
DOI: 10.1111/j.1467-8659.2009.01534.x COMPUTER GRAPHICS forum
Volume 0 (2009), number 0 pp. 1–13

Tactics-Based Behavioural Planning for Goal-Driven
Rigid Body Control

Stefan Zickler and Manuela Veloso

Computer Science Department, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA
{szickler, veloso}@cs.cmu.edu

Abstract
Controlling rigid body dynamic simulations can pose a difficult challenge when constraints exist on the bodies’
goal states and the sequence of intermediate states in the resulting animation. Manually adjusting individual rigid
body control actions (forces and torques) can become a very labour-intensive and non-trivial task, especially if the
domain includes a large number of bodies or if it requires complicated chains of inter-body collisions to achieve
the desired goal state. Furthermore, there are some interactive applications that rely on rigid body models where
no control guidance by a human animator can be offered at runtime, such as video games.

In this work, we present techniques to automatically generate intelligent control actions for rigid body simulations.
We introduce sampling-based motion planning methods that allow us to model goal-driven behaviour through
the use of non-deterministic Tactics that consist of intelligent, sampling-based control-blocks, called Skills. We
introduce and compare two variations of a Tactics-driven planning algorithm, namely behavioural Kinodynamic
Rapidly Exploring Random Trees (BK-RRT) and Behavioural Kinodynamic Balanced Growth Trees (BK-BGT).
We show how our planner can be applied to automatically compute the control sequences for challenging physics-
based domains and that is scalable to solve control problems involving several hundred interacting bodies, each
carrying unique goal constraints.

Keywords: rigid body, control, motion planning, behavioural, constraints, tactics, physics-based, animation

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.7]: Animation-Artificial
Intelligence[I.2.8]: Plan execution, formation, and generation—Computer Graphics [I.3.5]: Physically based
modelling

1. Introduction

Physics-based simulations of rigid body dynamics have be-
come a popular tool for computer animation and video games.
After defining initial states (positions, orientations and veloc-
ities) of a set of rigid bodies, a physics engine can automati-
cally compute an animation based on the forward simulation
of Newtonian Mechanics, robustly dealing with the complex
inter-body dynamics such as collisions and friction.

A problem commonly occurs however, when the animation
should reach a particular outcome that is not achievable by the

pure automatic forward simulation of a physics engine. For
example, the goal could be that some of the rigid bodies end
up in a particular final state that is unlikely to occur naturally.
Additionally, some of these rigid bodies might have to behave
actively during the animation and expose some desired visual
behaviour pattern. Finally, a rigid body might even need
to purposefully manipulate other rigid bodies (through the
means of collisions) in order to achieve the goal state for the
animation.

In order to satisfy such custom goal constraints and be-
havioural patterns, intermediate control actions (consisting

c© 2009 The Authors
Journal compilation c© 2009 The Eurographics Association and
Blackwell Publishing Ltd. Published by Blackwell Publishing,
9600 Garsington Road, Oxford OX4 2DQ, UK and 350 Main
Street, Malden, MA 02148, USA. 1

2 S. Zickler and M. Veloso / Tactics-Based Behavioural Planning for Goal-Driven Rigid Body Control

of forces and torques) need to be applied to some of the rigid-
bodies. Manually finding a set of acceptable control actions,
however, can pose a difficult and labour-intensive challenge.
Oftentimes, an animator may not know how to adjust the
available control actions to achieve a particular desired out-
come of the simulation. Even with aggressive trial and error,
many domains may simply be too complex or too highly con-
strained to be controlled manually. More importantly, there
are several applications, which do not have the luxury of re-
lying on the guidance of an animator. For example, in video
games that feature rigid bodies, the automatic generation of
intelligent control actions for computer-controlled opponent
bodies might be needed. Because the initial state is subject
to change (due to an evolving game-state and unpredictable
player-input), an animator cannot manually adjust these con-
trols in advance.

In this work, we present techniques to automatically gen-
erate intelligent control actions for rigid body simulations.
We introduce and evaluate a sampling-based motion plan-
ning approach that uses high-level, goal-driven behavioural
models to effectively reduce the control search space and thus
provide an efficient way for automatically solving complex
rigid body domains.

This article is organized as follows: In Section 2, we re-
view related work, including approaches from the computer
graphics, robotics and planning communities. In Section 3,
we formally define rigid body control as a physics-based
motion-planning problem. We then present a taxonomy of the
different types of rigid bodies from a control perspective, and
discuss some of the unique challenges associated with plan-
ning in domains involving these bodies. Next, in Section 4,
we introduce sampling-based Tactics and Skills as a model for
infusing goal-driven, high-level behaviours into a random-
ized motion planner. In Section 5, we introduce and compare
two variations of our Tactics-driven, randomized planning al-
gorithm, namely Behavioural Kinodynamic Rapidly Explor-
ing Random Trees (BK-RRT) and Behavioural Kinodynamic
Balanced Growth Trees (BK-BGT). In Section 6, we evalu-
ate and compare these algorithms experimentally on several
domains, and discuss their performance. Section 7 follows
up with a discussion of possible applications, existing limi-
tations, and directions for future work. Finally, we conclude
with a summary of the contributions.

2. Related Work

The task of robustly and accurately simulating rigid body
dynamics is well-understood [Bar01]. Given a set of rigid
bodies with pre-specified positions and velocities, it is pos-
sible to apply a set of forces and then integrate the state
forward in time, obtaining a new set of positions and ve-
locities. Interbody-dynamics are similarly resolved during
simulation by using collision and friction models.

There are multiple techniques for controlling rigid body
simulations that focus on user-interaction as a means for

solving difficult constraint problems. Popović et al. [PSE∗00]
present an interactive interface, allowing the user to manip-
ulate objects at any point during the simulation. The system
uses random sampling and gradient descent to support the
user in the search for constraint-satisfying solutions. Twigg
and James [TJ07] enhance this concept significantly by al-
lowing the user to perform spatial queries to rapidly cut down
the number of possible solutions. Their system was able to
generate desired animations for scenes that involved com-
plex multi-body dynamics. Another recent work by Moss
et al. [MLM08] demonstrates how sampling-based planning
techniques can be combined with user-provided constraints
to solve the animation and navigation planning of deformable
bodies.

The inherent downside of these semi-interactive tech-
niques is clearly that some involvement by the animator is
required to solve a particular control problem. Instead of re-
lying on user-interaction, we are interested in using planning
techniques to automatically solve difficult rigid body con-
trol problems. In order to automatically control rigid body
control problems, some existing approaches relax the con-
straints of the problem by relying on the concept of ‘physi-
cal plausibility’ rather than physical correctness. These ap-
proaches introduce additional control parameters, such as the
slight perturbation of collision normals [BHW96]. Chenney
and Forsyth [CF00] took an innovative approach to this re-
laxation technique by using Markov Chain Monte Carlo in
order to compute solutions to pre-specified constraint prob-
lems. However, such computations can take a long time to
find acceptable solutions. Additionally, object manipulation
problems have not been addressed.

A recent example of a planning approach for computer
animation by Lau and Kuffner [LK05] utilizes a finite state
machine (FSM) to describe the possible motion sequences
of humanoid characters. This FSM is then searched using
an A*-based algorithm to compute motion paths for ani-
mated humanoids navigating environments with moving ob-
stacles. The fact that their behavioural FSM was comprised
of a fixed set of pre-recorded motions, allowed them to use
pre-computation to gain additional speed-ups [LK06]. While
this approach is able to nicely solve the collision-free nav-
igation problem, it does not scale to tasks, which require
state-dependent decision making for their solutions, such as
is the case with many physics-based games and manipulation
domains.

Other recent work has covered the problem of animat-
ing human character motions when interacting in complex
environments [SKF07], [YKH04]. In terms of object ma-
nipulation, however, these approaches again focus solely on
navigation planning to/with/around objects, rather than the
planning of goal-driven collision sequences, which would be
required for solving various dynamic manipulation domains.

In robotics, such dynamic control problems are frequently
tackled by reactive control architectures [D’A05], [LR04],

c© 2009 The Authors
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

S. Zickler and M. Veloso / Tactics-Based Behavioural Planning for Goal-Driven Rigid Body Control 3

[BR01]. One particularly successful approach that has been
tested in several real-time adversarial robot domains is the
Skills, Tactics and Plays architecture (STP) [BBBV05] which
uses multiple layers of intelligent reactive building blocks to
solve difficult real-time control problems.

Our work aims to combine the concept of intelligent Tac-
tics and Skills [BBBV05] with modern Sampling-Based Mo-
tion Planning Techniques. Introduced by LaValle [LaV98],
Rapidly Exploring Random Trees (RRT) is a planning tech-
nique that rapidly growth a search-tree through a continuous
space. The algorithm has been refined by Kuffner and LaValle
[KJL00] who have shown that RRT can be adapted to work
under Kinematic and Dynamic planning constraints [LKJ01].
One of the most prominent applications of RRT is robot
navigation planning [VSA∗08], [MKS07]. Further work has
focused on increasing RRTs replanning performance to alle-
viate uncertainty in dynamic robot environments [ZKB07],
[FKS06], [BV06].

3. Physics-Based Planning

We can treat automated rigid body control as a general mo-
tion planning problem: given a state space X, an initial state
xinit ∈ X, and a set of goal states Xgoal ⊂ X, a motion planner
searches for a sequence of actions a1, . . . , an, which, when
executed from xinit, ends in a goal state xgoal ∈ Xgoal. Ad-
ditional constraints can be imposed on all the intermediate
states of the action sequence by defining only a subset of
the state-space to be valid (Xvalid ⊆ X) and requiring that
all states of the solution sequence xinit, x1, x2, . . . , xgoal are
elements of Xvalid.

We use the term Physics-Based Planning for action models
that aim to reflect the inherent physical properties of the real
world. The Rigid Body Dynamics model [Bar01] provides a
computationally feasible approximation of basic Newtonian
physics, and allows the simulation of the physical interactions
between multiple mass-based bodies, under the assumption
that such bodies are non-deformable. The term Dynamics im-
plies that rigid body simulators are second order systems, able
to simulate physical properties over time, such as momentum
and force-based inter-body collisions. Physics-Based Plan-
ning is an extension to kinodynamic planning [DXCR93],
adding the simulation of rigid body interactions to traditional
second order navigation planning.

More formally, the State Space X describes the entire vari-
able space of the physical domain, containing n rigid bodies.
A state x ∈ X is defined as x = 〈t, r0, . . . , rn〉, where t rep-
resents time and ri is the second order state of the i-th rigid
body, described by its position, rotation and their derivatives:
r = 〈α, β, γ , ω〉 where

α : position (3D − vector);
β : rotation (unit quaternion or rotation matrix);
γ : linear velocity (3D − vector);
ω : angular velocity (3D − vector).

Figure 1: A Physics Engine computes state transitions.

The action space A is the set of the applicable controls that
the physics-based planner can search over. An action a ∈ A

is defined as a vector of subactions 〈ar1 , . . . , arn 〉, where ari

represents a pair of 3D force and torque vectors applicable
to a corresponding rigid body ri .

A physics-based planner chooses actions by reasoning
about the states resulting from the actuation of possible ac-
tions. The state computations are done by simulation of the
rigid body dynamics. There are several robust rigid body
simulation frameworks freely available, such as the Open
Dynamics Engine (ODE), Newton Dynamics and NVIDIA
PhysX. Frequently referred to as physics engines, these simu-
lators are then used as a ‘black box’ by the planner to simulate
state transitions in the physics space (see Figure 1). Given a
current physics state of the world x, in combination with a
control action vector a, the physics engine is able to simulate
the rigid body dynamics forward in time by a fixed timestep
%t , delivering a complete new planning state xnew.

3.1. Rigid body types

Planning for a solution sequence of physical actions is clearly
related to the types of bodies present in the domain. We
classify the types of bodies in the domains of the physics-
based planner, using a hierarchy as shown in Figure 2.

Every body is by definition a rigid body. There are static
rigid bodies that do not move, even when a collision occurs,
which are often used to model the ground plane and all non-
movable bodies, such as walls and heavy objects. All other
bodies are manipulatable, meaning that they react to colli-
sion forces exerted upon them. Among these, the planner can

Figure 2: Rigid Body classes.

c© 2009 The Authors
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

4 S. Zickler and M. Veloso / Tactics-Based Behavioural Planning for Goal-Driven Rigid Body Control

directly control the actively controlled bodies, i.e., the plan-
ner has available actions directly applicable to these bodies.

Interestingly, there are two different types of bodies that
are manipulatable but not actively controlled, namely the
passive and foreign controlled bodies. Passive bodies can
only be actuated by external influences and interactions, such
as being carried or pushed. The foreign controlled bodies are
actively actuated, but by external control to our planner. Such
foreign controlled bodies can have predictable motion, such
as an escalator or a windmill, or be adversarial, such as an
opponent player to our actively controlled body in a physics-
based game.

4. Tactics and Skills
Automatically finding control sequences for animations in-
volving interactions between multiple rigid-bodies can be a
very challenging problem, especially if the goal state is dif-
ficult to reach and the set of valid intermediate control states
is additionally constrained. To efficiently search through the
vast physics-based control space, we use a high-level be-
havioural control model in a novel way to reduce the search
space.

Among the many reactive behavioural control architec-
tures, e.g., [D’A05], [LR04], [BR01], we choose the Skills,
Tactics and Plays (STP) architecture, as it has effectively
been used in real-time adversarial robot domains [BBBV05].
In our work, each controllable rigid body is synonymous to
an agent in STP. In STP, a Play captures the behaviour as-
signments of a group of multiple agents. A single agent’s
behaviour is modeled as a reactive Tactic, representing a fi-
nite state machine (FSM) of lower-level Skills, which act
as pre-programmed, reactive control blocks. Our work as-
sumes fixed role assignments for all the controlled bodies in
the domain, and therefore does not use the multi-agent play-
selection component of STP. Traditionally, STP runs online,
as a policy-based agent controller, without any physics-aware
planning at the Tactics level [BZLV07].

In our work however, a planner uses Tactics and Skills as an
action sampling model. Instead of being a reactive controller
as in traditional STP, the Tactics’ and Skills’ new role is to
guide the planner’s search by imposing constraints on the
searchable action space. For this purpose we introduce and
formalize a new, probabilistic version of Tactics and Skills
that uses random sampling to choose from a set of possible
executions.

Before we explain in detail in the next section the use of
the Tactics in our planning algorithm, we now further define
the non-deterministic Tactics and Skills.

We define a Tactic τ = 〈S,', σinit〉 where

S is a set of k Skills {s1, . . . , sk},
' is the function ' : 〈σ, σ ′, x〉 → p, computing

p, thetransitionprobabilityfrom sσ to sσ ′

depending on the world state x,

σinit is the index of the initially active Skillsσinit ∈ S,

A Tactic is composed of a set of Skills and a set of possible
transitions between these Skills. This model is similar to
a classic Nondeterministic Finite State-Machine (with our
Skills corresponding to FSM-States), except that in our case,
any transition probability p can change dynamically during
the life of the Tactic because it is generated by the function
' : x → p, thus depending on the world state x.

To perform the actual non-deterministic state transitions
between Skills, using the probabilities generated by ', we
define the transition function

G : 〈S,', σ, x〉 → σ ′,

taking a Tactic’s set of Skills S, its probability function ',
an index σ pointing to a Skill sσ ∈ S and a state of the
world x to produce a new index σ ′ pointing to a Skill sσ ′ .
Algorithm 1 shows how G computes these state transitions
probabilistically.

Algorithm 1: Transition Function G

Input: S = {s1, . . . , sk},', σ, x

probSum ← 0;
for j ← 1 to k do

probSum ← probSum + '(σ, j , x);
if probSum > 0 then

rndVal ← sample(0,max(1,probSum));
tempSum ← 0;
for j ← 1 to k do

tempSum ← tempSum + '(σ, j , x);
if tempSum > rndVal then

return j;

return σ ;

Figure 3 shows an example diagram of a Tactic. Transitions
between these Skills can be deterministic (such as between
s1 and s2), they can be modeled non-deterministically by let-
ting ' return predefined transition probabilities (such as the
outgoing transitions of s2), or they can programmatically de-
pend on any desired property of the current state of the world

Figure 3: Example of a non-deterministic Tactic.

c© 2009 The Authors
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

S. Zickler and M. Veloso / Tactics-Based Behavioural Planning for Goal-Driven Rigid Body Control 5

Figure 4: Structure of a sampling-based Skill.

x (such as the outgoing transition of s3). By being modeled in
this non-deterministic fashion, each execution of the Tactic
can result in a different sequence of state-transitions, thus
covering different parts of the search space.

The purpose of the Tactic’s individual Skills is to act as
non-deterministic controllers that generate actions through
the means of random sampling in combination with some
domain knowledge.

We define a Skill s = 〈C, D, f 〉 where:

C is a set of constants,
D is a set of sampling distributions,
f is the function f : 〈C,D, V , x, a〉 → 〈a′, V ′, b〉

where V is a set of variables and
bis a boolean.

The Skill’s operator function f is the part of the Skill that
generates the control actions (see Figure 4). Part of f ’s input
are the state of the world x and a set of actions a that it can
modify (by default, a is a zero-filled vector when initially
passed into f). f produces the modified set of control actions
a′ and the boolean ‘busy-flag’ b (to be explained in more
detail in Section 5). C and D are predefined parameters that
are part of the Skill itself. The set of constants C may con-
tain any configuration parameters that define how the Skill
should operate (for example, the index i of the rigid body ri

that this Skill should generate control actions for). The set
of variables V is similar to C, except that it is not stored as
part of the Skill and that the operator f is allowed to change
its contents by producing V ′. As will be shown later in Sec-
tion 5, V can be used to communicate information between
multiple successive calls of the same Skill. Finally, the set
of sampling distributions D is the component that makes the
Skill non-deterministic because the operator can randomly
sample values from these distributions and use them for the
computation of control actions. This means that, similarly to
the non-deterministic Tactic, multiple calls to f with the same
input arguments can each produce a slightly different set of
actions a′ where the degree of random perturbation depends
on the distributions D and on f itself.

The Skill’s operator function f , its parameters D, C and
the initial value of V are all predefined and assume a cer-

tain higher level knowledge about the domain’s goal and
its physical properties, such as the reasonable ranges of ap-
plicable forces and torques. Typically, a single Skill imple-
ments a particular control objective such as ‘drive toward
a sampling-based location,’ ‘push some target rigid body
toward a sampling-based target region,’ or ‘turn a sampling-
based amount.’ Designing these actual Skills does take some
programmatic effort and it can be argued that some of the
Skills should be considered domain-dependent. However, the
STP architecture exactly provides for Skills to be used as
template-like ‘building blocks’ that apply to a variety of do-
mains. Given a library of Skills, it is feasible to rapidly create
an intelligent tactical model that is well-suited for solving a
particular domain. The effectiveness of our approach arises
from the fact that non-deterministic Tactics and Skills can
encode as much or as little domain-dependent information as
desired.

It should be noted that our Tactic and Skill model is a su-
perset that contains their traditional deterministic versions.
In our formal model, we can define a deterministic Tactic as a
Tactic which cannot have multiple outgoing state transitions
from any sσ with probability greater than 0 for any x. Simi-
larly, we define a deterministic Skill as one where there is a
single deterministic mapping from states to actions. There-
fore, in a deterministic Skill, D = ∅ as no sampling distribu-
tions are needed for deterministic decision making.

5. Tactics-Based Planning Algorithm

We are now ready to introduce our planning algorithm. We
present two variations of the algorithm that share the same
fundamental forward-planning loop, but differ in the way
they control the growth of the search tree. We name these
two variations as BK-RRT and BK-BGT.

In order to use Tactics and Skills as a sampling model for
our planner, we need to store their variable parameters as
part of the state space. More formally, a state x ∈ X is now
defined as

x = 〈 t, r1, . . . , rn, σ1, . . . , σh,

V00, . . . , Vhkh
, b∧, b1, . . . , bh 〉,

including the indices to the currently active Skill for each
Tactic (σ1, . . . , σh), as well as the internal variable state V of
all k Skills among all h Tactics. Finally, b∧ and b1, . . . , bh

are all boolean values, indicating whether the entire state x
and/or any of its active Skills sσi

are currently ‘busy’, to be
further explained later in this Section. The number of Tactics
h is dependent on the number and types of bodies within the
domain. Each actively controlled body has a corresponding
non-deterministic Tactic consisting of sampling-based Skills
from where its actions are sampled. Additionally, we con-
struct reactive, deterministic Tactics with deterministic Skills
to act as prediction models for each foreign-controlled, and
especially also to approximate the model of each adversarial

c© 2009 The Authors
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

6 S. Zickler and M. Veloso / Tactics-Based Behavioural Planning for Goal-Driven Rigid Body Control

body, if existing. Even if an adversary body’s exact Tactic
is not known, it may be useful to still model its roughly ex-
pected behaviour rather than assuming it is static. Finally,
passive bodies in the domain are non-actuated and do not
require a Tactic.

Algorithm 2 shows BK-RRT. We initialize the search with
a tree T containing an initial state xinit ∈ X, and set the
boolean variable busy to false. We then enter the main plan-
ning loop, which runs for a predefined domain-dependent
maximum number of search iterations z, if no solution is
found earlier. On each iteration, assuming busy is false
(which is the case initially), the algorithm selects a node
x from the existing tree T which it will expand from. The dif-
ference between BK-RRT and BK-BGT lies precisely on this
node selection function. BK-RRT selects nodes similarly to
the Rapidly Exploring Random Trees (RRT) [LaV98] search.

The function SampleRandomState uses an internal prob-
ability distribution to provide a sample y taken from the
sampling space Y that is some predefined subspace of X. The
function NN then finds the nearest neighbour to y among all
‘non-busy’ nodes in the tree T , according to some predefined
distance function. As with traditional RRT, it is important
that the sampling space Y , the underlying probability distri-
bution and especially the distance function are all carefully
chosen to match the domain. For our domains, we use a sim-
ple acceleration-based motion model to compute the minimal
estimated time for the controlled rigid body in x ∈ T to reach
its target position and orientation in y.

After selection of the source node x, the algorithm initial-
izes xnew to be a copy of x and creates an empty action a. Next,
it iterates over each Tactic and, assuming the Tactic’s active
Skill was not marked as ‘busy’ (x.bi = f alse), performs its
state transition by calling G. If the Skill was marked as ‘busy’
then no state transition is performed and its variables are ob-
tained from its previous state. After storing the new Tactics
state σ ′ into xnew , the algorithm then calls the active Skill’s
operator function f . Note, that the contents of the variables
V passed into f includes the random RRT sample y because
it was added earlier (V ← {y}), thus allowing the Skill to
make use of y. This in fact implies, that the traditional RRT
algorithm is actually a subset of the introduced BK-RRT. If
we imagine a Tactic containing a single Skill that only im-
plements the typical RRT ‘extend toward y’ action, then this
BK-RRT search would behave algorithmically identical to
standard RRT.

Each call to the operator f returns a tuple including the
boolean ‘busy-flag’ value bi . The purpose of this boolean
flag is to let a Skill report that it is currently executing a lin-
ear control task that does not require any branching because
its action selection is currently deterministic. Furthermore,
because bi is stored into xnew , it signals to the BK-RRT algo-
rithm to not perform any state transitions on the Tactic τi that
has a currently busy Skill (by not calling G if x.bi = false).

Algorithm 2: BK-RRT

Input: Initial state: xinit , set of goal states: Xgoal , set of h
tactics: 〈τ1, . . . , τh〉, RRT sampling space: Y, set of
valid states: Xvalid , timestep: %t, max iterations: z.

T ← NewEmptyTree();
T. AddVertex(xinit);
busy ← false;
for iter ← 1 to z do

if busy = true then
x ← xnew ;

else
y ← SampleRandomState(Y);
x ← NN (∀x ∈ T : x.b∧ = f alse, y);

xnew ← x;
a ← [0, . . . , 0];
for i ← 1 to h do

〈S = {s1, . . . , sk},', σinit〉 ← τi;
if x.bi = f alse then

σ ′ ← G(S, ', x.σi, x);
V ← {y};

else
σ ′ ← x.σi;
V ← x.Viσ ′ ;

〈C, D, f 〉 ← sσ ′ ;
〈a, V, bi〉 ← f (C, D, V, x, a);
xnew.σi ← σ ′;
xnew.Viσ ′ ← V;
xnew.bi ← bi;

busy ← b1 ∧ b2 ∧ . . . ∧ bh;
xnew.b∧ ← busy;
xnew.〈r1, . . . , rn〉 ← Sim(x.〈r1, . . . , rbn〉, a, %t);
xnew.t ← x.t + %t;
if xnew ∈ Xvalid then

T.AddVertex(xnew);
T.AddEdge(x,xnew ,a);
if xnew ∈ Xgoal then

return 〈xnew, T〉;
else

busy ← false;

return Failed;

Note, that if we have multiple Skills, then the global flag
busy is set to the logical and of all the individual Skill’s
bi flags. If busy is true then the algorithm does two impor-
tant things that can help increase overall planning efficiency.
First, during the next node selection iteration, the planner
will extend from xnew instead of sampling x, thus forcing
a continued, greedy single branch expansion for as long as
all Skills report that they are ‘busy’. Second, the planner
marks the entire node xnew as ‘busy’ (by setting xnew.b∧),
thus preventing any future planning iterations to select this
node as a source node to grow additional branches from. The
algorithm’s use of these ‘busy’ flag(s) can dramatically im-
prove planning efficiency because it prevents the creation of
unnecessary branches in the search tree by only allowing the

c© 2009 The Authors
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

S. Zickler and M. Veloso / Tactics-Based Behavioural Planning for Goal-Driven Rigid Body Control 7

growth of multiple child-branches from states that truly are
non-deterministic decision points.

The algorithm is now ready to call the physics-engine
through the function Sim, using as input the rigid body states
r1, . . . , rn contained in the source state x, and the forces and
torques defined by a, to simulate the physics of the system
forward in time by %t . The physics-engine returns a new set
of rigid body states that are stored into the new state xnew .
The algorithm then checks whether the resulting state is a
valid state (xnew ∈ Xvalid) to ensure that the simulation from
x to xnew did not violate any constraints that may be required
for the domain. This additional validity check is optional and
for many domains Xvalid = X, thus xnew ∈ Xvalid is always
true. If accepted, the algorithm adds xnew to the search tree
T as a child of the chosen node x. If the busy flag was set to
true during this iteration, then xnew will become the new x
during the next iteration.

The complete loop is repeated until the algorithm either
reaches the goal, or until it reaches the maximum allowed
number of iterations z, at which point the search returns
failure for this state. Once the goal is reached, the algorithm
simply returns xgoal which is then traversed back to the root
of T to provide the solution sequence.

5.1. Balanced growth trees

RRTs combination of node-selection and extension has a
clear advantage of providing a relatively efficient and prob-
abilistically uniform coverage of the work-space [LaV98].
This uniform expansion however, comes with the tradeoff
of computational time. Because BK-RRT requires a near-
est neighbour distance lookup through all existing nodes on
the tree on every iteration, the computational time grows
quadratically as the tree size increases. Also note that, un-
like in non-dynamic motion planning, this nearest neighbour
lookup process cannot always be trivially sped up through
the use of pre-sorting the tree in a data-structure (such as KD-
Trees), due to the potential non-linearity and non-symmetry
of the time-based distance function that is required in dy-
namic environments. A related concern is that the user might
have too many proverbial knobs to tweak to adapt RRT for
a particular domain. Wise decisions need to be made about
how to define the distance function and which dimensions
of the state-space X are to constitute the sampling-space
Y . Once defined, the user needs to choose a well-working
sampling-distribution.

Considering all these programmatic and computational
challenges, it is questionable whether the advantages of RRT,
such as its probabilistically uniform and rapid growth through
space, are actually a significant requirement for the tactically
constrained domains that we encounter. This is particularly
true if none of the Tactic’s Skills even make use of the random
sample y, and thus in no way implement the traditional RRT
‘extend toward y’ action. For many tactically constrained

models, it might in fact make more sense to abandon any
attempts in modelling complicated distance functions that in-
volve knowledge about body kinematics and the state-space,
and instead focus on a fast and random growth of the search
tree itself.

To test this hypothesis, we introduce a less informed ap-
proach that has the only objective to expand the search
through our Tactics space in a well-balanced fashion. We
call this approach Balanced Growth Trees (BGT). The basic

Algorithm 3: BK-BGT Node Selection

if (AvgLeafDepth(T)
AvgBranchingFactor(T)

) > µ then

x ← RandomNonLeaf (∀x ∈ T : x.b∧ = f alse);
else

x ← RandomLeaf (∀x ∈ T : x.b∧ = f alse);

planning loop of this algorithm is identical to BK-RRT. The
significant difference however, is the method of the selec-
tion of the node x. Algorithm 3 shows this new BGT node
selection method. Where BK-RRT required a sampling dis-
tribution and a nearest neighbour lookup, the only parameter
of the BGT node selection is a single constant µ which repre-
sents the desired ratio between average leaf depth and average
tree branching factor. A large value of µ leads the algorithm
to expand further into the future, but creates a ‘thinner’ tree,
whereas a smaller value of µ focuses on a more dense ex-
pansion, but with a more limited average time horizon. As it
is possible to keep running values of the average branching
factor and leaf depth as the tree grows, this node selection
scheme is able to run in constant time per node-selection,
thus resulting in linear time execution of the entire planning
algorithm.

5.2. Many-worlds browsing

Both algorithms, as presented, will stop as soon as a solu-
tion has been found. Because we are using a sampling-based
planning scheme, there are no immediate guarantees about
the optimality of the solution. Although the algorithm does
guarantee that the solution adheres to all constraints, it cannot
guarantee that there does not exist another, better (by some
metric) control sequence that also solves the problem. A com-
mon solution to this well-known property of sampling-based
planning, is to let the algorithm keep planning even after a
valid goal state has been found, thus potentially generating
additional valid, but different, control solutions. An animator
could then manually inspect and select one of these ‘many-
worlds’ [TJ07]. More interestingly, various metrics, such as
plan length or curvature, could be used to automatically com-
pare multiple solutions and let the planner select the best
one. A similar selection scheme might be desirable when no
complete solution can be found in the alloted time. In

c© 2009 The Authors
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

8 S. Zickler and M. Veloso / Tactics-Based Behavioural Planning for Goal-Driven Rigid Body Control

this case, the planner can simply select the best interme-
diate solution state from the tree by using some quality
metric.

6. Results

We tested our algorithm in a variety of domains. We imple-
mented the planner in C++, we chose NVIDIA PhysX as the
underlying physics engine, and the results were computed on
a Pentium 4. We used the Mersenne Twister pseudo-random
number generator [MN98] for all non-deterministic deci-
sions and sampling functions throughout our algorithms. We
used an action timestep %t of 1/60th of a second. In this
Section, we first introduce the domains with their respec-
tive Tactics models and examples of visual results. We then
present and analyse the planning performance of our BK-
RRT and BK-BGT algorithms for all of these domains. A
video with animations of several experiments can be found at
http://www.cs.cmu.edu/∼szickler/tactics/. The
same website also contains an Annex to this paper, show-
ing the internal algorithms of several selected Skills in more
detail.

6.1. Minigolf domain

In the ‘Minigolf’ domain, a robot rigid body has the objec-
tive to kick a ball through a course with a moving obstacle.
Figure 5 shows the Tactics model, allowing the robot-body
to wait for a sampling-based amount of time, position itself
at a sampling-based location, and then drive into and kick the
ball toward a sampling-based target with a sampling-based
speed. Note that the ‘Wait Sampled Time’-Skill, plays a sig-
nificant role since the obstacles in the domain are moving.
Figure 6 shows one particular solution from this domain.

6.2. Soccer domain

The ‘Soccer’ domain (a single soccer attacking situation)
significantly enhances the concept of goal-driven manipu-
lation of a passive body and truly demonstrates the unique
tactical planning abilities of our planner. In this domain, the
controlled body features a rather complex tactical model as
shown in Figure 7. This Tactic allows a robot-body to drib-
ble the ball to a sampling-based location, drive toward the
ball, drive with the ball (‘dribble’), kick or chip the ball to-
ward a sampling-based target near the robot (‘minikick’ and

Figure 5: The Tactic used in the ‘Minigolf’ domain.

Figure 6: The ‘Minigolf’ domain. The bar-shaped obstacle
at the centre of the course is rotating at constant velocity
and thus represents a predictable, foreign-controlled body.
The path shows an example of a legal solution found by the
planner for the controllable body, the robot (dark cube, left):
the robot-body waits an appropriate amount of time and then
accurately manipulates the ball to use the rotating obstacle as
a bounce-platform, leading it into the goal position (bottom
right).

Figure 7: The Tactic used in the ‘Soccer’ domain.

‘minichip’), or toward a sampling-based point in the goal
(‘kick’).

Additionally, the domain contains three dynamic adver-
sary rigid bodies which were running deterministic adversar-
ial Tactics to block the ball from the goal. Note that from a
planning perspective, this domain represents a very difficult
problem. Not only does the robot need to navigate around
moving bodies, but it also needs to exert accurate control
on the ball to achieve the scoring of a goal in an adversar-
ial environment. This domain generated various interesting
solutions, one of which is shown in Figure 8.

6.3. Pool table domain

The ‘Pool Table’ domain displayed in Figure 9 demonstrates
the ability to chain multiple Tactics, as shown in Figure 10.
Here, the goal is to hit the blue and yellow balls simulta-
neously which are then supposed to roll into the purple and
red balls respectively to deliver them into their pockets, all
without touching any striped balls. Note that in this domain,
the pool-balls are treated as active bodies, but with limited

c© 2009 The Authors
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

S. Zickler and M. Veloso / Tactics-Based Behavioural Planning for Goal-Driven Rigid Body Control 9

Figure 8: An example of the ‘Soccer’ domain. (a) The initial configuration of the bodies. The controllable robot-body is
initially at the top right, and the planning goal is to deliver the ball to the goal while avoiding the defenders and goalie robot
bodies;(b)-(d) Snapshots of one solution found by the planner; (e) The entire search tree representing the positions of all rigid
bodies, including ball (yellow nodes), controlled body (green nodes) and defenders (other colours).

Figure 9: An example of chaining multiple behavioural models in the ‘Pool Table’ domain. Given the initial state in the left
image, the objective is to use the cue-ball in order to deliver both the red and the purple balls in their closest respective corner
pockets without touching any of the striped balls. Our chained behavioural planner finds several acceptable solutions (centre
image) and automatically selects one for execution (right image).

Figure 10: The chained Tactics used for the ‘Pool Table’ domain. The cue-ball used the Tactic labelled in red, whereas the two
intermediate balls used the green and blue Tactics respectively.

actuation abilities. While the initial force is applied directly
to the cue-ball, the following balls obtain their force passed
on through the collision. The balls’ Tactics, and in particular
the ‘sampled spin’ Skill is able to slightly perturb their natu-
ral path by applying a sampling-based spin toward the target.

The ability of the planner to sample from different degrees
of these perturbations (thanks to the sampling-based Skill)
allows the automatic selection of a solution, which will not
collide with any striped balls, and yet requires a minimum of
perturbation from their natural passive behaviour.

c© 2009 The Authors
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

10 S. Zickler and M. Veloso / Tactics-Based Behavioural Planning for Goal-Driven Rigid Body Control

Figure 11: The Tactic used for the ‘Many-Dice’ domain.
Each die carries its own instance of this Tactic.

6.4. Many-dice domain

Finally, the ‘Many-Dice’ domain represents a more tradi-
tional computer animation task and aims to demonstrate the
ability of our planner to run several hundred Tactical in-
stances concurrently. The objective in this domain is to con-
trol the fall of 400 dice, each initialized to a random position.
While their fall and collisions are supposed to look physi-
cally plausible, they also have the target objective of forming
the Eurographics logo. This is achieved by providing each
die with a separate instance of the Tactic shown in Figure 11.
This domain is tricky because while we are able to actuate the
individual dice, we are interested in achieving the illusion of
a natural looking free-fall. This is very tough when the dice
still have to passively react to various collisions with spheri-
cal objects and with other dice. In order to do so, this Tactical
models carries multiple Skills, each representing a different
state of the fall based on a die’s current position and velocity.

Table 1: Numerical performance comparison of BK-RRT and BK-
BGT for different domains. Each value represents an average over
several experiments.

BK-RRT BK-BGT1

Domain Time Nodes Time Nodes

Soccer 9.6s 9752 11.1s 11088
Minigolf 5.3s 13042 2.5s 8094
Pool Table 2.7s 451 0.4s 191
Many-Dice n/a2 n/a2 204s preset2

1µ = 100 for Soccer, µ = 1000 otherwise.
2Many-Dice was tested with BK-BGT only, using a preset tree size.

These Skills are again sampling-based, but probabilistically
biased to create motions toward the die’s final target position
(which is determined at initialization). Figure 12 shows a
visual result of this domain.

6.5. Performance

Table 1 shows average planning times and tree sizes for all of
the above domains. Our planner was able to deliver many vi-
able solutions for all of these domains. The average planning
times and tree sizes suggest that, for tactically constrained
domains, it is in fact viable to use a more scalable, less in-
formed algorithm such as BK-BGT over BK-RRT. Figure 13

Figure 12: A solution sequence of the ‘Many-Dice’ domain. Four hundred randomly initialized dice fall toward a grid of
spherical obstacles. After bouncing through the grid, they fall into a bucket where they come to a rest. Our planner successfully
found a set of control actions which led the dice to their goal state of forming the Eurographics logo, while at the same time
appearing physically plausible during their fall.

c© 2009 The Authors
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

S. Zickler and M. Veloso / Tactics-Based Behavioural Planning for Goal-Driven Rigid Body Control 11

Figure 13: BK-RRT analysis of accumulated time spent in
node selection, physics and tactics computations respectively
over increasing tree sizes.

shows a timing analysis of the BK-RRT algorithm, breaking
down the total time spent during search into RRT node selec-
tion, Tactics and Skills execution and physics engine simu-
lations. As expected, RRTs node selection quickly becomes
the bottleneck for larger search trees, due to its quadratic
scalability.

7. Discussion

We now discuss the potential real-world applications of our
approach. We also elaborate on some of its remaining limi-
tations and trade-offs. Finally, we present several interesting
directions for future work.

7.1. Applications

There are several real-world applications where our intro-
duced approach should be considered beneficial. The first
one is computer animation of scenes involving rigid body
interactions. The advantage of our automated planning ap-
proach becomes clear for domains like ‘Many-Dice’ where
it is simply not feasible for an animator to manually adjust
the physics interactions of all the bodies involved. Instead, it
makes much more sense to define a simple Tactic and Skill
model that can be replicated for all the dice. Furthermore, this
very same model is likely to be applicable for many other
problem instances in the same domain. In the case of ‘Many-
Dice’, for example, our Tactics model would still work, even
if we changed the valid goal state from the pattern ‘EG’ to
some other shape, whereas a manual animator would have to
start over from scratch to re-adjust the paths of all the dice
involved.

Beyond traditional animation, there are types of applica-
tions where requiring manual animation is not only inef-
ficient, but simply impossible. These are any applications

where the initial configuration and/or goal states are not
known at the time of development (where an animator would
be available), but only at runtime. This is the case in video
games and robot control software. Given the demonstrated
planning performance, we believe that our approach could
already be applied as an opponent A.I. in turn-based physics
games, such as Pool or Golf. In Section 7.3, we will fur-
thermore discuss potential performance improvements and
algorithmic optimizations which could allow this technique
to be applied in interactive real-time applications in the near
future.

7.2. Limitations, and trade-offs

In terms of limitations, our approach is certainly not im-
mune against the general curse of dimensionality in plan-
ning. While intelligent Skills and Tactics are able to rapidly
increase our planner’s ability to solve domains involving
rigid body interactions, it is likely that this approach will
require long planning times when each controllable body has
an excessive amount of controllable degrees of freedom. Ad-
ditionally, the more complex the body’s control model, the
more complex is the required design of the Tactic and Skills
which make intelligent use of this control.

Our approach gives a user the flexibility to infuse as much
Tactical knowledge into the planning stage as desired. While
the definition of such knowledge does involve some work by
designing the actual Tactics and Skills, it will also likely result
in better planning performance. It should also be noted, that
many of the Skills can be considered template-like ‘building
blocks’ that apply to a variety of domains and therefore can
be re-used. Since our model allows arbitrary complexity of
Tactics and Skills (with the extreme case being a dead-simple
Tactic that implements standard RRT), we feel that our ap-
proach should be treated as a valuable extension to traditional
planning models.

7.3. Future work

Improving the planning performance should be one of the
main focus points of future work. On the computational side,
there are several promising approaches, such as performing
the algorithm’s physics-computations on the GPU. Addition-
ally, it might be interesting to parallelize the entire plan-
ning algorithm to be run on modern multi-core processors.
One way to achieve this would be by designating different
branches of the search tree to different processing cores.

On the algorithmic side, it would be interesting to look
into the concept of finite horizon planning. In particular, if
used in real-time video games, our planner needs to be able
to operate within a fixed amount of time and possibly under
uncertain, unpredictable future input. Limiting the depth of
the search tree in combination with frequent re-planning is a
promising approach to achieve this.

c© 2009 The Authors
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

12 S. Zickler and M. Veloso / Tactics-Based Behavioural Planning for Goal-Driven Rigid Body Control

Finally, it might also be worthwhile to investigate the use
of supervised machine learning techniques to automatically
‘train’ a particular tactical model by optimizing its internal
transition probabilities and sampling distributions, thus cre-
ating the strongest and most efficient planner possible for a
given domain.

8. Conclusion

We presented the rigid body control planning problem
and its challenges. We introduced and formalized a non-
deterministic version of Tactics and Skills as a model for
infusing goal-driven, high level behaviours into a sampling-
based motion planner, thus reducing its action space and
making search feasible. We introduced a Tactics-based plan-
ning algorithm with two different techniques for the search
tree expansion, one based on RRT, and one based on the novel
‘Balanced Growth Trees’. We experimentally demonstrated
the effectiveness of our approach in challenging domains.
Finally, we discussed these results, potential applications, as
well as directions for future work.

References

[Bar01] BARAFF D.: Physically based modeling: Rigid body
simulation. SIGGRAPH Course Notes, ACM SIGGRAPH
(2001).

[BBBV05] BROWNING B., BRUCE J., BOWLING M., VELOSO M.:
Stp: Skills, tactics and plays for multi-robot control in
adversarial environments. IEEE Journal of Control and
Systems Engineering 219 (2005), 33–52.

[BHW96] BARZEL R., HUGHES J., WOOD D.: Plausible motion
simulation for computer graphics animation. Computer
Animation and Simulation (1996), 184–197.

[BR01] BEHNKE S., ROJAS R.: A hierarchy of reactive
behaviours handles complexity. Balancing Reactivity
and Social Deliberation in Multi-Agent Systems: From
Robocup to Real-World Applications (2001).

[BV06] BRUCE J., VELOSO M.: Safe multi-robot navigation
within dynamics constraints. Proceedings of the IEEE 94,
7 (2006), pp. 1398–1411.

[BZLV07] BRUCE J., ZICKLER S., LICITRA M., VELOSO M.:
CMDragons 2007 Team Description. Tech. rep., Tech
Report CMU-CS-07-173, Carnegie Mellon University,
School of Computer Science, 2007.

[CF00] CHENNEY S., FORSYTH D.: Sampling plausible so-
lutions to multi-body constraint problems. In Proceed-
ings of the 27th annual conference on Computer graphics
and interactive techniques (New Orleans, USA, 2000),
pp. 219–228.

[D’A05] D’ANDREA R.: The Cornell RoboCup Robot Soccer
Team: 1999–2003. New York, NY: Birkhauser Boston,
Inc, pp. 793–804, 2005.

[DXCR93] DONALD B., XAVIER P., CANNY J., REIF J.: Kino-
dynamic motion planning. Journal of the ACM (JACM)
40, 5 (1993), 1048–1066.

[FKS06] FERGUSON D., KALRA N., STENTZ A.: Replanning
with RRTs. In Robotics and Automation. ICRA’06: Pro-
ceedings of the IEEE International Conference (Orlando,
FL, USA, 2006), pp. 1243–1248.

[KJL00] KUFFNER Jr J., LAVALLE S.: RRT-connect: An effi-
cient approach to single-query path planning. In ICRA’00:
Robotics and Automation, Proceedings of the IEEE Inter-
national Conference on 2 (San Francisco, USA, 2000).

[LaV98] LAVALLE S.: Rapidly Exploring Random Trees:
A New Tool for Path Planning. Tech. Rep. TR, Com-
puter Science Department, Iowa State University, 1998,
pp. 98–11.

[LK05] LAU M., KUFFNER J.: Behavior planning for char-
acter animation. In Proceedings of the ACM SIG-
GRAPH’05/Eurographics symposium on Computer ani-
mation (Los Angeles, USA, 2005), pp. 271–280.

[LK06] LAU M., KUFFNER J.: Precomputed search trees: plan-
ning for interactive goal-driven animation. In Proceedings
of the ACM SIGGRAPH’06/Eurographics symposium on
Computer animation (Boston, USA, 2006), pp. 299–308.

[LKJ01] LAVALLE S., KUFFNER JR J.: Randomized kinody-
namic planning. The International Journal of Robotics
Research 20, 5 (2001), 378.

[LR04] LAUE T., ROFER T.: A behavior architecture for au-
tonomous mobile Robots based on potential fields. Proc-
cedings of the 8th International Workshop on RoboCup
(Lisboa, Portugal, 2004), pp. 122–133.

[MKS07] MELCHIOR N., KWAK J., SIMMONS R.: Particle RRT
for Path Planning in very rough terrain. In NASA Sci-
ence Technology Conference (NSTC’07) (Maryland, USA,
2007).

[MLM08] MOSS W., LIN M. C., MANOCHA D.: Constraint-
based Motion Synthesis for Deformable Models. Com-
puter Animation and Virtual Worlds 19 (July 2008),
421–431.

[MN98] MATSUMOTO M., NISHIMURA T.: Mersenne twister:
a 623-dimensionally equidistributed uniform pseudo-
random number generator. ACM Transactions on Mod-
eling and Computer Simulation (TOMACS) 8, 1 (1998),
3–30.

c© 2009 The Authors
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

S. Zickler and M. Veloso / Tactics-Based Behavioural Planning for Goal-Driven Rigid Body Control 13

[PSE∗00] POPOVIĆ J., SEITZ S., ERDMANN M., POPOVIĆ

Z., WITKIN A.: Interactive manipulation of rigid body
simulations. In Proceedings of the 27th annual confer-
ence on Computer graphics and interactive techniques
(New Orleans, USA, 2000), pp. 209–217.

[SKF07] SHAPIRO A., KALLMANN M., FALOUTSOS P.: Interac-
tive motion correction and object manipulation. In I3D’07:
Proceedings of the Symposium on Interactive 3D graph-
ics and games (New York, NY, USA, 2007), ACM,
pp. 137–144.

[TJ07] TWIGG C., JAMES D.: Many-worlds browsing for con-
trol of multibody dynamics. ACM Transactions on Graph-
ics (TOG) 26, 3 (2007).

[VSA∗08] VAHRENKAMP N., SCHEURER C., ASFOUR T.,
KUFFNER J., DILLMANN R.: Adaptive motion planning
for humanoid robots. In Intelligent Robots and Sys-
tems, IROS’08. IEEE/RSJ International Conference (Nice,
France, 2008), pp. 2127–2132.

[YKH04] YAMANE K., KUFFNER J., HODGINS J.: Synthe-
sizing animations of human manipulation tasks. ACM
Transactions on Graphics (TOG) 23, 3 (2004), 532–
539.

[ZKB07] ZUCKER M., KUFFNER J., BRANICKY M.: Multipartite
RRTs for rapid replanning in dynamic environments. In
Proc. IEEE Int. Conf. on Robotics and Automation (Roma,
Italy, 2007), pp. 1603–1609.

c© 2009 The Authors
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

