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Abstract

The standard C/C++ implementation of a spatial partitioning data structurehsas octree and quadtree, is
often inefficient in terms of storage requirements particularly when theamneaverhead for maintaining parent-
to-child pointers is significant with respect to the amount of actual data thedee node. In this work, we

present a novel data structure that implements unifor

m spatial partitioniitigowt storing explicit parent-to-

child pointer links. Our linkless tree encodes the storage locations of sdedi\nodes using perfect hashing
while retaining important properties of uniform spatial partitioning trees,sas coarse-to-fine hierarchical
representation, efficient storage usage, and efficient randonssitiity. \WWe demonstrate the performance of our

linkless trees using image compression and path plann

ing examples.

Categories and Subject Descriptgaiscording to ACM CCS) Computer Graphics [I.3.6]: Graphics data structures

and data types—

1. Introduction

Uniform spatial partitioning data structures such as
quadtrees and octrees are widespread in a variety of graph-
ics applications including spatial indexing, image/volume
encoding and compression, collision detection, visibility
culling and path planning. These spatial partitioning struc-
tures often allow large spatial data sets to be maintained effi-
ciently in terms of storage requirements and random acces-
sibility, in particular, when strong spatial coherence exists in
the data sets.

The standard C/C++ implementation of a spatial partitioning
data structure subdivides each spatial cell into child cells re-
cursively and maintains parent-to-child pointer links. Some-
times, the memory overhead for storing parent-to-child links
is significant with respect to the amount of actual data in
each cell. For example, a uniform spatial partitioning tree
encoding a-dimensional binary volume maintains a single
bit (either zero or one) of data in each cell together with 2
pointers. In a 32-bit addressing machine, the memory over-
head for each non-leaf node is82° (bits), which is several
orders of magnitude larger than the actual amount of data in
the node.

A number of techniques have been studied for storing
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quadtrees and octrees memory efficiently. A linear quadtree
converts a hierarchical structure into a one-dimensional ar-
ray by traversing the tree in depth-first ord&gr82 OW83
Wo084. The linear quadtree is memory efficient because it
does not maintain parent-to-child pointers. The disadvantage
of the linear depth-first traversal encoding is its inefficiency
in random access to tree nodes. Accessing an arbitrary node
necessitates sequential scanning of the array for tree traver-
sal. Many of linear quadtree variants exhibit a trade-off be-
tween storage requirements and efficient random accessibil-

ity.

In this work, we present a novel data structure that imple-
ments uniform spatial partitioning without storing explicit
parent-to-child pointers. Our linkless tree maintains non-leaf
nodes at small extra storage by layering multiple hashing
functions. Without storing explicit links, it retains several
important properties of uniform spatial partitioning trees,
such as coarse-to-fine hierarchical representation, efficient
storage usage, and efficient random accessibility.

Our linkless tree is particularly useful for compactly repre-
senting high-dimensional binary bitmap volumes. Modeling
free configuration space for path planning often generates
such data sets. The free space map @ésdimensional bi-
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Figure 1: The linkless quadtree of a binary image. Each entry of an offset table is-@litwensional vector and each of its
components is quantized to 8-bits. Vector values in the tables are colod amiieg red and green channels. Note that our
algorithm does not generate the first two levels of the hierarchy bedhasmmpact packing of non-leaf cells at those levels is
not smaller than the original image.

nary bitmap volume, which represents whether each con- brini [FM86] proposed an autumnal quadtree that stores the
figuration cell is free or occupied. It is impractical to store data of leaf nodes into the pointer fields in their parent nodes.
an uncompressed bitmap volume because its size scales ex-The autumnal tree can be used only when the size of pointers
ponentially with its dimensionality. We will demonstrate is longer than data fields in each node. To avoid this restric-
three examples using three-, four-, and five-dimensional free tion, Lefebvre [HO7] encoded each data value into 7 bits
space maps. The three-dimensional example models a pla-by using vector quantization method. This approach leads to
nar rigid mover and static obstacles. The mover is allowed lossy data compression.

to translate and rotate on a plane. The use of an animated ) ) .

mover navigating through static obstacles adds an extra di- ' "€ theoretical lower bound of the size of a binary tree en-
mension (for parameterizing the pose of the mover) to yield €0ding is 21— o(n) bits, wheren is the number of nodes.
four-dimensional configuration space. Modeling free config- ' N€ theoretical lower bound can be achieved by level-order
urations between two animated characters requires a five- Pit Stream encoding that encodes leaf (zero) and non-leaf
dimensional binary bitmap, which can be compactly repre- (one) nodes in a breath-first tree traversal order. Given such a

sented by using our linkless spatial partitioning tree. succinct data structure, implementing basic operations such
as finding a parent/child/sibling node is non-trivial. There
have been significant research on compactly representing
2. Previous Work binary trees and augmenting auxiliary indexing structures
) S ) ) to perform basic operations efficiently on succinct binary
Spatial partitioning is a standard technique in computer ieeg Pac89MRI7]. Research on trees of higher-degree has
graphics. Though the standard pointer-based implementa- 5risen recently. Benoit et al.BDM*05] encoded a tree of
tion is extremely popular in a variety of graphics applica- degree 9in (([d] +2)n+o(n) + O(Igd)) bits and imple-
tions, the variants of quadtrees and octrees have also bee”mented basic navigational operationsd(il) time and ran-
explored for reducing storage requirements, improving the 4om node access @(Ign) time. On the other hand, several
performance of dynamic updates, and GPU implementa- researchers explored efficient methods for constructing and
tion. Gargantini 3ar83 presented a linear quadtree that  gynamically updating quadtrees and octrees. Eppstein and
represents hierarchical tree data without pomte_rs. The lin- his colleagues EGS0J presented a skiptree data structure
ear quadtree encodes only non-empty nodes with a quater-gha¢ gllows for fast point insertion and deletion. Quadtrees
nary integer whose digits indicate quadrant subdivision po- g4 octrees have been implemented on GPUs by exploit-
sition and preserved the integer data in one-dimensional ar- ing the general-purpose programming capability of modern
ray. Oliver and WisemanQW83 and Woodwark YWoo84 GPUs LSK*06,PF05ZHWGOS.
compressed the linear quadtree further by providing sophis-

ticated tree traversal code. Their major concern was deriving Spatial hashing techniques pack sparse spatial data into a
maximum benefit from compressing required storage and, compact table. Lefebvre and HoppdH06] explored the use
therefore, the performance for accessing tree nodes and dy-of perfect hashing in graphics applications and its implemen-
namically updating tree structures was compromised. Fab- tation on GPUs. A hash function gerfectif it has no col-
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Figure 2: Subdivision and hashing.
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lisions. Spatial hashing techniques have also been used fo

small extra storage. Though our structure is called a linkless
“octree”, we actually refer to itsl-dimensional generaliza-
tion that performs uniform spatial partitioning for all axes.
Our implementation allows 2D, 3D, 4D, and 5D volumes
to be stored in an adaptive spatial partitioning structure. We
will first explain the construction of a binary octree in Sec-
tion 3.1 The generalization of the construction algorithm for
dealing with longer data fields will be discussed later in Sec-
tion 3.2

3.1. Octree for Binary Data

The linkless octree consists of a pyramid of coarse-to-fine
bitmaps. Each cell in the bitmap (except the bitmap at the
finest level) has two bits. One bit encodes whether the cell is
leaf node or not. A non-leaf cell includes both ones and zeros
in its bitmap region. The non-leaf cell requires a subsequent
subdivision to achieve higher resolution. The other bit marks
the cell as eitheall-zero or all-one if the cell is leaf node.
The finest level in the hierarchy has a one-bit binary bitmap
because the leaf/non-leaf flag is not necessary any more.

Algorithm 1: Linkless octree construction

input : A binary bitmap volumé/ of sizen.

output: Bitmap volumesBy and offset table®y.
G«—Spatial Gids([0,nx---x[0,n]) ;
b« 1; /*the size of spatial grids */

encode quadtrees/octrees exploiting the coherency in spatial for k — 0to [Ign] do

data. Warren\[VS93 presented a hashed octree that assigns
unique keys to all (leaf and non-leaf) nodes and indexes them
in a hash table. To improve search time, Cas@€tl[*08] 6
proposed a statistical model that selects the most frequenlty
accessed level instead of the first level, as a starting point
of the search. Basto8F08 similarly mapped octree nodes

into a perfect hash table and accessed random nodes using

octree level and point location indexes. The hash table store
data associated with a sparse subset of the domain. If the
indexing key does not correspond to a valid point in the do-
main, the hash function leads to arbitrary data in the table.
Lefebvre and Hoppd HO6] discussed several strategies for
sparsity encoding, such as storing an extra binary bitmap
over the domain to mark valid cells and augmenting positiof?
tags in the data fields. Whatever strategy is taken, sparsity
encoding adds an extra burden for compact octree encoding.
Our octree representation based on multi-level perfect hash-
ing does not require extra storage for sparsity encoding be-
cause it retains the hierarchical structure of an octree. Invalid
locations are automatically detected while tracing down the
hierarchy.

3. Multi-Level Hashing

Our linkless octree employs a perfect spatial hashing tech-
nique LHO6] to maintain references to child nodes with
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b« 2b;

subG« Subdi vi deGri ds(G,b) ;

m <« Count NonLeaf Cel | s(subG,\) ;

if m=0then
By < Const ruct OneBi t Vol ume( subG,V ;
/* generate the bitmap at the finest level and*/
[* terminate the algorithm */
break ;

Ise iffm*/%] < bthen
/* the bitmap is not generated if its size is not */
[* smaller than the bitmap of the previous level */

By « Const ruct TwoBi t Vol une (subGV) ;
@y — Construct O f set Tabl e(By) ;
G« Col | ect NonLeaf Cel | s(subG,l, ®y) ;

b— "ml/d‘l :

0]

The bitmap volume at levgk + 1) consists of non-leaf cells

at its previous levek, which are compactly packed and then
uniformly subdivided to produce finer grids (see Fig@re
and Algorithm1). The hash function at each level maps a
non-leaf parent cell to its child cells at the subsequent level.
Perfect spatial hashing establishes conflict-free mapping be-
tween levels resorting on auxiliary offset tables. More pre-
cisely, letB be ad-dimensional bitmap at lev&land its size
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Figure 3: The dual-hashing octree for a RGB color image. At each level, leaf resttéson-leaf nodes are gathered separately
and compactly packed using two spatial hashing functions. Only leaf reddesdata fields. Offset tables are omitted in the
figure for clear presentation.

is (bk)d containingm non-leaf cells and the remaining leaf  Our dual-hashing octree removes the wasted data fields at
cells (line 6). The hash table q;ml/d}d can accommodate  hon-leaf nodes to achieve better compression rates. Our

m non-leaf cells. Letp be the spatial location iB, and p’ dual-hashing octree makes use of two hashing functions at
be its corresponding location in the hash table. The perfect each level (see Figui®. One hashing function is for locat-
hashing function at leve{ is ing non-leaf child nodes at the next level. Its functionality

is the same as the hashing function for a binary octree. The
only difference is that each cell in the hash tables has only
one bit flag and does not have any data fields. The other hash-
ing function is used for compactly packing leaf nodes with
data fields. The dual-hashing octree performs better than the
single-hashing octree if a larger amount of data is stored at
each cell.

p'=h(p)=(p modby.1)+P(p modry.1), (1)

whereby andry are the size of bitmaBy and offset tablepy,
respectively (line 11-13). The offset table ig-@imensional
array of offset vectors. We refer the readerltblQ6] for de-

tails on how to compute the offset table. In practice, the size
of the offset table is insignificant comparing to the memory 4. Experimental Results

overhead of the pointer-based implementation. Then, bitmap o ) o )

By 1 at the subsequent level is the uniform subdivision of the TNe timing data provided in this section was measured on a

hash table (line 4-5). We repeat this process until no non-leaf 2-4GHz Intel Core2 Duo computer with 4Gbyte main mem-
cells remain in the bitmap. ory and an nVidia GeForce 8800GTX GPU unless otherwise

noted.

3.2. Octree with Long Data Fields 4.1. Free Configuration Space Modeling

The binary linkless octree can be generalized to deal with
multi-bytes data by simply expanding the data field at each
cell. However, the storage requirements can further be re-
duced if we store data only at leaf nodes. The data fields at

non-leaf nodes are useful in some applications. For example, character motions in a complex virtual environment require

the non-leaf node of_an image quadtree usually store§ the aV'frequent interference-checking between characters and ob-
erage colorva!ue ofits descenqants nodes. Progressive TaNSgtacles. Precomputation of free space maps and efficient
mission of an Image can _ben_eflt from the average valu_e, be- random accessibility allow us to detect collisions very ef-
cause progressively refining images can be viewed while the ficiently at runtime. Free space maps of 4D and 5D con-
image is being transmitted. However, there are many other figuration spaces are t0o big to be accommodated in main
applications in which non-leaf data fields are useless and

th ted. A ber of tri licati K memory. Therefore, compression is crucial. We constructed
us wasted. A number of geometric applicallons maxe USe oo models of 30/4D/5D free space maps approximately
of octrees for spatial querying. Each octree cell maintains a

AT at a finite resolution.
set of assorted geometric primitives. Such an octree does not
have meaningful values for non-leaf data fields. The precomputation time for free space construction varies

The major advantages of our linkless octrees are efficient
memory usage and random accessibility. To demonstrate
the usefulness of the techniques, we modeled massive free
configuration spaces using octrees. Animating and Planning
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significantly depending on its dimension, size and the com-
plexity of geometry. It ranges from several minutes on a per-
sonal computer to several hours on a super computer. The

largest 5-dimensional free space map was computed on a su-

per computer with 484 nodes (5.6 Tflops performance). The
computation time has nothing to do with octree construc-
tion. The collision detection between characters and obsta-
cles was the bottleneck in computation. Collision checking
was performed using V-COLLIDE, which is a collision de-
tection library for large polygonal objects based on bounding
volume hierarchiesHLC*97].

3D free space mapWe consider the interference between
a planar rigid mover and static obstacles (see Figlur&he
configuration of the mover can be described with three pa-
rameters(x,y, 8), where(x,y) is the position of the mover
on the horizontal plane an@lis the rotation of the mover
about the vertical axis with respect to the reference sys-
tem. We built a free configuration space map having a
1024x 1024x 1024 resolution of grids. The size of raw bi-
nary bitmap data is 102348 = 128 (Mbyte), which can be
compressed to 5.6 Mbyte using our linkless octree (see Fig-
ure5 for details). The compression rate is about 95.6%. The
top-down construction of the free space map requires the
ability to check whether a cell is interference-free, partially-
occupied, or completely-occupied without exhaustively ex-
amining all configurations in the range of the cell. This range
query capability can save the tree construction time. Our sys-
tem employs a range query method presented by Zhang et
al. [ZKVMO06], which can examine whether two convex ob-
jects overlap (or disjoint) for every configuration (translation
and rotation) in a given spatial range. A concave object need
to be decomposed into a collection of convex objects.

4D free space mapThe goblin in Figures(top, left) is an-
imated using 256 frames of motion data. We built a sim-
ple hand-crafted motion graph that allows transitioning be-
tween motion frames[CR*02]. The relative configuration
(x,y,0,i) of the animated character with respect to a static
obstacle is four-dimensional, whefg,y) is the relative
translation,0 is the relative rotation, andis the frame in-
dex of the motion graph. The garden in the figure includes
14 different kinds of polygon trees and flowers. A four-
dimensional free space map was precomputed for the gob-
lin and each individual object. We constructed 14 free space
maps of 256« 256 x 256 x 256 resolution. The size of each
map ranges from 4 Mbytes to 30 Mbyte depending on the
size and complexity of geometry. Since a raw bitmap vol-
ume requires 25”6/8 =512 (MByte) memory, the compres-
sion rate ranges from 93.9% to 99.2%.

5D free space map.The free space map of two ani-
mated characters has five-dimensional configuration space
(x,¥,6,i, ). The characters’ poses are describedi and

j, respectively. We demonstrate two five-dimensional exam-
ples. The animal example in FiguBtop, center) features

a thousand characters of four different species (bird, frog,
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Figure 4: Path planning of a planar rigid mover through
static obstacles. The free configuration space can be mod-
eled as a three-dimensional binary volume on the left.

penguin, and pig). Each character has 32 poses for anima-
tion. We built a five-dimensional free space map of 128
resolution. Its size in memory is about 150 Mbytes. The
goblin example in Figuré&(top, right) features a thousand
goblins animated by using a motion graph with 512 poses.
The skin deformation at each pose was precomputed and
stored as polygon data. The goblin example used a five-
dimensional free space map of 8464 x 64 spatial reso-
lution and 512«x 512 animation resolution. The size of the
map is about 320 Mbytes. Each goblin character consists of
ten thousand polygons. Given the free space map, interfer-
ence between a thousand animated goblins can be checked
at interactive rate.

4.2. Performance Comparison

We used 2D images to compare our linkless quadtrees with
existing techniques because conducting comparison tests
with higher-dimensional data is too difficult and timecon-
suming. The standard implementation of some existing tech-
niques does not easily generalize to cope with higherdimen-
sional data.

Binary Image. Though our octrees are not meant to com-
press 2D binary images, the comparison tests give a good
sense how it performs in comparison with well-known loss-
less compression methods, such as pointer-based quadtree,
ZIP, run-length encoding, and CCITT. CCITT Group3 and
Group4 are industry standards for compressing bitonal im-
age data and used by most facsimile machines. Group3 com-
pression is a one dimensional algorithm that encodes im-
age data scanline-by-scanline. Group4 compression encodes
each scanline with reference to the previous scanlines to
improve compression ratios. The comparison tests are con-
ducted with two test images (see Fig@e The face image

has large all-black and all-white regions and the boundary
between black and white regions is relatively clean. The text
image, on the other hand, has a lot of details and thus do
not compress well using octrees. For both images, the link-
less octree is an order of magnitude smaller than the pointer-
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Collision Map Resolution LevelO Levell Level2 Level3 Leveld Level5 Level6 Level7 Level8 Level9 Total (Kb) (TJSI
Path Bimap | - B B 1,024 9,004 34,186 83,328 308,114 | 1,054,200 | 1,416,139 | 2,905,995

S0 | planning | 1024x1024x1024 G50 oy - - - 8,800 22,792 61,108 205,412 773,084 | 1,888,188 - 2950384 | 556
Bimap | - - 1,024 9,604 82,344 640,000 | 5,345,344 | 14,623,232 - - 20,701,548

el Offset - - 2,500 16,384 202,500 937,024 | 9,253,764 - - - 10,412,172 | 297
Bimap | 64 324 2,500 16,384 114,044 777,024 | 1,847,042 B B 2,758,482

Cherry02 Offset - 1,024 324 2,500 16,384 114,044 | 937,024 - - - 1,071,500 | 3.7
Bimap | - - 1,024 5,184 40,000 419,904 | 2,829,124 | 8,201,250 - - 11,496,486

SUC Offset - - 2,500 9,604 58,564 640,000 | 3,694,084 - - - 4,404,752 | 152
- Bimap | = 1,024 9,604 82,944 521,284 | 4,194,304 | 12,500,000 = = 17,309,160

Tulips01 Offset - - 1,024 9,604 153,664 | 1,119,364 | 6,718,464 - - - 8,002,120 | 241
Tulips02 Bimap | - B 1,024 9,604 82,944 640,000 | 4,743,684 | 14,623,232 B B 20,100,488

Offset - - 1,024 9,604 114,044 | 1,327,104 | 6,718,464 - - - 8,170,440 | 27.0
- Bimap | - = 1,024 5,184 58,564 419,904 | 3,240,000 | 8,954,912 = = 12,679,568

CorEE Offset - - 2,500 5,184 82,944 521,084 | 4,194,304 - - - 4,806,216 | 167
- Bimap | - B 1,024 5,184 58,564 419,904 | 8,240,000 | 8,954,912 - - 12,679,588

4p |Gaeania0z|  256x256x256x256 | ooy - - 2,500 9,604 82,944 640,000 | 6,002,500 - - - 6.737,548 | 185
Garden - Bimap | - = 1,024 5,184 58,564 419,904 | 3,240,000 | 9,759,362 = = 13,484,038

ol Offset - - 2,500 9,604 114,044 937,004 | 4,743,684 - - - 5,807,056 | 18.4
- Bimap | - B 1,004 5,184 56,564 419,904 | 3,240,000 | 9,759,362 B B 13,484,038

o Offset - - 2,500 9,604 82,944 777,924 | 4,194,304 - - - 5,067,276 | 17.7
Bimap | - - 1,024 9,604 58,564 521,084 | 8,694,084 | 10,616,832 - - 14,901,392

et Offset - - 1,024 26,244 114,244 1,327,104 | 6,718,464 - - - 8,187,080 | 22.0
Bimap | - B 1,024 9,604 82.944 540,000 | 4,194,304 | 11,529,602 - - 16,457,478

s Offset - - 2,500 9,604 82,944 937,024 | 6,718,454 - - - 7,750,506 | 23.1
Bimap | - - 1,024 9,604 58,564 521,084 | 8,694,084 | 10,616,832 - - 14,901,392

CalE Offset - - 1,024 16,384 82,944 777,924 | 4,743,684 - - - 5,621,960 | 196
Bimap | - B 1,024 9.604 82.944 521,084 | 4,194,304 | 11,529,602 - - 16,338,762

i Offset - - 1,024 9,604 114,244 777,924 | 5,345,344 - - - 6.248.140 | 215
Bimap | - - 1,024 9,604 58,564 521,084 | 8,694,084 | 10,616,832 - B 14,901,392

Calushl Offset - - 1,024 9,604 82,944 777,924 | 4,194,304 - - - 5,065,800 | 19.0
) Bitmap | - 39.048 | 859,748 | 3.084,906 | 11,250,308 | 38,473,048 | 51,122,065 - - = 104,838,323

. Animals |128x128x128x1 28K 128~y o - 322,968 | 1,938,831 | 4,211,946 | 12,780,369 | 32,628,180 - - - - 51,882,094 | 149.5
coomn | oababacizie | Eimes 288 | 8.896 | 173.000 | 2,753,552 | 41,990.712 | 243,630,820 - - - - 288,557,268

Offset 368 | 25,400 | 294,568 | 4,311,504 | 49,926,720 - - - - - 54,558,560 | 327.2

Figure 5: Examples of free configuration space maps. (Up left) Goblins in a gafdébB. map was precomputed for the goblin
and each individual object in the garden. (Up middle) A thousand anihedacters were animated using 256 frames of motion
data. The interference between characters were checked in realtingeaiSId free space map. (Up right) A thousand animated
goblins were animated using 512 frames of motion data. (Down) The simedpace maps.

based octree. The linkless octree performs better than run- rate is directly related to the length of the data field. A higher
length encoding and ZIP for the face image, but not as well compression rate can be achieved for an octree with longer
as CCITT Group3 and Group4. The text image is a partic- data fields.

ularly bad example for octree encoding because not many ) ) o
internal cells are pruned in the octree hierarchy. In our com- Quadtree Comparison.We encoded the face image in Fig-
parison tests, the linkless quadtree was not the best for com- Uré 6 in four quadirees (pointer-based, siblingW91], au-
pressing black-and-white images, but at least adequate for tumnal [FM86] and our linkless tree) and compared the

images with strong spatial coherency. memory overhead for maintaining parent-to-child pointers,
sibling pointers, and auxiliary hash tables (see Figuje
Color Image. The color image in figur8 has a 1024 1024 The pointer-based tree has four pointers in every non-leaf
resolution and each pixel has 24 bits for RGB color. The size node and each pointer uses 4 bytes. Therefore, the tree re-
of the raw uncompressed image is 162&: 3072(Kbyte). quires 16 bytes per node. The sibling tree and autumnal

The size of the pointer-based quadtree is 439.6 Kbytes. Our tree require 4 bytes and 1.125 bytes per node, respectively
single-hashing octree constructed by simply expanding the [LHO7]. The size of auxiliary hash tables for our linkless
data field in each cell requires 203.2 Kbytes, which can tree is about one-fourth of the memory overhead of the au-
further be compressed by using dual hashing functions, as tumnal tree, which is much more memory-efficient than the
explained in Sectior3.2 Our dual-hashing octree requires other two tree encodings. Succirehary tree by Benoit et
179.4 Kbytes, which achieves a compression rate of%1 al. [BDM*05] requires(4n+ o(n) +C) bits for storing a
with respect to the single-hashing octree. The compression quadtree, whergo(n) +C) is the size of the auxiliary index-
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Imaae resolution 32 64 128 256 512 1024
(# of total nodes) (299) (743) (1657) | (3585) | (7303) | (15409)

Linkless quadtree 119 295 601 1508 1968 6724

-
~ N [t 2 el - Pointer-based quadtree| 4784 11888 26512 57360 116848 | 246544
AR r‘wﬂ ,h % e

vh S 4 A 5 ‘ A % @ B Sibling quadtree 1196 2972 6628 14240 29212 61636
Autumnal quadtree 336 836 1864 4033 8216 17335

Face 32 64 28 256 512 1024 e

Linkless quadtree 0.222 0.471 0.959 2.176 4.349 9.259
Pointer-based guaditree] 2.421 5.641 12.841 26.581 57.521 121.361 ) )

- o2 0365 0.5 1955 489 1228 Figure 7: Memory overhead comparison. We measured the
COITT (group3) 04 06 09 18 a7 7.9 size of pointers and hash tables of four quadtrees. The data
CCITT (group4) 0.3 0.4 0.6 1 1.8 3.4 . . . .

(Kbyto) fields are not included in the size.

storage efficiency and the construction time. In our imple-
mentation, the tree construction was considered as a prepro-

Resolution

LT 32 64 128 756 512 T024 cessing phase and we were mainly concerned with reducing
Fonobuetanim oot | tom | soms | sssrer | e | sstor storage costs while allowing efficient access to data at run-
Zip 0.224 0.505 1.377 4.389 16.842 43.002 tlme
Run*\ength 0.4 0.7 1.7 5.0 15.8 47.1 N
CCITT (group3) 0.4 0.7 1.7 4.5 15.1 32.9
 — — 2 — = e o Another limitation is the lack of local refineability. Inserting

and deleting a point in a perfect hash table usually lead to re-
Figure 6: 2D image compression performance comparison. building the entire hash table. Therefore, our linkless octree
cannot allow for frequent local updates and thus may not be
adequate for representing dynamically changing data. De-

) ] veloping a dynamically updateable perfect hashing function
ing structure and C is a large constant. For the 102024 is an interesting direction for future research.

image with 15,409 octree nodes, the succinct quadtree takes
7,705+ 0(n) (bytes), which is 14.9% larger than our linkless
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