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Abstract

Ray–based representations can model complex light transport but are limited in modeling diffraction effects that

require the simulation of wavefront propagation. This paper provides a new paradigm that has the simplicity

of light path tracing and yet provides an accurate characterization of both Fresnel and Fraunhofer diffraction.

We introduce the concept of a light field transformer at the interface of transmissive occluders. This generates

mathematically sound, virtual, and possibly negative-valued light sources after the occluder. From a rendering

perspective the only simple change is that radiance can be temporarily negative. We demonstrate the correctness

of our approach both analytically, as well by comparing values with standard experiments in physics such as

the Young’s double slit. Our implementation is a shader program in OpenGL that can generate wave effects on

arbitrary surfaces.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three–Dimensional
Graphics and Realism—Raytracing I.3.6 [Computer Graphics]: Methodology and Techniques—Graphics Data
Structures and Data Types

1. Introduction

Ray–based methods are strong contenders for efficiently and
accurately capturing the myriad ways light interacts with
matter. Starting from the eighties, backward ray tracing, with
recursive secondary rays, enabled the efficient depiction of
shadows, reflection, and refraction. Morphing ideas from ra-
diosity and signal processing enabled effects such as soft
shadows, lens blurring, and motion blur. Yet another signif-
icant jump is the realization that caustic effects are best ob-
tained – demonstrated by photon mapping and bidirectional
ray tracing – by source level tracing from the light source,
rather than backward tracing from the eye. Meanwhile the
Light Field (LF) model for understanding light transport had
led to a range of new techniques and applications such as
digital refocusing, depth estimation, synthetic apertures, and
glare reduction.

Given this background, it would be more complete to also
envelope another frontier of light interaction with matter –
diffraction. The goal of this paper is to provide a source
level description of an augmented light field that enables
the unified treatment of light effects – the traditional ef-
fects mentioned above, and the less explored wave effects.
Prior researchers have implemented some of the large vari-
ety of wave effects; however these are hybrid methods that

keep track of the phase of the wavefront while propagating
rays [Mor81]. They are cumbersome and are not plug–and–
play compatible with well understood ray tracing paradigms.

1.1. Contributions

We introduce the Augmented Light Field (ALF) framework,
which is a new theoretical way of modeling wave phenom-
ena [OBR08, ROAZ09]. The ALF is an upgraded ray–based
representation that, put simply, mimics the Wigner Distribu-
tion Function (WDF) analysis popular in the optics commu-
nity. Since the ALF is still essentially ray–based (but with
phase information of wavefronts already encoded) the ALF
can be integrated easily into existing ray–based methods.
Specific technical contributions are as follows:

• We show that the ALF can model diffraction and interfer-
ence rigorously despite being a pure ray–based formula-
tion.

• We show that the proposed method can predict both Fres-
nel and Fraunhofer diffraction without any change in the
representation.

• We show the compatibility of ALF in ray–based imple-
mentations and provide an OpenGL implementation.
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Figure 1: Effects created by a window fabric due to diffrac-
tion. (Top left) Looking at a scene from behind a fabric with
fine tiled pattern. (Top right) Our framework predicts ze-
roth, first, and higher diffraction orders for intricate patterns.
We model the fabric as tiled gratings and render diffraction
from each tile independently. (Middle and Bottom) Render-
ing without and with the fabric. Notice the effects around
bright sources.

1.2. Scope and Limitations

The goal of the paper is three fold. First, we present the the-
oretical foundations of the ALF. Next, we demonstrate how
the upgraded ray representation can handle wave effects. Fi-
nally, we demonstrate the benefits using instructive render-
ing examples. Building a complete rendering system is be-
yond the scope of this paper. Our formulation is explained
in flat land (i.e., in the plane of the paper) for notational
simplicity, where the LF, ALF, and WDF are 2D functions.
However, the analysis applies to the real 3D world and corre-
sponding 4D functions in a straightforward manner. All our
rendering examples are realized in the 3D world and on ar-
bitrary surfaces as shown in Sec. 5.3. The examples are cho-

Figure 2: The Augmented Light Field framework supports
diffraction and interference. It shares the simplicity of ray–
based representation. Modeling wave–phenomenon typi-
cally require Fourier Optics but we exploit the ALF and im-
plement such effects in GLSL.

sen to be simple but representative cases commonly used in
wave optics, enabling us to validate our results. Further, the
diffractive occluders are chosen to be symmetric, enabling
us to easily move from 2D to 3D using separability. All the
diffractive occluders are transmissive but our framework also
can be applied to reflective occluders by simple coordinate
inversions.

Paraxial approximation: We only consider light propaga-
tion in the paraxial region, and neglect any non–linear effect
including singularities. This assumption is essential because
the radiance defined by the WDF is preserved only in the
paraxial region [LW93,Alo01]. To describe the light interac-
tion in the non–paraxial region, a different type of phase–
space representation should be used such as the Angle–
Impact Wigner Distribution Function [WAF99, PA07].

Polarization: Our current implementation does not address
polarization properly because it is valid for linearly po-
larized light. However, it can be extended to handle dif-
ferent polarization states with the coherency matrix ap-
proach [Alo04, BW99].

Coherence: For simplicity, the concept of the ALF frame-
work is described with coherent light. The ALF can be ex-
tended since it is based on the WDF, which can be applied
to both coherent and incoherent light [Bas09, ZL09].

1.3. Related work

Light Propagation in Optics: Walther proposed the con-
cept of generalized radiance [Wal73] and there has been
extensive research on the subject. The notable one is the
Wigner Distribution Function [Bas09], where light is de-
scribed in terms of local spatial frequency. The WDF
has been exploited in a variety of analysis and de-
sign problems in optics: 3D display [FMCJS06], digital
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Figure 3: The ALF can represent challenging wave-
phenomena. (Top) Traditional Fourier Optics tools can pre-
dict intensities after diffraction, propagation, and interfer-
ence. (Bottom) ALF can support the same via (i) potentially
negative radiance and (ii) lightfield transformer. The con-
structive or destructive “interference” effect is for free when
the radiance is integrated.

holography [MMH∗06, SJ04], generalized sampling prob-
lems [SJ04], and superresolution [WMZ98]. Although the
WDF provides rigorous models of light propagation, the
WDF has not been used for rendering to the best of our
knowledge. Recently the important connection between the
LF and WDF was made by Zhang and Levoy [ZL09];
the concept of observable light field, which is the ray–
representation limited subset of the WDF (the smallest el-
lipse in Fig. 2), was introduced. Indirectly, they have de-
scribed the space of effects spanned by today’s photon and
ray-based renderings. Our work goes beyond because we can
represent wave–like effects (the middle ellipse in Fig. 2).
The key idea is to allow these enhanced abilities while pre-
serving the simplicity of ray-like operations. However, our
framework currently does not support all wave-phenomena
such as vectorial diffraction and evanescent waves.

Wave-based Rendering: Moravec proposed a wave model
to render complex light transport efficiently [Mor81].
Ziegler et al. developed a new wave–based frame-
work [ZCG08]. As light propagates, the phase change due to
the optical path length is tracked and generates constructive
and destructive interference. Also, Stam presented a tech-
nique to model reflective diffraction using shaders [Sta99].

In principle, keeping track of the optical path length dif-
ference (OPD) of all possible rays should be sufficient to
model diffraction rigorously. Our intention is to show that
the proposed method also provides physically correct results
without computing optical path difference. A further concep-
tual difference between these two methods should be noted.

The OPD method “knows” the effect of the rays only when it
computes the (difference in) path lengths created by occlud-
ers. In contrast, the ALF “preprocesses” the occluders and
produces source level information of the light field after the
occluder, “waiting to be sampled by the world.” Radiance
is temporarily negative in our paradigm, but the mathemat-
ics ensures that at the end, samples in the real world end up
with non–negative intensity [Bas09].

Light Propagation in Graphics: The light field is a
parametrized plenoptic function describing radiance of
rays in position–angle space [LH96, GGSC96]. Ray–based
image synthesis is computationally efficient and produces
physically realistic results for many optical elements. This
geometric optics approach is also used in optical system
design and analysis of various optical phenomena. Light
transport, shadow casting, and light field in frequency do-
main have been studied by Chai et al. [CCST00], Isaksen et
al. [IMG00], Veeraraghavan et al. [VRA∗07], and Durand et
al. [DHS∗05].Ray tracing and photon mapping are based on
geometric optics theory of propagation.

2. Ray and Wave Effects

Before we introduce the ALF framework, we briefly present
the WDF and how it models diffraction because the ALF is
formulated based on the WDF.

2.1. Light field and Wigner Distribution Function

In the ray–based LF representation, the plenoptic function is
parameterized with four variables (x, y, θ and φ) indicating
the position and direction of the ray in 3D. Rays propagate
straight without bending in a homogeneous medium and ex-
hibit refraction and reflection at an interface between two
different media. In wave optics, light is represented as an
electromagnetic wave, where both amplitude and phase de-
scribe light behavior governed by Maxwell’s equations. The
wavefront is a surface of a constant phase of the electromag-
netic wave, and rays are defined to be perpendicular to the
wavefront as in Fig. 4.

The WDF for an input g(x), which can be either electric
(or magnetic) field or complex transparencies of thin optical
elements, is defined as

W(x, fl) =
∫

g(x+ x′

2 )g
∗(x− x′

2 )e
−i2πx′ fl dx

′, (1)

where x represents the spatial coordinate and fl indicates the
local spatial frequency, ∗ denotes complex conjugate, and
the value of the WDF is often called generalized radiance. It
is known that the local spatial frequency fl of the wavefront
is related to the ray propagation angle θ by fl = θ/λ in the
paraxial region, where λ is the wavelength [Goo05]. Hence,
both LF and WDF represent light transport in the position–
angle space. Note that as shown in Fig. 5 the LF and WDF

c© 2010 The Author(s)
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Figure 4: The phase of a wavefront is related to the angle of
corresponding rays. The phase is represented as local spatial
frequency in the WDF representation. (Left) Illustration of a
spherical wavefront and rays. Rays are normal to the wave-
front. (Right) The WDF is a local spatial frequency spec-
trum. The WDF of the spherical wave at a given z in Wigner
coordinate space is similar to the ALF in the position-angle
coordinate space. Propagation angles of rays are encoded in
the local spatial frequency.

Figure 5: The benefit of the ALF is that image formation
and propagation are identical in the WDF, LF and ALF.
(Left) Image formation is via intensity computation which is
a projection along the angle or spatial frequency dimension,
i.e. integration at receiving patch along all incoming angles.
(Right) The free–space propagation is via the x–shear trans-
form in the position–angle space.

exhibit similar properties: 1) projection of the WDF along
the fl–axis yields the intensity and 2) free–space propagation
is illustrated as the x–shear transform.

2.2. Ray Limitations

Since a ray always has a positive radiance, has no concept of
phase, and propagates along a straight line in a homogeneous
medium, pure ray–based representations cannot model any
phase sensitive phenomena, such as light transport asso-
ciated with diffraction or phase–sensitive optical elements
(i.e., phase gratings or holograms). To demonstrate a fun-
damental limitation of ray–based representations, we revisit
the Young’s experiment (two pinholes illuminated by a laser)

Figure 6: Unlike LF, WDF and ALF can support diffraction
and intereference. Consider the double slit experiment in flat
land. (Top) Diffracted wavefronts at pinholes propagate to
the screen to form a sinusoidal pattern. (Middle–left) Even
if we include diffracted rays in the LF representation imme-
diately after the pinholes, (Middle–right) after propagation,
we shear the LF along the x–direction and form the image
by taking a vertical projection. The computed intensities do
not show sinusoidal patterns. (Bottom) The WDF and ALF
representations introduce a virtual projector at the mid–point
between pin-holes, with positive and negative radiance rays.
After shearing and projection, we can successfully produces
the sinusoidal interference fringes. The WDF and ALF have
three components, two corresponding to the pinholes and the
other representing the interference. (Color code; red: posi-
tive, blue: negative)

and illustrate the interference via both the WDF and LF in
Fig. 6.

If we use the WDF paradigm, we obtain the WDF of the
two pinholes from Eq. (1) as

W(x, fl) = δ(x−a)+δ(x−b)

+2δ
(

x− a+b
2

)

cos(2π [a−b] fl) , (2)

where infinitesimally small pinholes are located at x = a and
b. (As we will describe later, Eq. (2) also represents the
WDF of diffracted light when the pinholes are probed by
an on–axis plane wave.) Note that three components exist in
Eq. (2): the first two terms correspond to the two pinholes,
where two point sources emit rays along all different direc-
tions at x = a and x = b, and the third term represents the

c© 2010 The Author(s)
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interference. The third term, often called as interference or
cross term, has been obtained by the mathematical manipu-
lation of the WDF [Cas08]. In contrast, the LF representation
has the first two terms only. The third term is obviously not
expected in the LF because there is no physical light source.

The beauty of the WDF representation can be further ap-
preciated by noting that the interference term is oscillatory
and can be negative. Since the intensity is the projection of
the WDF along the fl–direction, the intensity of the interfer-
ence term is zero immediately after the pinhole. However, as
light propagates to a screen (we can think of any object as a
screen) the cross term plays a significant role in creating in-
terference. In other words, the WDF is sheared along the x–
direction by the propagation, where the sheared interference
term of the WDF leads to intensity modulation as shown in
Fig. 6. The LF model expects no interference fringes because
there are only two point sources producing uniform intensity.

3. Augmented Light Field

How can we use the concept of WDF and bring it closer to
traditional rendering? The answer is to mimic the WDF and
introduce the concept of the ALF where negative radiance is
permitted. The key is to figure out how and where to intro-
duce negative radiance.

The ALF is an enhanced representation of ray–space be-
yond traditional light field. Beyond representation, opera-
tions on ALF, such as propagation, scattering (including
diffraction), gathering for image formation (including inter-
ference), are supported via minor modifications of similar
operations on traditional light fields. The ALF formulation
is mathematically similar to WDF. However, the ALF repre-
sentation interprets the WDF with two unique concepts: 1)
In representation, the ALF introduces the notion of a virtual
projector with potentially negative radiance rays. 2) In oper-
ation, the ALF also provides a set of transformer functions.
The ALF intends to avoid complicated Fourier optics termi-
nology and makes it compatible with traditional ray–space
formulations like photons and lightfields.

3.1. Free Space Propagation

The first task is to think about situations where we need
to make little or no modification to traditional light field,
and that is in free space. As light propagates in free space,
the WDF exhibits the x–shear transform as shown earlier in
Fig. 5. Since the x–shear transform is sufficient to describe
the free–space propagation in the paraxial region, there is no
change; we assert that the ALF is the same as the LF. Note,
however, that in the non–paraxial region or an inhomoge-
neous medium, the x–shear transform needs extra correction
factors [Bas09].

3.2. Virtual projector and negative radiance

To model light transport associated with diffraction and in-
terference, we adopt the interference term from the WDF
and regard it as a virtual projector. Hence, the virtual pro-
jector always emits rays whose radiance is varying along the
angle and could be negative. Although radiance can be tem-
porally negative, the projection of the WDF along any arbi-
trary direction yields non–negative intensity [Bas09].

We can formally derive where to place these light sources
and how much radiance they should contribute by comput-
ing the WDF of an occluder. In the special case of the two–
pinhole experiment, the location of the virtual projector is
simply the mid point of the two pinholes and its radiance
varies along the θ–axis as Eq. (2). In the general case, the
practical technique for locating the virtual projectors is de-
scribed by light field transformers in the next section.

3.3. Light field transformer

As we mentioned earlier, the WDF can be defined for light
as well as optical elements – occluders in this paper. The
WDFs of occluders describe the light transport before and
after the occluders. In the ALF framework, the WDFs of
occluders are called Light Field Transformers. Hence, the
light field transformer contains the information on where we
should put virtual projectors and what radiance we should
assign. Visualized this way, the light field transformers for
many canonical optical elements can be easily computed as
we demonstrate in Table 1.

The natural question of what happens when the occluders
are arbitrary and not available in the table is easily answered
by doing an explicit computation of the convolution either
numerically or symbolically. For example, for a coded aper-
ture whose transmittance is t(x), the LF transformer is given
by

LFt(x,θ) =
∫

t

(

x+
x′

2

)

t
∗

(

x−
x′

2

)

e−i2π θ
λ x′dx

′ (3)

Next we present how to use the light field transformer. In
the ALF model as shown in Fig. 7, an input ALF is incident
on an occluder and an outgoing ALF L2(x2,θ2) is produced.
For thin occluders, the incident and outgoing rays have iden-
tical position in space. Also most thin occluders exhibit an-
gle shift invariance in the paraxial region, where the outgo-
ing ALF is rotated in the same fashion as the incident ALF
(see Fig. 7). Thus the incident and outgoing ALF can be re-
lated as

L2(x,θ2) =
∫

T (x,θ2 −θ1)L1(x,θ1)dθ1, (4)

where T is the light field transformer of an occluder. Equa-
tion (4) involves a multiplication along the x–direction but a
convolution along the θ–direction. Note that the ALF of an
infinitely extended plane wave propagating along the optical
axis is L(x,θ) = δ(θ); hence, the light field transformer of an

c© 2010 The Author(s)
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occluder t(x) T (x,θ)

one pinhole
δ(x− x0)δ(x− x0)

two pinholes
δ(x−a)+δ(x−b)+2δ(x− a+b

2 )cos
(

2π
λ
(a−b)θ

)

δ(x−a)+δ(x−b)

rectangular aperture
2AΛ

(

x
A/2

)

sinc
(

[2A−4|x|] θ
λ

)

rect
(

x
A

)

finite two pinholes 2AΛ
(

x−a
A/2

)

sinc
(

[2A−4|x−a|] θ
λ

)

+

rect
(

x−a
A

)

+ rect
(

x+a
A

) 2AΛ
(

x+a
A/2

)

sinc
(

[2A−4|x+a|] θ
λ

)

+

4AΛ
(

x
A/2

)

sinc
(

[2A−4|x|] θ
λ

)

cos
[

2π
λ

θ(2a)
]

sinusoidal amplitude grating 1
4

[{

1+ m2

2 cos
(

2π
p 2x

)}

δ(θ)+mcos
(

2π
p x

)

1
2 +

m
2 cos

(

2π
p x

)

×
{

δ
(

θ− λ
2p

)

+δ
(

θ+ λ
2p

)}

+ m2

4

{

δ
(

θ− λ
p

)

+δ
(

θ+ λ
p

)}]

binary amplitude grating
α2

∑∑
∞

q1,q2=−∞
sinc(αq1)sinc(αq2)e

i2π x
p
(q1−q2)δ

(

θ
λ
− q1+q2

2p

)

∑
∞

q=−∞
sinc(αq)ei2π x

p
q

lens (focal length f )
δ
(

θ+ x
f

)

exp
(

−i π
λ

x2

f

)

Table 1: LF transformer of canonical occluders are presented in 2D; extension to 3D for many interesting cases is enabled by
an appropriate separable product. For a rectangular aperture, rect

(

x
A

)

= 1 if |x| < A, otherwise rect
(

x
A

)

= 0. Λ(x) = 1−|x| if
|x| ≤ 1, otherwise Λ(x) = 0. For finite two pinholes, A is the size of the pinholes. For gratings, p is a grating pitch. For binary
amplitude grating, α represents the duty cycle.

Figure 7: Outgoing ALF as a function of incoming angle.
Angle shift invariance indicates that as the incident ray ro-
tates the outgoing ALF simply rotates in the same fashion.

occluder can also be interpreted as the outgoing ALF when
the occluder is probed by an infinitely extended plane wave.

4. Rendering with Augmented Light Field

Because the ALF is simply an instance of light field (albeit
with negative radiance), any sampling based strategy can be
used to rendering. We first describe an OpenGL shader based
method which we implement, and then explore other possi-
ble approaches.

Figure 8: Implementation in OpenGL exploits shader frag-
ments. Rays from a light source diffract at an optical element
and the diffracted rays are gathered at a patch on a receiving
surface of arbitrary geometry and position.

4.1. Shader Implementation

For simplicity, we first describe a proof-of-concept imple-
mentation limited to a light source wavefront, an occluder
that lives in 3D, and a screen of arbitrary shape modeled as
polygons in 3D. In this context, we can show the impact of
the ALF in a backward manner, i.e., from the eye to screen to
the optical element. We render the screen using OpenGL. As
polygons get rasterized, the effects of the ALF are accommo-
dated in their fragment shader. For each fragment, we sum
the total radiance (positive or negative) emanating from all
the samples on the optical element. More specifically, con-
sider the setup shown in Fig. 8. We compute the light field

c© 2010 The Author(s)
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as a two–plane parameterization of ray–space. In Fig. 8 the
two “planes” are the grating and the receiving object, which
could be the eye, or any object modeled using polygons. We
use Eq. (4) (but now in 3D) for relating the output light field
given the light source resulting in the shader pseudocode for
the net radiance L(ui) as seen by the eye for fragment ui.

for each sample point p j = (x,y) on occluder do

(θ1,φ1) = Direction of input ray from source to p j

(θ2,φ2) = Direction of output ray from p j to ui

L(ui)+ = T (x,y,θ1 −θ2,φ1 −φ2)× SourceRadiance
end for

If N fragments are rendered for the screen and we take M

samples on the optical element, then the work to be done is
O(MN), all of which happens in parallel on the GPU. The
function T (x,y,θ,φ) described above incorporates Eq. (4).
It can be numerically computed offline and stored in a look
up table or computed on the fly using the analytical formu-
lae. We avoid the high space requirements of T (x,y,θ,φ) be-
cause our transformers are separable and can be factorized as
T (x,y,θ,φ) = T1(x,θ)×T2(y,φ). In essence, then, the pseu-
docode represents the mathematical equation

L(ui) = ∑
x

S(x,ui) = ∑
x

∫
T (x,θ1 −θ2)L1(x,θ1)dθ1 (5)

Note that in practice, some fragments end up with a very
small negative intensity. However, with sufficient sampling,
we can clamp them to zero without noticeable loss of quality.

4.2. Discussion

The advantage of the shader approach is that it is aligned
with existing programmable graphics hardware, which sup-
port general gather operations, but not scatter operations.
This makes integrating our method with existing render-
ers less invasive. Also, shaders enable diffraction patterns
to appear on arbitrary surfaces. These surfaces can move
from near–zone to far–zone, and the rendering code does not
change.

On the flip side, the approach so far described is for the
case of a single occluder (represented as a plane). As we
stack up several occluders that are not necessarily aligned,
the backward approach is not computationally feasible since
we have to hold in memory the lookup table that can grow
in an exponential manner. For multiple scatterings, caustic
effects and other global illumination effects, “forward” pho-
ton mapping may be more appropriate, and we give a brief
description here on how our theory could be useful.

Since the ALF representation is source based, we can
express the rendering in the photon mapping step as fol-
lows. Recall the regular expression syntax for rays [Hec90]
where all possible ray transport phenomenon is of the type
L(S|D)*E with the alphabet (S) for specular, (D) for dif-
fuse surfaces, and with L and E denoting light and eye re-
spectively. For photon mapping with the ALF, we hypothe-
size new optically active elements with the acronym Iwhich

can cause “interference”. In the the first stage of classic pho-
ton mapping, we exploit the light field transformer to decide
the impact in direction (θ2) for each photon arriving in di-
rection (θ1) at a point~x on the element.

• Assign output angle (θ2) for the deflected photon using
stochastic sampling and Russian roulette.

• Assign radiance by using Equation (4).

Notice that this interaction with I is no different in spirit,
from the other two cases of D or S in photon tracing. The
rest of the rendering remains the same.

In this paper our goal is to show verifiable wave effects in
a practical rendering pipeline and not to incur the full cost
of global illumination as in photon mapping. The ALF is
similar to photon production and is a source based approach
where the rays or photons simply propagate, whereas previ-
ous methods, e.g., based on keeping track of OPD, are re-
ceiver based phenomena.

A source based approach is suitable when the receiving
geometry is dynamic and the diffracting geometry undergoes
only a rigid transform. For instance, in the wavy mesh exam-
ple (Fig. 13), the OPD method constantly updates the path
differences, whereas in the ALF method, the source light
field still remains the same. A small difference in the po-
sition in the screen location may make a big difference in
the observed phenomena. We note that projective textures
are not suitable for diffractive renderings as the pattern af-
ter interference can morph dramatically from near field to
far field. The ALF can handle rigid transformations in inci-
dent light angle and grating more efficiently. If the incident
light angle changes, the projected 4D illumination field ro-
tates correspondingly. This insight is appreciated in the OPD
method only after a screen is placed and the image is com-
puted.

5. Results

We verified our rendering approach in the context of typical
diffractive elements and also on arbitrary dynamic objects.

5.1. Young’s double slit experiment

We demonstrate Young’s double slit experiment with our im-
plementation, in Fig. 9. The spatial frequency of the inter-
ference fringe depends on the separation distance between
the slits and the size of the slits decides the overall envelope
shape of the fringe. Since diffraction angle is wavelength de-
pendent, we observe color smearing in Fig. 9b.

5.2. Near–zone and Far–zone diffraction patterns from

a square aperture

We render the diffraction pattern from a square aperture in
both near and far–zone. In Fourier optics, the near–zone and
far–zone are often referred to Frensel and Fraunhofer region
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(a) monochromatic light (b) white light

Figure 9: The ALF–based rendering provides correct models
of Young’s double slit experiments. Two slits are illuminated
by monochromatic light (Left) or white light (Right). As we
change the slit size as well as the slit separation, the interfer-
ence patterns also vary and we validated with Fourier optics
model. This particular snapshot is taken when the slit size
is 0.035 mm, the slit separation is 0.2 mm, the slit–screen
distance is 1 meter, and the screen size is 200 mm × 200
mm. In the case of white light, note color smearing at the
boundary of the center peak, where red is observed. The first
diffraction order starts with blue since it diffracts less than
red.

and distinguished by Fresnel number which is a dimension-
less parameter related to the size of the aperture, the distance
from the aperture to the observation plane, and the wave-
length. If the propagation distance is sufficiently larger than
the area of the aperture divided by the wavelength, then the
observation plane is said to be in the far–zone. (Here near–
zone is not near–field zone in optics.) The diffraction in the
near–zone and far–zone have different characteristics with
respect to the propagation distance. In the near–zone, the
overall shape of the pattern is similar to the aperture shape
but it has many high frequency signals due to diffraction,
and the pattern changes significantly as light propagates. In
contrast, the far–zone pattern is proportional to the Fourier
transform of the aperture and the pattern changes only its
scale as the distance varies. Figure 11 shows the intensity
at the center pixel of the near–zone diffraction pattern. The
intensity varies depending on the distance and this is an evi-
dence of the wave–property of light. This phenomenon or its
complimentary pattern (diffraction from an obstacle) is of-
ten referred to Poisson’s blinking spot or Arago’s spot in the
optics community [Hec02].

5.3. Demonstration of wave effects on arbitrary and

dynamic surfaces

Our rendering is compatible with traditional rendering. In
Fig. 12 we show the effect of light coming from two dif-
ferent sources by placing a box of width 20 mm in a cubic
room of width 40 mm. Diffuse light is present in the room

(a) Near–zone pattern (b) Far–zone pattern

Figure 10: The ALF provides seamless transition between
near and far field rendering. A square aperture whose size
is 0.5 mm × 0.5 mm is probed by monochromatic light of
700 nm wavelength. Depending on the distance to the screen,
significantly different patterns are observed. The near–zone
pattern is captured when the distance is 10 mm and the far–
zone pattern is taken at 3 meters.

Figure 11: Validation of our rendering by the Fresnel diffrac-
tion formula using Fourier optics tools. ALF models the
near–zone diffraction pattern successfully, where the inten-
sity at the center pixel varies over 10 to 30 mm distance. The
mean variance compared to Fourier optics simulation is less
than 1%.

which lights up the box. Another source of light, at a dis-
tance of about 50 meters pours through a square aperture
of size 1 mm × 1 mm. Figure 13 shows the interference pat-
tern on a dynamically changing surface. The geometry is 200
mm×200 mm and the aperture is 1000 mm away from the
surface.

5.4. Airy spot in a camera lens

In many computer vision and graphics applications, cameras
are often modeled as pin–hole cameras and the point spread
function (PSF) is a infinitesimally small point. However, in
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Figure 12: Rendering interference on arbitrarily oriented sur-
faces and changing light source direction (see video). Our
implementation can mix and match traditional diffuse shad-
ing effects with wave effects.

Figure 13: Rendering interference on a dynamic surface. The
shader implementation can conveniently display diffraction
and interference effects on dynamic geometry (see wavy
mesh animation in supplementary video).

practice, cameras have finite apertures, thus even diffracted–
limited lens produces finite sized–PSF. Here, we compute
the PSF for two different camera lenses: 1) f = 18 mm and
F/5.6 and 2) f = 18 mm and F/16. Although these two lenses
have the same focal length, the size of the PSFs are different.
To demonstrate the different size of PSF, we simulate images
blurred by the PSF. The test image has a sharp edge between
black and white regions, and the two lenses generate differ-
ent images.

5.5. Fabric

Our final rendering example is a more realistic situation:
diffraction from a fabric. Here, a fabric curtain is located
between the scene and the camera, as shown in Fig. 1. We
modeled the fabric as a binary amplitude grating and decom-
posed the fabric into multiple tiles. This is not only because
computing the LF transformer of the entire fabric requires

(a) original object (b) F/5.6, f=18 mm (c) F/32, f=18 mm

Figure 14: Reducing aperture shows diffraction and color
smearing at a sharp black–white step edge. Ray–based mod-
els do not predict the decrease in image quality when a
smaller aperture is used. The ALF correctly shows that with
lower aperture sharp edges exhibit blur because the PSF
of the lower F/# lens is narrower. A smaller aperture also
leads to color dispersion, smaller wavelengths (blue) create
smaller spots.

intensive computation but also it is easy to include irregular-
ities of the real fabric patterns. In addition, the periodicity
of real fabric is relatively larger than the pitch of optics–
graded gratings so that the diffracted rays do not diverge over
wide angles and the camera sees only small area of the fabric
along the direct path from a point in the scene to the cam-
era. We rendered a diffraction pattern from a single point
and simulated an overall scene observed though the fabric,
which is shown in Fig. 1.

All renderings were performed on nVidia 8800 GTS 320
MB card and shown in log–intensity domain. To achieve
color effects, we render the scene at multiple wavelengths
(typically 7) and use a simple color response linear weights
for R, G, and B channels. The execution times were as fol-
lows. With 250,000 samples on the grating, the Young’s slit
experiment is shown at 512×512 resolution with 49 sec-
onds/frame. The box scene is rendered at 1024×1024 res-
olution with 8 minutes/frame. The wavy mesh with 40,000
samples on grating and 512×512 resolution requires 2 min-
ues/frame.

6. Conclusion

Ray–based representations can render complex scenes but
fail to describe light transport associated with diffraction
and interference. We have introduced the ALF framework
that can handle diffraction in a purely ray–based represen-
tation. This challenges the earlier notion that diffraction is
a purely wave-phenomenon and requires Fourier optics or
optical path length based formulations. The only modifica-
tion in the ALF is allowing virtual projectors that may have
negative radiance. To locate virtual projectors for diffrac-
tive occluders, we introduced the light field transformers. To
demonstrate the compatibility of the ALF with ray–based
representation, we implemented an OpenGL shader and ren-
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dered various diffraction phenomena. We validated the ren-
dering results with respect to Fourier optics simulations.

Our current method is limited to single layer interface.
Our gratings are separable patterns and the rendering method
does not support arbitrary 2D patterns or non-planar grat-
ings. In addition, our OpenGL shader based implementation
limits total number of pairwise patches. In the future, render-
ing for multiple layers, global illumination effects and vol-
umetric scattering will be useful. Future work also includes
extending the ALF to polarized light [Alo04] to render light
transport in birefringent materials. In computer graphics ap-
plications, we have shown lens aperture effects. Additional
effects such as lens geometric and chromatic aberrations will
allow more realistic insertion of synthetic elements in live
action footage.

We speculate that the ALF framework would lead us
to a variety of new applications. RayÐbased and beam-
based representations have been used for sound render-
ing [TFNC01]. Audio wavelengths are subject to significant
diffraction. Similarly fluids animation and haptics require
solving wave propagation equations. Via source-based mod-
eling, we hope that the ALF framework will simplify many
such forward and inverse problems.
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