
Pacific Graphics 2009
S. Lee, D. Lischinski, and Y. Yu
(Guest Editors)

Volume 28(2009), Number 7

Linkless Octree Using Multi-Level Perfect Hashing

Myung Geol Choi1 and Eunjung Ju1 and Jung-Woo Chang2 and Jehee Lee1 and Young J. Kim3

1Seoul National University, Korea
2University of Hong Kong, Hong Kong

3Ewha Womans University, Korea

Abstract
The standard C/C++ implementation of a spatial partitioning data structure, such as octree and quadtree, is
often inefficient in terms of storage requirements particularly when the memory overhead for maintaining parent-
to-child pointers is significant with respect to the amount of actual data in each tree node. In this work, we
present a novel data structure that implements uniform spatial partitioning without storing explicit parent-to-
child pointer links. Our linkless tree encodes the storage locations of subdivided nodes using perfect hashing
while retaining important properties of uniform spatial partitioning trees, such as coarse-to-fine hierarchical
representation, efficient storage usage, and efficient random accessibility. We demonstrate the performance of our
linkless trees using image compression and path planning examples.

Categories and Subject Descriptors(according to ACM CCS): Computer Graphics [I.3.6]: Graphics data structures
and data types—

1. Introduction

Uniform spatial partitioning data structures such as
quadtrees and octrees are widespread in a variety of graph-
ics applications including spatial indexing, image/volume
encoding and compression, collision detection, visibility
culling and path planning. These spatial partitioning struc-
tures often allow large spatial data sets to be maintained effi-
ciently in terms of storage requirements and random acces-
sibility, in particular, when strong spatial coherence exists in
the data sets.

The standard C/C++ implementation of a spatial partitioning
data structure subdivides each spatial cell into child cells re-
cursively and maintains parent-to-child pointer links. Some-
times, the memory overhead for storing parent-to-child links
is significant with respect to the amount of actual data in
each cell. For example, a uniform spatial partitioning tree
encoding ad-dimensional binary volume maintains a single
bit (either zero or one) of data in each cell together with 2d

pointers. In a 32-bit addressing machine, the memory over-
head for each non-leaf node is 32∗2d (bits), which is several
orders of magnitude larger than the actual amount of data in
the node.

A number of techniques have been studied for storing

quadtrees and octrees memory efficiently. A linear quadtree
converts a hierarchical structure into a one-dimensional ar-
ray by traversing the tree in depth-first order [Gar82,OW83,
Woo84]. The linear quadtree is memory efficient because it
does not maintain parent-to-child pointers. The disadvantage
of the linear depth-first traversal encoding is its inefficiency
in random access to tree nodes. Accessing an arbitrary node
necessitates sequential scanning of the array for tree traver-
sal. Many of linear quadtree variants exhibit a trade-off be-
tween storage requirements and efficient random accessibil-
ity.

In this work, we present a novel data structure that imple-
ments uniform spatial partitioning without storing explicit
parent-to-child pointers. Our linkless tree maintains non-leaf
nodes at small extra storage by layering multiple hashing
functions. Without storing explicit links, it retains several
important properties of uniform spatial partitioning trees,
such as coarse-to-fine hierarchical representation, efficient
storage usage, and efficient random accessibility.

Our linkless tree is particularly useful for compactly repre-
senting high-dimensional binary bitmap volumes. Modeling
free configuration space for path planning often generates
such data sets. The free space map is ad-dimensional bi-

submitted toPacific Graphics (2009)

2 Myung Geol Choi & Eunjung Ju & Jung-Woo Chang & Jehee Lee & Young J. Kim / Linkless Octree Using Multi-Level Perfect Hashing

7 X 7 12 X 12 18 X 18 27 X 27 38 X 38 50 X 50 116 X 116

Hash Tables

5 X 5 7 X 7 14 X 14 17 X 17 23 X 23 28 X 28 35 X 35

Offset Tables

 1024 x 1024
Original Binary Bitmap

Figure 1: The linkless quadtree of a binary image. Each entry of an offset table is a two-dimensional vector and each of its
components is quantized to 8-bits. Vector values in the tables are color coded using red and green channels. Note that our
algorithm does not generate the first two levels of the hierarchy becausethe compact packing of non-leaf cells at those levels is
not smaller than the original image.

nary bitmap volume, which represents whether each con-
figuration cell is free or occupied. It is impractical to store
an uncompressed bitmap volume because its size scales ex-
ponentially with its dimensionality. We will demonstrate
three examples using three-, four-, and five-dimensional free
space maps. The three-dimensional example models a pla-
nar rigid mover and static obstacles. The mover is allowed
to translate and rotate on a plane. The use of an animated
mover navigating through static obstacles adds an extra di-
mension (for parameterizing the pose of the mover) to yield
four-dimensional configuration space. Modeling free config-
urations between two animated characters requires a five-
dimensional binary bitmap, which can be compactly repre-
sented by using our linkless spatial partitioning tree.

2. Previous Work

Spatial partitioning is a standard technique in computer
graphics. Though the standard pointer-based implementa-
tion is extremely popular in a variety of graphics applica-
tions, the variants of quadtrees and octrees have also been
explored for reducing storage requirements, improving the
performance of dynamic updates, and GPU implementa-
tion. Gargantini [Gar82] presented a linear quadtree that
represents hierarchical tree data without pointers. The lin-
ear quadtree encodes only non-empty nodes with a quater-
nary integer whose digits indicate quadrant subdivision po-
sition and preserved the integer data in one-dimensional ar-
ray. Oliver and Wiseman [OW83] and Woodwark [Woo84]
compressed the linear quadtree further by providing sophis-
ticated tree traversal code. Their major concern was deriving
maximum benefit from compressing required storage and,
therefore, the performance for accessing tree nodes and dy-
namically updating tree structures was compromised. Fab-

brini [FM86] proposed an autumnal quadtree that stores the
data of leaf nodes into the pointer fields in their parent nodes.
The autumnal tree can be used only when the size of pointers
is longer than data fields in each node. To avoid this restric-
tion, Lefebvre [LH07] encoded each data value into 7 bits
by using vector quantization method. This approach leads to
lossy data compression.

The theoretical lower bound of the size of a binary tree en-
coding is 2n− o(n) bits, wheren is the number of nodes.
The theoretical lower bound can be achieved by level-order
bit stream encoding that encodes leaf (zero) and non-leaf
(one) nodes in a breath-first tree traversal order. Given such a
succinct data structure, implementing basic operations such
as finding a parent/child/sibling node is non-trivial. There
have been significant research on compactly representing
binary trees and augmenting auxiliary indexing structures
to perform basic operations efficiently on succinct binary
trees [Jac89,MR97]. Research on trees of higher-degree has
arisen recently. Benoit et al. [BDM∗05] encoded a tree of
degree 2d in ((dde+ 2)n+ o(n) + O(lgd)) bits and imple-
mented basic navigational operations inO(1) time and ran-
dom node access inO(lgn) time. On the other hand, several
researchers explored efficient methods for constructing and
dynamically updating quadtrees and octrees. Eppstein and
his colleagues [EGS05] presented a skiptree data structure
that allows for fast point insertion and deletion. Quadtrees
and octrees have been implemented on GPUs by exploit-
ing the general-purpose programming capability of modern
GPUs [LSK∗06,PF05,ZHWG08].

Spatial hashing techniques pack sparse spatial data into a
compact table. Lefebvre and Hoppe [LH06] explored the use
of perfect hashing in graphics applications and its implemen-
tation on GPUs. A hash function isperfectif it has no col-

submitted toPacific Graphics (2009)

Myung Geol Choi & Eunjung Ju & Jung-Woo Chang & Jehee Lee & Young J. Kim / Linkless Octree Using Multi-Level Perfect Hashing3

level k

level k+1

level k-1

hashing

B
k

B
k-1

B
k+1

su
bdiv

id
e

hashing

hashing

su
bdiv

id
e

su
bdiv

id
e

Figure 2: Subdivision and hashing.

lisions. Spatial hashing techniques have also been used to
encode quadtrees/octrees exploiting the coherency in spatial
data. Warren [WS93] presented a hashed octree that assigns
unique keys to all (leaf and non-leaf) nodes and indexes them
in a hash table. To improve search time, Castro [CLL∗08]
proposed a statistical model that selects the most frequenlty
accessed level instead of the first level, as a starting point
of the search. Bastos [BF08] similarly mapped octree nodes
into a perfect hash table and accessed random nodes using
octree level and point location indexes. The hash table store
data associated with a sparse subset of the domain. If the
indexing key does not correspond to a valid point in the do-
main, the hash function leads to arbitrary data in the table.
Lefebvre and Hoppe [LH06] discussed several strategies for
sparsity encoding, such as storing an extra binary bitmap
over the domain to mark valid cells and augmenting position
tags in the data fields. Whatever strategy is taken, sparsity
encoding adds an extra burden for compact octree encoding.
Our octree representation based on multi-level perfect hash-
ing does not require extra storage for sparsity encoding be-
cause it retains the hierarchical structure of an octree. Invalid
locations are automatically detected while tracing down the
hierarchy.

3. Multi-Level Hashing

Our linkless octree employs a perfect spatial hashing tech-
nique [LH06] to maintain references to child nodes with

small extra storage. Though our structure is called a linkless
“octree”, we actually refer to itsd-dimensional generaliza-
tion that performs uniform spatial partitioning for all axes.
Our implementation allows 2D, 3D, 4D, and 5D volumes
to be stored in an adaptive spatial partitioning structure. We
will first explain the construction of a binary octree in Sec-
tion 3.1. The generalization of the construction algorithm for
dealing with longer data fields will be discussed later in Sec-
tion 3.2.

3.1. Octree for Binary Data

The linkless octree consists of a pyramid of coarse-to-fine
bitmaps. Each cell in the bitmap (except the bitmap at the
finest level) has two bits. One bit encodes whether the cell is
leaf node or not. A non-leaf cell includes both ones and zeros
in its bitmap region. The non-leaf cell requires a subsequent
subdivision to achieve higher resolution. The other bit marks
the cell as eitherall-zero or all-one if the cell is leaf node.
The finest level in the hierarchy has a one-bit binary bitmap
because the leaf/non-leaf flag is not necessary any more.

Algorithm 1 : Linkless octree construction

input : A binary bitmap volumeV of sizend.
output: Bitmap volumesBk and offset tablesΦk.

G←SpatialGrids([0,n]×·· ·× [0,n]) ;1

b← 1; /* the size of spatial grids */2

for k← 0 to dlgne do3

b← 2b ;4

subG← SubdivideGrids(G, b) ;5

m← CountNonLeafCells(subG, V) ;6

if m= 0 then7

Bk← ConstructOneBitVolume(subG,V) ;8

/* generate the bitmap at the finest level and*/
/* terminate the algorithm */
break ;9

else ifdm1/de< b then10

/* the bitmap is not generated if its size is not */
/* smaller than the bitmap of the previous level */

Bk← ConstructTwoBitVolume (subG,V) ;11

Φk← ConstructOffsetTable(Bk) ;12

G← CollectNonLeafCells(subG,hk, Φk) ;13

b← dm1/de ;14

The bitmap volume at level(k+1) consists of non-leaf cells
at its previous levelk, which are compactly packed and then
uniformly subdivided to produce finer grids (see Figure2
and Algorithm1). The hash function at each level maps a
non-leaf parent cell to its child cells at the subsequent level.
Perfect spatial hashing establishes conflict-free mapping be-
tween levels resorting on auxiliary offset tables. More pre-
cisely, letBk be ad-dimensional bitmap at levelk and its size

submitted toPacific Graphics (2009)

4 Myung Geol Choi & Eunjung Ju & Jung-Woo Chang & Jehee Lee & Young J. Kim / Linkless Octree Using Multi-Level Perfect Hashing

RGB(24bits) Color Image

1024 X 1024

14 X 14

11 X 11

23 X 23

16 X 16

36 X 36

27 X 27

56 X 56

43 X 43

73 X 73

85 X 85

75 X 75

124 X 124 150 X 150

Non-leaf nodes

Leaf nodes

Compactly packed leaf nodes with RGB color value

Binary bitmap of leaf/non-leaf flags

Figure 3: The dual-hashing octree for a RGB color image. At each level, leaf nodesand non-leaf nodes are gathered separately
and compactly packed using two spatial hashing functions. Only leaf nodesstore data fields. Offset tables are omitted in the
figure for clear presentation.

is (bk)
d containingm non-leaf cells and the remaining leaf

cells (line 6). The hash table ofdm1/ded can accommodate
m non-leaf cells. Letp be the spatial location inBk and p′

be its corresponding location in the hash table. The perfect
hashing function at levelk is

p′ = h(p) = (p modbk+1)+Φ(p modrk+1), (1)

wherebk andrk are the size of bitmapBk and offset tableΦk,
respectively (line 11-13). The offset table is ad-dimensional
array of offset vectors. We refer the reader to [LH06] for de-
tails on how to compute the offset table. In practice, the size
of the offset table is insignificant comparing to the memory
overhead of the pointer-based implementation. Then, bitmap
Bk+1 at the subsequent level is the uniform subdivision of the
hash table (line 4-5). We repeat this process until no non-leaf
cells remain in the bitmap.

3.2. Octree with Long Data Fields

The binary linkless octree can be generalized to deal with
multi-bytes data by simply expanding the data field at each
cell. However, the storage requirements can further be re-
duced if we store data only at leaf nodes. The data fields at
non-leaf nodes are useful in some applications. For example,
the non-leaf node of an image quadtree usually stores the av-
erage color value of its descendants nodes. Progressive trans-
mission of an image can benefit from the average value, be-
cause progressively refining images can be viewed while the
image is being transmitted. However, there are many other
applications in which non-leaf data fields are useless and
thus wasted. A number of geometric applications make use
of octrees for spatial querying. Each octree cell maintains a
set of assorted geometric primitives. Such an octree does not
have meaningful values for non-leaf data fields.

Our dual-hashing octree removes the wasted data fields at
non-leaf nodes to achieve better compression rates. Our
dual-hashing octree makes use of two hashing functions at
each level (see Figure3). One hashing function is for locat-
ing non-leaf child nodes at the next level. Its functionality
is the same as the hashing function for a binary octree. The
only difference is that each cell in the hash tables has only
one bit flag and does not have any data fields. The other hash-
ing function is used for compactly packing leaf nodes with
data fields. The dual-hashing octree performs better than the
single-hashing octree if a larger amount of data is stored at
each cell.

4. Experimental Results

The timing data provided in this section was measured on a
2.4GHz Intel Core2 Duo computer with 4Gbyte main mem-
ory and an nVidia GeForce 8800GTX GPU unless otherwise
noted.

4.1. Free Configuration Space Modeling

The major advantages of our linkless octrees are efficient
memory usage and random accessibility. To demonstrate
the usefulness of the techniques, we modeled massive free
configuration spaces using octrees. Animating and Planning
character motions in a complex virtual environment require
frequent interference-checking between characters and ob-
stacles. Precomputation of free space maps and efficient
random accessibility allow us to detect collisions very ef-
ficiently at runtime. Free space maps of 4D and 5D con-
figuration spaces are too big to be accommodated in main
memory. Therefore, compression is crucial. We constructed
octree models of 3D/4D/5D free space maps approximately
at a finite resolution.

The precomputation time for free space construction varies

submitted toPacific Graphics (2009)

Myung Geol Choi & Eunjung Ju & Jung-Woo Chang & Jehee Lee & Young J. Kim / Linkless Octree Using Multi-Level Perfect Hashing5

significantly depending on its dimension, size and the com-
plexity of geometry. It ranges from several minutes on a per-
sonal computer to several hours on a super computer. The
largest 5-dimensional free space map was computed on a su-
per computer with 484 nodes (5.6 Tflops performance). The
computation time has nothing to do with octree construc-
tion. The collision detection between characters and obsta-
cles was the bottleneck in computation. Collision checking
was performed using V-COLLIDE, which is a collision de-
tection library for large polygonal objects based on bounding
volume hierarchies [HLC∗97].

3D free space map.We consider the interference between
a planar rigid mover and static obstacles (see Figure4). The
configuration of the mover can be described with three pa-
rameters(x,y,θ), where(x,y) is the position of the mover
on the horizontal plane andθ is the rotation of the mover
about the vertical axis with respect to the reference sys-
tem. We built a free configuration space map having a
1024×1024×1024 resolution of grids. The size of raw bi-
nary bitmap data is 10243/8 = 128 (Mbyte), which can be
compressed to 5.6 Mbyte using our linkless octree (see Fig-
ure5 for details). The compression rate is about 95.6%. The
top-down construction of the free space map requires the
ability to check whether a cell is interference-free, partially-
occupied, or completely-occupied without exhaustively ex-
amining all configurations in the range of the cell. This range
query capability can save the tree construction time. Our sys-
tem employs a range query method presented by Zhang et
al. [ZKVM06], which can examine whether two convex ob-
jects overlap (or disjoint) for every configuration (translation
and rotation) in a given spatial range. A concave object need
to be decomposed into a collection of convex objects.

4D free space map.The goblin in Figure5(top, left) is an-
imated using 256 frames of motion data. We built a sim-
ple hand-crafted motion graph that allows transitioning be-
tween motion frames [LCR∗02]. The relative configuration
(x,y,θ, i) of the animated character with respect to a static
obstacle is four-dimensional, where(x,y) is the relative
translation,θ is the relative rotation, andi is the frame in-
dex of the motion graph. The garden in the figure includes
14 different kinds of polygon trees and flowers. A four-
dimensional free space map was precomputed for the gob-
lin and each individual object. We constructed 14 free space
maps of 256×256×256×256 resolution. The size of each
map ranges from 4 Mbytes to 30 Mbyte depending on the
size and complexity of geometry. Since a raw bitmap vol-
ume requires 2564/8 = 512 (MByte) memory, the compres-
sion rate ranges from 93.9% to 99.2%.

5D free space map.The free space map of two ani-
mated characters has five-dimensional configuration space
(x,y,θ, i, j). The characters’ poses are described byi and
j, respectively. We demonstrate two five-dimensional exam-
ples. The animal example in Figure5(top, center) features
a thousand characters of four different species (bird, frog,

xθ

y

Figure 4: Path planning of a planar rigid mover through
static obstacles. The free configuration space can be mod-
eled as a three-dimensional binary volume on the left.

penguin, and pig). Each character has 32 poses for anima-
tion. We built a five-dimensional free space map of 1285

resolution. Its size in memory is about 150 Mbytes. The
goblin example in Figure5(top, right) features a thousand
goblins animated by using a motion graph with 512 poses.
The skin deformation at each pose was precomputed and
stored as polygon data. The goblin example used a five-
dimensional free space map of 64× 64× 64 spatial reso-
lution and 512× 512 animation resolution. The size of the
map is about 320 Mbytes. Each goblin character consists of
ten thousand polygons. Given the free space map, interfer-
ence between a thousand animated goblins can be checked
at interactive rate.

4.2. Performance Comparison

We used 2D images to compare our linkless quadtrees with
existing techniques because conducting comparison tests
with higher-dimensional data is too difficult and timecon-
suming. The standard implementation of some existing tech-
niques does not easily generalize to cope with higherdimen-
sional data.

Binary Image. Though our octrees are not meant to com-
press 2D binary images, the comparison tests give a good
sense how it performs in comparison with well-known loss-
less compression methods, such as pointer-based quadtree,
ZIP, run-length encoding, and CCITT. CCITT Group3 and
Group4 are industry standards for compressing bitonal im-
age data and used by most facsimile machines. Group3 com-
pression is a one dimensional algorithm that encodes im-
age data scanline-by-scanline. Group4 compression encodes
each scanline with reference to the previous scanlines to
improve compression ratios. The comparison tests are con-
ducted with two test images (see Figure6). The face image
has large all-black and all-white regions and the boundary
between black and white regions is relatively clean. The text
image, on the other hand, has a lot of details and thus do
not compress well using octrees. For both images, the link-
less octree is an order of magnitude smaller than the pointer-

submitted toPacific Graphics (2009)

6 Myung Geol Choi & Eunjung Ju & Jung-Woo Chang & Jehee Lee & Young J. Kim / Linkless Octree Using Multi-Level Perfect Hashing

Figure 5: Examples of free configuration space maps. (Up left) Goblins in a garden.A 4D map was precomputed for the goblin
and each individual object in the garden. (Up middle) A thousand animal characters were animated using 256 frames of motion
data. The interference between characters were checked in realtime using a 5D free space map. (Up right) A thousand animated
goblins were animated using 512 frames of motion data. (Down) The size offree space maps.

based octree. The linkless octree performs better than run-
length encoding and ZIP for the face image, but not as well
as CCITT Group3 and Group4. The text image is a partic-
ularly bad example for octree encoding because not many
internal cells are pruned in the octree hierarchy. In our com-
parison tests, the linkless quadtree was not the best for com-
pressing black-and-white images, but at least adequate for
images with strong spatial coherency.

Color Image.The color image in figure3 has a 1024×1024
resolution and each pixel has 24 bits for RGB color. The size
of the raw uncompressed image is 10242/8 = 3072(Kbyte).
The size of the pointer-based quadtree is 439.6 Kbytes. Our
single-hashing octree constructed by simply expanding the
data field in each cell requires 203.2 Kbytes, which can
further be compressed by using dual hashing functions, as
explained in Section3.2. Our dual-hashing octree requires
179.4 Kbytes, which achieves a compression rate of 11.7%
with respect to the single-hashing octree. The compression

rate is directly related to the length of the data field. A higher
compression rate can be achieved for an octree with longer
data fields.

Quadtree Comparison.We encoded the face image in Fig-
ure6 in four quadtrees (pointer-based, sibling [HW91], au-
tumnal [FM86] and our linkless tree) and compared the
memory overhead for maintaining parent-to-child pointers,
sibling pointers, and auxiliary hash tables (see Figure7).
The pointer-based tree has four pointers in every non-leaf
node and each pointer uses 4 bytes. Therefore, the tree re-
quires 16 bytes per node. The sibling tree and autumnal
tree require 4 bytes and 1.125 bytes per node, respectively
[LH07]. The size of auxiliary hash tables for our linkless
tree is about one-fourth of the memory overhead of the au-
tumnal tree, which is much more memory-efficient than the
other two tree encodings. Succinctk-nary tree by Benoit et
al. [BDM∗05] requires(4n+ o(n) +C) bits for storing a
quadtree, where(o(n)+C) is the size of the auxiliary index-

submitted toPacific Graphics (2009)

Myung Geol Choi & Eunjung Ju & Jung-Woo Chang & Jehee Lee & Young J. Kim / Linkless Octree Using Multi-Level Perfect Hashing7

(Kbyte)

(Kbyte)

Figure 6: 2D image compression performance comparison.

ing structure and C is a large constant. For the 1024×1024
image with 15,409 octree nodes, the succinct quadtree takes
7,705+o(n) (bytes), which is 14.9% larger than our linkless
octree.

Computation time. We compare our hash-based quadtree
and the pointer-based quadtree for the 1024×1024 face im-
age in Figure6. The construction of the hash-based quadtree
takes 0.735 seconds, which is ten times slower than the
pointer-based tree construction (0.076 seconds). Evaluating
a perfect hash function requires two modulo and one ta-
ble lookup operations. Therefore, the random access to the
hash-based quadtree is slower than the random access to
the pointer-based quadtree, which requires only one pointer
indirection. In our experiments, accessing a million ran-
dom nodes in the hash-based quadtree and the pointer-based
quadtree took 0.625 and 0.095 seconds, respectively. Though
tree accessing using hash functions is slower than pointer in-
direction, it is much more efficient than other compressed
linear quadtrees that requiresO(n) time for random node ac-
cess.

5. Discussion

We have presented a pointerless octree that makes use of
multi-level perfect spatial hashing. Our linkless implemen-
tation would allow octrees to be employed in a wider variety
of applications.

Our linkless octree has several limitations. The perfect hash-
ing functions we employed are near optimal in the sense that
the storage requirement for storing offset tables is small, but
may not be optimal. There exists a trade-off between the

Figure 7: Memory overhead comparison. We measured the
size of pointers and hash tables of four quadtrees. The data
fields are not included in the size.

storage efficiency and the construction time. In our imple-
mentation, the tree construction was considered as a prepro-
cessing phase and we were mainly concerned with reducing
storage costs while allowing efficient access to data at run-
time.

Another limitation is the lack of local refineability. Inserting
and deleting a point in a perfect hash table usually lead to re-
building the entire hash table. Therefore, our linkless octree
cannot allow for frequent local updates and thus may not be
adequate for representing dynamically changing data. De-
veloping a dynamically updateable perfect hashing function
is an interesting direction for future research.

Acknowledgements

We sincerely appreciate the advice of Prof. Srinivasa Rao
Satti. This work was supported by the Korea Research Foun-
dation Grant funded by the Korean Government (MOEHRD)
(KRF-2007-511-D00332) and the grant from the strategic
technology development program (Project No. 2008-F-033-
02) of both the MKE (Ministry of Knowledge Econemy) and
MCST (Ministry of Culture, Sports and Tourism) of Korea.

References

[BDM∗05] BENOIT D., DEMAINE E. D., MUNRO J. I., RAMAN

R., RAMAN V., RAO S. S.: Representing trees of higher degree.
Algorithmica 43, 4 (2005), 275–292.2, 6

[BF08] BASTOS T., FILHO W. C.: Gpu-accelerated adaptively
sampled distance fields. InProceedings of IEEE Interna-
tional Conference on Hsape Modeling and Applications(2008),
pp. 171–178.3

[CLL∗08] CASTRO R., LEWINER T., LOPESH., TAVARES G.,
BORDIGNON A.: Statistical optimization of octree searches.
Computer Graphics Forum 27, 6 (march 2008), 1557–1566.3

[EGS05] EPPSTEIND., GOODRICH M. T., SUN J. Z.: The skip
quadtree: Asimple dynamic data structure for multidimensional
data. InProceedings of the 21st Annual Symposium on Compu-
tational Geometry (SoCG’05)(2005), pp. 296–305.2

[FM86] FABBRINI F., MONTANI C.: Autumnal quadtrees.The
Computer JOURNAL 29, 5 (1986), 472–474.2, 6

[Gar82] GARGANTINI I.: An effective way to represent
quadtrees.Communications of the ACM 25, 12 (1982), 905–910.
1, 2

submitted toPacific Graphics (2009)

8 Myung Geol Choi & Eunjung Ju & Jung-Woo Chang & Jehee Lee & Young J. Kim / Linkless Octree Using Multi-Level Perfect Hashing

[HLC∗97] HUDSON T. C., LIN M. C., COHEN J.,
GOTTSCHALK S., MANOCHA D.: V-collide: accelerated
collision detection for vrml. InProceedings of Symposium on
Virtual Reality Modeling Language (VRML ’97)(1997).5

[HW91] HUNTER A., WILLIS P. J.: Classification of quad-
encoding techniques.Computer Graphics Forum 10, 2 (1991),
97–112.6

[Jac89] JACOBSONG.: Space-efficient static trees and graphs. In
Proceedings of the 30th Annual Symposium on Foundations of
Computer Science (SFCS ’89)(1989), pp. 549–554.2

[LCR∗02] LEE J., CHAI J., REITSMA P. S. A., HODGINS J. K.,
POLLARD N. S.: Interactive control of avatars animated with hu-
man motion data.ACM Transactions on Graphics (SIGGRAPH
2002) 21, 3 (2002), 491–500.5

[LH06] L EFEBVRES., HOPPEH.: Perfect spatial hashing.ACM
Transactions on Graphics (SIGGRAPH 2006) 25, 3 (2006), 579–
588. 2, 3, 4

[LH07] L EFEBVRE S., HOPPEH.: Compressed random-access
trees for spatially coherent data. InProceedings of the Euro-
graphics Symposium on Rendering(2007).2, 6

[LSK∗06] LEFOHN A. E., SENGUPTA S., KNISS J., STRZODKA

R., OWENS J. D.: Glift: Generic, efficient, random-access gpu
data structures.ACM Transactions on Graphics 25, 1 (2006),
60–99.2

[MR97] MUNRO J. I., RAMAN V.: Succinct representation of
balanced parentheses, static trees and planar graphs. InProceed-
ings of the 38th Annual Symposium on Foundations of Computer
Science (FOCS ’97)(1997), p. 118.2

[OW83] OLIVER M. A., W ISEMAN N. E.: Operations on
quadtree encoded images.The Computer Journal 26, 1 (1983),
83–91.1, 2

[PF05] PHARR M., FERNANDO R.: GPU Gems 2: Program-
ming Techniques for High-Performance Graphics and General-
Purpose Computation (Chapter 1. Octree Textures on the GPU).
Pearson Education, 2005.2

[Woo84] WOODWARK J.: Compressed quad trees.The Computer
Journal 27, 3 (1984), 225–229.1, 2

[WS93] WARREN M. S., SALMON J. K.: A parallel hashed oct-
tree n-body algorithm. InProceedings of the 1993 ACM/IEEE
conference on Supercomputing (Supercomputing ’93)(1993),
pp. 12–21.3

[ZHWG08] ZHOU K., HOU Q., WANG R., GUO B.: Real-time
kd-tree construction on graphics hardware.ACM Transactions
on Graphics (SIGGRAPH Asia 2008) 27, 5 (2008), 1–11.2

[ZKVM06] Z HANG L., K IM Y. J., VARADHAN G., MANOCHA

D.: Fast c-obstacle query computation for motion planning. In
Proceedings of IEEE International Conference on Robotics and
Automation (ICRA 2006)(2006), pp. 3035–3040.5

submitted toPacific Graphics (2009)

