldownif

with the canonical one, we obtain a 2-complex isotopic to
Dels (P). Our algorithm below finds such a sequence.

PEeL(P,a)

1. Compute thex-complexk := Cq(P);

2. While there is a peelable tetrahedrorKinpeel it
top-down;

3. Output the resulting 2-complex.

Theorem 1 For &p < a < 6ep+O(ep) the algorithm REL
computes a subcomplex 6§ (P) that is a manifold triangu-
lation isotopic tax, and is within a small Hausdorff distance.

Proof First, we argue that the algorithm peels all tetrahedra
from Ca (P). By Proposition5 there is a canonical edge se-
quenceey, ey, ..., & so thatCq (P) 828 Dels(P).

Suppose that the algorithm gets “stuck” with tetrahedra
a1,...,0s hone of which is peelable, and let be the tetra-
hedron among these that first appears in the canonical se-
quence of peeling. Sinag is first, the canonical sequence
findsgj peelable at a moment when all of the otlogr j #1,

are still present. This is a contradiction and our algorithm
should also findy; peelable.

Leté], €, ..., € be the edge sequence by which the algorithm

peelsCq (P), that is,Ca (P) %% T whereT is the output
complex. In the canonical sequenegey, ..., e, each peel

is top-down. Each peel conducted by the algorithm is also
top-down. Therefore, the sequendes} and{€ } are com-
patible (Propositiorv). By Proposition2, T is isotopic to
Dels (P). The claim about Hausdorff distance follows from
standard calculations a6 consists of triangles with small

circumradii, seeAB99,Dey07. [

4. Surfacewith boundaries

We show that the algorithmeL computes a surface iso-
topic to X even ifX has a non-empty boundary. A first dif-
ficulty to overcome is that a surface with boundaries do not
necessarily admit a restricted Delaunay triangulatiornctvhi
is homeomorphic to the surface no matter how dense the

it is peeled at an edge subtending a large dihedral angle of sample is. We use a collar extension to counter this difficult

11— O(€). We also say an edge sequemgeey, ..., & is top-

downif all tetrahedra are peeled top-down by the sequence.

4.1. Collar extension

Since any top-down edge sequence peels a 2-2-flat tetrahe-
dron only at edges that subtend large dihedral angles, two Recall that we do not require the boundary curves of the sur-

such sequences must be compatible.
Proposition 7 For a complex containing only 2-2-flat tetra-

hedra, any two top-down peeling sequences are compatible.

3.4. Algorithm

face themselves be well-sampled. Under this conditiorafor
good sample, Del(P) may not be an isotopic or homeomor-
phic reconstruction of (though it is homotopy equivalent to
it). See the picture on left in Figui& The restricted Delau-
nay triangulation there is not a proper manifold (there is a
pinching at the boundary). This can be repaired though by
considering the Delaunay triangulation restricted to tire s

We already indicated that we cannot determine the canonical face with addectollar. Let x be any point in the boundary

sequence becaugeis not known. But, thanks to Proposi-
tion 2, if we find any edge sequence fkrthat is compatible

© 2009 The Author(s)
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0Z. Consider the tangent fibgk atx that is perpendicular to
9% atx. A segment of this fiber of lengthis denotedk. Let



6 T. K. Dey et al. / Isotopic Reconstruction of Surfaces withiiRtaries

/0%

Figure 3: Left: The restricted Delaunay triangulation in the
‘almost’ planar configuration has a non-manifold feature in
its boundary. Right: The collar is obtained by extendingyfro
every boundary point x a “fiber” in the tangent plane at x.

Tu = ZU{¥}xeos- See the picture on right in FiguBe It is
a standard result in differential topology that every srhoot

xX makes small angle with a normald#q ¢ (P). But, unlike

the closed surface cas& may not be almost parallel tb
because ikTs onoZ, the angle/xX, ng could be large (recall
the definition of surface normals at boundary points). We
cannot claim that a Voronoi face 8.t (P) is never tangent

t0 0Bat(P).

As a remedy we consider extendiBidoy a small amount
so that all points i3q« (P) project in the interior of the ex-
tendedZ. This requires a slightly larger balls in the union
to contain the extended surface inside. This larger union
sweeps over all Voronoi faces it intersects, but we only $ocu
on the subset of the Voronoi faces which interdégetP).

Proposition 10 Any point in Bq(P) projects to an interior
point in X3q.

Proof Let x be any point in3q (P). If x projects normally to
the interior ofZ, it does so for anyy, if pis small. Consider

surface can be extended with a collar while maintaining an X projecting to a poink in dZ. The closest point ot on the

isotopy if the extension lengthis sufficiently small.

We need to investigate how much the normal changes

within the collar compared to the normal at the original

surfacexy, 1> 2a, cannot be further away thamZrom X.
It follows thatx projects to the interior af, for u>3a. [

ConsiderB,, (P). Observe that any point By is within

boundary. Note that the normal can indeed change along an@ distance oép-+3a < 4a from a sample point. It means that

extension fiber. The following proposition is proved in the
appendix.

Proposition 8 Let x be a boundary point ang; its exten-
sion fiber. ForX' € y C Z, with |[x — X|| < n we have
tanZnxny = O(K/p).

Finally, we want to show that the Delaunay triangula-
tion restricted ta, is a good canonical reconstruction when
K= O(pg) is chosen appropriately. For a sufficiently small
Y, the bound on the normal in the collar implies that Voronoi
edges and facets intersegt almost orthogonally in the col-
lar (which is already known foE). We also need a similar
fact for the boundargZ,.

Proposition 9 Let u= kep. Let F be a Voronoi facet that
intersect®>, atx. If x is the tangent t@>, atx andng is
the normal toF, then/1x, N < O(Ke) +cos * £ where

. o 1+k
¢ is sufficiently small.

Standard argument®gy07] using the near orthogonality

By (P) containsXzy. We consider the retraction dfq (P)

to 234. This retraction defines a canonical sequence of sim-
plex deletions reducingsq (P) to Dels,, (P). We are inter-
ested in the restriction of this sequence to the simplices of
Ca(P). Because of Propositioh0, we can argue similarly
as in the closed surface case that a Voronoi fadeifP) is
never tangent t8B4q t (P) if 6€p < a < 6ep+ O(ep). There-
fore the canonical sequence of deleted simpliceGsir{P)
indeedinducesan edge sequence at which all tetrahedra in
Cu(P) are peeled top-down. This is the canonical sequence
of peeling we consider fafq (P).

There is one more difference from the closed surface case
that we need to address. In the closed surface €age)
retracts to Det(P). Here, since we are considering the re-
traction of B4 (P), we cannot claim that the induced peeling
of Ca(P) will provide Dels (P).

Let £* be the complex produced by the canonical peel-
ing of Cq(P) induced by the canonical sequence of simplex

between the surface and Voronoi faces provide the following d€letions inCaq (P). First notice that sinc€4q (P) retracts

result (see appendix for a proof).

Theorem 2 For 2p < | < 2ep+ O(ep), Dels, P is a mani-
fold triangulation isotopic t&y whene is sufficiently small.

4.2. Boundary and pedling

We follow PEEL to remove tetrahedra frofy (P). Assume
that &p < a < 6ep+O(ep) as before. One problem we now
face is that not all points i8q (P) project in the interior ok

by the closest point map. Observe that the proof of Proposi-
tion 4 still remains valid for surfaces with boundaries. There-

fore, at a poink € Bq t(P) on a Voronoi facef, the segment

to Dels,, andK* is obtained by restricting this retraction to
Ca(P), we haveC™ C Dels,, (P). Also, since Det,,,(P) €
Dels,, (P) and Ca(P) contains Def, (P) for o > 3ep,
we have Det,, (P) € K. In essence, Dgl, (P) C K™ C
Dels,,, thatis " is sandwiched between two triangulations
both of which are isotopic t&. This leads to the main result

of this paper.

Theorem 3 Let P be ane-sample of a smooth compact sur-
face with boundary. For sufficiently small> 0 and &p <

a < 6ep+ O(ep), PEEL(P,a) produces a 2-complek iso-
topic toZ.

Proof The algorithm BEL compute<q (P) in step 2. Con-
sider the compleXxC* produced by the canonical peeling in

© 2009 The Author(s)
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Figure4: From top to bottom, left to right: Reconstruction of Dingchlio, Venus, Botijo, Volcano, Pegasus, Tree, and Mdbius

band from uniform samples.

Ca(P) induced by the canonical peeling @y (P). First we
argue that ifC* is isotopic toZ, our algorithm produces a
complex that is isotopic t& as well.

Let e, ey, ...,& be the canonical sequence of edges where
Ca(P) %% k% Since all Voronoi vertices dual to the
tetrahedra irCq (P) project normally to the interior oXsy,

the canonical peeling is top-down. We can apply the same
argument as in Theorethto claim that the algorithm finds

a peeling sequence which reduckgP) to a 2-complexT
where/C* andT are isotopic. Henc# is isotopic toX if X*

is isotopic toz.

We argue thakC* is indeed isotopic t&. For convenience
we write Ry = Dels,,, (P) andR; = Dels,,. We haveR; C

K* C Ry. By theoren?, R; andR; are isotopic t& and thus

are isotopic to each other. Alsk," is homotopy equivalent

to Ca (P) since each peel maintains a homotopy equivalence
between the complexes before and after the peelCaiR)

is homotopy equivalent t& to begin with CCSL04.

First we observe a property of the complex that represents
the difference betwedR; andR,. Formally, letW = cl(R; —

R1). The spacgW| cannot contain any handle or Mébius
band since thermR; will have different topology tharR,.
Next we prove thatC* is a manifold.

We introduce the following definition for convenience. For a
vertexvin a complextC, let Ty denote its star. If the underly-
ing spacgTy| is a topological disk, andis in the interior of
|Tv|, we sayv is completein K. If |Ty| is a topological disk
butv lies on the boundary, we sayhas a half-disk neighbor-
hood inkC. Observe that each complete vertexRefremains
complete inkC* andR,. Also, the vertex set oRy, R, and

K* is same. These two facts imply that each bounda¥g’in

© 2009 The Author(s)
Journal compilation © 2009 The Eurographics Associatiah Blackwell Publishing Ltd.

andR; is generated from the boundariesRf by possibly
attaching triangles among boundary vertices. Since cannec
ing vertices across different boundaries would requiantri
gles with edges larger tham4boundaries oK* andR, are
generated by attaching triangles that connect boundary ver
tices in the same boundary Bf.

Now consider an incomplete vertaxof K*. Sincev is a
boundary vertex iRy, we can assume thatis in a bound-
ary b in Ry. If v does not have a half-disk neighborhood in
K*, it is incident to at least two boundaries Ati" which is
generated fronb. But then/C* would contain more bound-
aries tharR; or R, since each boundary &, also provides

at least one boundary iK*. This is because an incomplete
vertex inR, also remains incomplete ik*. Since the dif-
ference d* —Ry) CW has no handles and M6bius bands,
K* has same number of handles and Mébius bands Bs.in
Then,C* cannot have different number of boundaries from
R; sinceX* andR; are homotopy equivalent. It follows that
K* is a manifold since it has vertices which are either com-
plete or have a half-disk neighborhood.

Now we examine the space of &I — Ry) more closely. A
boundary, sap’ in £* is generated from a boundalyin Ry

by possibly attaching triangles between vertice$.oFur-
thermore, a single boundatyin R; generates exactly one
boundary in'C*. The space bounded yandb’ in K* does
not have any handle, boundary, or Mébius strip. This means
bandb’ bounds a cylinder which is possibly pinched at com-
mon vertices ofb andb’. There is a natural deformation
retraction of C* to Ry defined by the obvious deformation
retraction ofbs tobjs along these cylinders. This deforma-
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tion retraction is a witness to an isotopy betwé&handR; . of simplices whose dual Voronoi elements intersect the co-
SinceR; is isotopic toX, we have the claimed result.[] cones ACDL02,DGO1] is considered. The rationale is that
this subcomplex contains the restricted Delaunay trisagul
tion of the surface and at the same time inherits a canoni-
5. Extensionsand experiments cal edge sequence from the retraction of [@). Figure5

We implemented BEL and some results are shown in Fig-  SNOWs the results of this extension.

ure4. When the sample is uniformly denses 2. produces
correct results as these examples show. The output is a 2-6. Concluding remarks
manifold without any artifact. We can even reconstruct non-
orientable surfaces such as the Mdbius band example in Fig-
ure4. We chose the to be a factor (six times) of the largest
nearest neighbor distance among the given points. Since all
these examples have almost uniform sampling, this choice
worked nicely confirming our theory.

Our results on sliver peeling may be of independent inter-
est. By getting rid of the prune-and-walk step, sliver peel-
ing makes the reconstruction process more parallelizable.
For the same reason, it also allows reconstruction of non-
orientable surfaces which is not possible with any of the ex-
isting algorithms.

In practice, however, the data are often non-uniform. We
made adjustments to our algorithm to handle non-uniform
data. We emphasize that if the data is a non-uniform sample 5 very well have provable guarantees for locally uniform
of a surface with a boundary, there is a theoretical hurdle to samples. However, without any local uniformity, it is dif-
reconstruct it provably. It stems from the fact that the same . it to estimate the local density of the sample which is
sample can be dense for two topologically different suace required to estimate the ball sizes. Ideas fréfR0J may
if boundaries are allowed. Therefore, there is no unique cor be used to convert a non-uniform sample to a locally uni-
rect reconstruction. We employ a heuristic to handle non- ¢, sample and then apply the method in secoiOur

uniform samples of surfaces with boundaries. approcah does not handle noisy samples, an important case
If the input is non-uniform, there may be no glolafor which remains open.

which ana-complex may contain an isotopic triangulationto  Acknowledgments: We acknowledge AIM@SHAPE

the sampled surface. Since nearest neighbor distances maygatabase for models and the NSF grant CCF-0635008 for
vary widely if non-uniform density is allowed, am fitting financial support.

local density cannot be estimated from them. Instead we pro-
pose to estimate the local density at each input point and the
take a ball around the point whose size respects the estimate
density. As before, we consider the union of badland peel [AB99] AMENTA N., BERN M.: Surface reconstruction by
tetrahedra from the restricted Delaunay complex;@l). voronoi filtering. Discr. Comput. Geom. 221999, 481-504.
Notice that if the balls are not too large or too small with [ACDLO2] AMENTAN., CHOI' S., DEY T. K., LEEKHAN.: A
respect to local feature sizes, the Voronoi elements iet#rs tsé?:gf il%oor'r:]hpﬂt.f(gehgmeg ?g;%t:tizﬁga&(;g??;gﬂ?
ing U will do so transversally and therefore a deformation

. . . . [ACSTDO07] ALLIEZ P., COHEN-STEINERD., TONG Y., DES-
retraction oft/ would induce a canonical edge sequence in BRUN M.: Voronoi-based variational reconstruction of unori-

the restricted complex. ented point sets. IfProc. Sympos. Geom. Processi(2p07),
pp. 39-48.

[BCOO] BOISSONNATJ. D., CazALS F.: Smooth surface recon-
struction via natural neighbor interpolation of distangedtions.

The question of handling non-uniform samples with the-
oretical guarantees remains open. Our approach in segtion
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Appendix A: Proof of Propositiorl

Proof The proof for the closed surface case @OR0Y
takes the segment, considers the closest point projectipn

of xy onto > and then (a) puts an upper bound on the length
of y by a multiple of the length oky, and (b) bounds the
normal variation ory. In the argument for (a), the crucial
point is that forp € xy, the segmenpp’ from p to its pro-
jection p’ in X is normal toX at p’ and so there is an empty
tangent medial balB at p’ whose center is in the ray from
p’ in the direction ofp and its radius is If§’). The differ-
ence here is that’ may lie ond> and sopp’ does not need

to be normal to the surface, but to its bounding curve; still
the same conclusion about the tangent ball holds. Using this
and arguing as in the Figuleads to the conclusion that
lengthly) < 2||x —y]||. The argument for (b) is the same as
for closed surfaces. []
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Figure 6: The closest point’go qinZisin B' = B(q, ||qg—
p'||) but outside B. From this follows thég — q'|| < 2||p—
p’| for sufficiently smalk.

Appendix B: Proof of propositior8

Proof For the proof by induction ok we add to the con-

clusion that'C; and/C, contain the same set of tetrahedra, if

any at all, and that the isotopy can be chosen to kegpkK»
fixed. Wherk = 1, eande; peels the same tetrahedron, say
In this caséC’ = KCy. If e= er, we havelC; = K’ and there is
nothing to prove. I # ey, let K1 have the triangle , t, of
1andXC’ have the triangless, t4 of 1. Sinceeande; are com-
patible and hence vertex disjoint, the two sets of triangtes
disjoint. Hence; Ut can be deformed ta Ut4 with an iso-
topy that can keep all other pointskf fixed. In essence we
have an isotopy betweefi; andKC’ = K,. Clearly,kC; and

K' = K, contain same set of tetrahedra since both of them

are obtained froniCg by peelingt.

Now considek > 1. Let/Kq B K. First assume that
peels a tetrahedron that is not peeledspyThen it is peeled
by an edge in the sequeneg ..., e&_1. We can apply the in-
ductive hypothesis by which there is a sequegice.., &,

/
OO = A

compatible withey, ..., &1 so thatl’ - KCh5 and K7

is isotopic tok5 with the same set of tetrahedra. Since the

isotopy keepsCj N K, fixed, the tetrahedron peeled ley
in K1 is also peelable & in k5. Peelinggy from K} pro-
ducesk’;. Peeling the same froiki}, producesC,. We have

K1 and K, isotopic with the same set of tetrahedra and the

isotopy keepsC, N KC; fixed. So, the sequend...€ &
satisfy the inductive hypothesis.

Next consider the case wherpeels the tetrahedron which
is peeled bye. We claim thatey, ..,ex_1 peel the same se-
quence of tetrahedra i’ as inKo. If not, letej be the first
in the sequence which cannot satisfy this claim. &epeel
Tin Ko. The only reason whg; cannot peet in K is that

it is still incident to more than two triangles. But, that s-i

possible sinceey, ...,ej_1 peeled same set of tetrahedra in

both andk’ has a subset of triangles that arekip. Let xC»
be such thatc’ *" =5 k..

Obviously, Ko ~ 3% k5. Also notice thatCo
Ko. We also haveCy BB & K1. So, the difference be-
tweenk1 and/C, are made by anderespectively. We have
argued for similar situation in the case wheg: 1. This ar-

€1,....6&—1€
—

gument implies thak’, and K1 have same set of tetrahedra

and are isotopic where the isotopy kedpsn K, fixed. We

havee,...,g,_ 1 = €1, ...,6_1 satisfying the inductive hy-
pothesis. [

Appendix C: Proof of Propositiort
We first prove the following proposition.

Proposition 11 Leta = kep andke < 1/2. Letx be a smooth
point in 084 (P). The angle between the normal @By (P)
atx and the normal of atXis at most 2sint(2/k).

Proof Consider a poink in the interior facet ofdBq (P),
lying on the boundary oBq(p) for p € P, and its closest
pointXonZ. For convenience writB = ep. Soa = k3. Be-
causexe < 1/2 thena < p/2. We want to first bound the
angleZpxk. The sampley closest tacTies in Bg(X) but out-
side of the medial ball® = B(c,R) andB’ = B(c/,R) tan-
gent toZ at X, whereR = p. See the figure. Sp must lie
in cl(B(x, ||g—x||) — B—B'). Under this situation/ pxX is
maximized by the angl® = ZvxX as shown in the figure.
Considering the medial ba#’, we obtain

2vxd = cos Y(B/2R)

Applying law of sines to trianglé\uxX we have

sinZuxx = 5 1+ (%)

and a second application to the same triangle gives

oy ) (- (8) -2 )

Usinga < R/2, this implies the following bounds fdr/a

Then, applying the law of cosines th.cvx noting that
Zvxc=Ti— 0 and using sifi6/2 = (1 — cosh) /2, we have

sin(6/2) — \/; - (1— g) - (1+ Zthhh))

© 2009 The Author(s)
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Using the bounds fdn/a above andx < R/2, we obtain

. h 1 a 2
< ——< = — <=
sin(6/2) <4/1 a Sk l+2 S K
and so
9§23in*lg
K

Now, note that/ pxX is equal to/ px, ng, so we have found
that

Zpxng < Zsinflé.
]

Proof[Proof of Propositiom.] Let x = x(t) and8(x(t)) de-
note this angle. First assume thdt) is a smooth point in
0Bqi(P). We already observed tha(t) remains smooth
in 0Bqt(P) for all t € [0,1]. Let W(t) C 0Bat(P) be a
sufficiently small smooth neighborhood &ft). Consider
the mapf : W(0) — W(t) given by f(w) = v(w) + (1—
t)(1(w) —v(w)) wherev : W(0) — Z is the restriction of the
closest point map t@V(0) andi : 0B« (P) — 0Bq(P) is the
identity. The derivativéD f maps the tangent spacesV(0)

of W(0) to the tangent spacd@3dN(t) of W(t) and is given by
Df =Dv+(1—t)(D1 —Dv). Specifically, for a tangent vec-
tor T(0) € TW(0) atx(0) we havet(t) atx(t) wheret(t) =
D) (1(0)) = 13+ (1—1)(1(0) — Tz) andtg = Dvy o) (T(0))

is a tangent t& atX. We see that tangent spaces are linearly
interpolated byt betweeriTW(0) atx(0) andTZX atX. Hence
the normals t@Bq t(P) at smooth points are also interpo-
lated linearly byt. It follows thatB(x(t)) is also interpolated
by t betweenB(x(0)) and8(x(1)). Propositionl1 provides
8(x(0)) < 2sin1(2/k). ClearlyB(x(1)) = 0. Thus, we have
B(x(t)) < 8(x(0)) < 2sin1(2/K).

If x(t) is not a smooth point, a normal ino@v N, can-
not make more than 2sirt(2/k) angle with any normal on
the boundary of Gnv Ny since all these normals make at

most 2sim 1(2/k) angle with the same surface normal It
follows that any normal at(t) makes at most 4 sint(2/k)
angle withng. [

Appendix D: Proof of Propositior8

Proof Let b be the boundary curve & containingx. The
tangent plane at’ contains the fibeyx and sony lies in
a plane orthogonal tgx. Thus, to determin@,, one needs
to investigate what the slope of the surface is when mov-
ing in the direction orthogonal tgx when seen as a func-
tion defined on the tangent plafdg (the tangent plane at
X). To be precise, say = (0,0,0) andx = (,0,0), and
consider anothey’ = (WA, 34) in the collar close tax’
whose closest point il is y, that is,y’ € yy. Thus, we have
that tan/nyxny = & whenA — 0. We assume > 0. Let
B = B(c,R) be the tangent ball tb at x with center inyx
and radiusR = Ifs(x). Sincex € X theny lies in the cup
C=cl (B'—B) whereB' = (yr) wherer = [|ly — x| =

© 2009 The Author(s)
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V2 + A2 4 v2A2 (y cannot be further away fropf thanx).
See top figure. Let € C be the furthest point i€ from x.

From the geometry we find that

2Rsin(£xcz/2)

!
r=llz=x

. A1+ 82
2Rsinarctan
VDAZ(1+8%) + (R— )2

N
= Ll _t}f +0(h).

Within B” = B(x,r"), all the medial balls arouridatx (all of

radius Ifgx)) constraint the location gfto a cone-like shape
C’ as illustrated in the middle figure. Letbe the top most
point of C’ (with highestz coordinate). A simple calculation

shows that the height ofis (see bottom figurd) = %. Note
thath is second order itk while A (the height ofy’ ) is first
order inA. By Propositionl, for x andy onb C = we have
the bound

lx=yll

Znkny < R
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wherecis a constant. Now, writing = (y1, Y2, y3), we know
yo> <t" and|ya|,|ys| < |ly||?/2R (as in the expression fdr
above). SinceZnkny = Zxx'yy, then

V(Y2 —0)2+ (8 - y3)?
H—W
and so putting this together with the upper bound we obtain

Y24 y2 +y2 A2 ERVAY)
N Rz 32t V(¥2—B)2+ (88 —y3)?

tanZnxny =

H—Y1
>From here
2 22
Y1 +Y5 Y _ _
NS maxly, — AL [0A —yal}
R H—Y1

First, taking this inequality with the terfg, — A| in the max,
asA — 0, we obtain (note thaty,y3 are second order iA
and so they can be neglected)

A A
VA QL
IrewR 21 _cuR

So
Y2 < min 2'1+627 1 A.
1-p/R’1-cWwR

Next, taking that inequality with the terf®A — y3| in the
max, asA — 0, we obtain

cu . | 2vi+d? 1
Em'"{ I-wR 71—cu/R} = OW/R).

d<

O

Appendix E: Proof of Propositior®

Proof Let F be formed by sampleg, g. Consider the empty
ball B(x,||p— x||). The closest poink of x in X is on %

by our collar extension andi$ in B. Sincex’has a sample
within €p, the radius 0B, ||p—X]|, is at mospi+&p.

SinceB intersects> and the radius oB is O(gp), it inter-
sectsX in a topological ball (apply the argument of Lemma
1.1 [Dey07). The pointsp, q € X forming the Voronoi facet
F lie on its opposite sides. It means that the plan€& af-
tersectsX and since it intersects it almost orthogonally, it
intersect9x as well.

The tangents 0d> and 0, at pointsxand x respectively
are parallel by construction. Furthermore, the tangenad at
points of 0% within B vary by O(ke) angle since any two
such points are withi®(kep) distance. So, we measure the
angle between the normat and the tangenty at x where
the plane ofF intersect®Z. This angle is withinO(ke) of
the angle/tx, ng which we want to bound.

Consider the disk at which the plane containiogand tx
intersectsB. See Figurd. Clearly, Z1x, ng is no larger than
the angled as shown in the figure.
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Figure 7. Proposition9

We obtain

B K
H+ep 14k’
Therefore, Zix,ne < Zigng + O(KE) =

cos (%) as claimed. O

cosh =

O(ke) +

Appendix F: Proof of Theoren®?

Proof First we verify that it is a manifold triangulation
homeomorphic tax,. We need to show that each of the
restricted Voronoi face satisfies thepological ball prop-
erty [ES94: for V; € VorP, Vy N%, andVr N0Z, are topo-
logical balls of the appropriate dimension. The proof fa th
closed surfaces applies here when there is no intersection
with the boundary. All that is essential is that Voronoi fe.ce
that intersecky do so almost orthogonallyDey07, which

is also the case here inside the collar according to Proposi-
tion 8. So it is only necessary to verify the ball property on
the boundaryZ. By Propositiord, 0%, intersects a Voronoi
facet at an angl®(ke) +cos 12/3 fork > 2. This angle is
no more than 50 for sufficiently smalle. This fixed bound

is enough to carry out the standard proofs from the litera-
ture [Dey07 to establish thad, intersects Voronoi facets
and cells with topological ball property. Therefore, BgP)

is homeomorphic t&, and hence t& asZy, andX are iso-
topic by our construction.

We argue that Del,(P) is indeed isotopic t&. Consider
T4y We project Def, (P) by the closest point map thyy.
Since the circumradii of the triangles in Bg(P) are at most
2y, it can be shown that the closest point magels, (P) —

24 is injective [ACDLO2]. The map also induces an isotopy
between De}, (P) and its imagel = v(Dels, (P)) C Za. If

we show thafl andZ are isotopic, we are done.

Let us examine the difference betwe&nand X~ both of
which are contained ili4,. Formally we defineV = (Z —

T). The spacgW| cannot have any handle, boundary, or
Mobius bands sinc& does not have them and according to
surface classification theoreEhand >4, should have same
number of them. Therefore, ®V) is a set of cylinders pos-
sibly pinched at the points whe@® and dT intersect. A
natural deformation retraction frodT over these cylinders
to 0% is a witness to an isotopy betweg&randZ. [
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