
EUROGRAPHICS 2010 / T. Akenine-Möller and M. Zwicker
(Guest Editors)

Volume 29 (2010), Number 2

Inverse Procedural Modeling by
Automatic Generation of L-systems

O. Št’ava1, B. Beneš1, R. Měch2, D. G. Aliaga1 and P. Krištof1

1Purdue University, USA 2Adobe Systems Incorporated, USA

Abstract
We present an important step towards the solution of the problem of inverse procedural modeling by generating
parametric context-free L-systems that represent an input 2D model. The L-system rules efficiently code the regular
structures and the parameters represent the properties of the structure transformations. The algorithm takes as
input a 2D vector image that is composed of atomic elements, such as curves and poly-lines. Similar elements are
recognized and assigned terminal symbols of an L-system alphabet. The terminal symbols’ position and orientation
are pair-wise compared and the transformations are stored as points in multiple 4D transformation spaces. By
careful analysis of the clusters in the transformation spaces, we detect sequences of elements and code them
as L-system rules. The coded elements are then removed from the clusters, the clusters are updated, and then
the analysis attempts to code groups of elements in (hierarchies) the same way. The analysis ends with a single
group of elements that is coded as an L-system axiom. We recognize and code branching sequences of linearly
translated, scaled, and rotated elements and their hierarchies. The L-system not only represents the input image,
but it can also be used for various editing operations. By changing the L-system parameters, the image can be
randomized, symmetrized, and groups of elements and regular structures can be edited. By changing the terminal
and non-terminal symbols, elements or groups of elements can be replaced.

Categories and Subject Descriptors (according to ACM CCS): Mathematical Logic and Formal Languages [F.4.2]:
Grammars and Other Rewriting Systems—Parallel rewriting systems - L-systems; Computer Graphics [I.3.5]:
Computational Geometry and Object Modeling— Geometric algorithms, languages, and systems;

1. Introduction

We present an important step towards the solution of
the problem of inverse procedural modeling. Procedu-
ral techniques in computer graphics are commonly de-
fined [EMP∗03] as algorithms that generate amodel, texture,
or behavior. One of the most significant classes of procedu-
ral techniques are grammar-based methods, out of which the
most common are methods based on Lindenmayer’s systems
(L-systems) [PL90]. L-systems use compact rules for model
description yet they can generate a wide class of models.

The key challenge of procedural techniques is the defini-
tion of the rules. This task is not intuitive, lacks controlla-
bility, requires in-depth knowledge of procedural modeling,
and resembles programming in an advanced language. Auto-
matic generation of procedural rules, or inverse procedural
modeling, has been an open problem for more than 20 years.
Its goal is to find the rules of a procedural system that would

generate a given model. Applications of such an automatic
system would be immense. For example in Figure 1, chang-
ing the rules allows generation of classes of similar mod-
els, the internal structure of the model could be modified,
the model could be represented by its generative rules (com-
pressed), the syntactic analysis of the rules could be used for
image analysis, and so forth.

Our key observation is that models frequently consist of
repeated elements organized into structures and the struc-
tures themselves appear multiple times as well. Such reg-
ularities are an ideal fit for procedural representation. Re-
cently, several papers studying symmetries (e.g., [MGP06,
PMW∗08]) have exploited repetition for the purpose of
model completion and symmetrization. Our use of the repe-
tition is to create a procedural representation of the model.

Our algorithm takes an input vector image with objects
formed as groups of line segments or Bézier curves and it

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.
Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and
350 Main Street, Malden, MA 02148, USA.

O.Št’ava et. al. / Inverse Procedural Modeling by Automatic Generation of L-systems

a) b)

c) d)

Figure 1: a) A branching structure with varying scaling is
automatically coded as an L-system. The basic element is a
Bézier curve (in red), the generated rule has form R(m) →
A[−(17) f (64)∗(0.8)− (3)R(m−1)] [+(7) f (181)∗(0.6)+
(23)R(m− 1)], and the axiom is R(3). b) A structure gen-
erated using the detected rule from axiom R(10) and c) a
branching structure generated from R(10) with randomized
angles and d) randomized angles and scaling.

produces an L-system that generates the given input. We
use various transformation spaces to detect sequential and
branching structures of repeating elements (or groups of el-
ements) with changing angle, size, and rotation.The main
steps of our method are as follows (also see Figure 2).

Inverse Instantiation. The input atomic elements with an
associated local coordinate system are grouped based on ge-
ometric similarity. Each similarity group is represented by
one element, a set of transformations from the origin into
each element, and a terminal symbol for use in an L-system.

Transformation Spaces Creation. The transformations be-
tween all pairs of elements are calculated. The parameters of
each transformation are used as the coordinates of a point in
a transformation space. Elements from each similarity group
are compared to elements in all other similarity groups. The
results from each pairing of similarity groups are stored in
different transformation spaces. Once all the transformation
spaces are filled, the points in them are clustered.

Rules Generation. The clusters are weighted and sorted to
iteratively output an L-system rule using the elements of the
most important cluster. The cluster is analyzed, the most rel-
evant sequence of elements is selected, and an L-system rule
is generated. References to the elements from the transfor-
mations of the cluster are erased from all clusters. A new
symbol that corresponds to the sequence of elements is cre-
ated and inserted into the transformation spaces. This pro-
cess of iterative rules generation terminates when there is
only a single element left.

We demonstrate our framework on theoretical and real-
world examples. We analyze various structures, code them
as L-systems, and generate similar structures, structures with
more levels of hierarchy, and randomized structures. An-
other application of our system is a symmetrization of the
model. The user can change elements in the input scene by
replacing terminal symbols of the L-system. The parame-
ters of the rules, such as the distance and angles between
the elements, can be manipulated interactively, resulting in
several forms of high-level editing operations. Groups of el-
ements on a higher level of hierarchy can be replaced by a
single element and the terminal symbol can be replaced by
another procedural rule. This allows the user to connect dif-
ferent structures to each other. Moreover, storing the input
scene as a set of procedural rules has applications in auto-
matic object generation or data compression.

The main contributions of our paper are:

• an algorithm for matching of elements in vector images,
• automatic detection of various types of hierarchical re-

peated structures in vector images,
• an automatic coding of the structures as L-system rules,
• various applications of the detected rules such as im-

age randomization, symmetrization, element replacement,
and editing at different levels.

2. Previous Work

There are three main categories of related work: L-systems,
attempts to generate procedural rules interactively, and sym-
metry detection.

L-systems were introduced by Lindenmayer [Lin68] as
a mechanism for simulation of linear cellular subdivision.
Prusinkiewicz [Pru86] extended the concept of L-systems
by the graphical interpretation using a turtle. L-systems
present the most advanced formal mechanism for simulation
of growing structures [PL90]. They were also applied to de-
termine plant distribution in plant ecosystems in [DHL∗98],
to simulate river formation in artificial terrains in [PH93],
and to describe subdivision curves [PSSK03]. Recently,
grammar-based procedural modeling has been applied to ur-
ban space modeling. Parish et al. used Open L-systems to
generate street layout in virtual cities in [PM01]. Aliaga et
al. introduced inverse procedural system to generate floors
in virtual buildings in [ARB07]. Müller et al. introduced
CGA shape for interactive building generation [MWH∗06],
and [MZWG07] used simple recursive grammar for façade
generation. Most of the previous grammar-based approaches
assume the rules are provided by the user. Automatic find-
ing of the rules for a given model (the focus of this paper)
has been recognized as one of the key problems of proce-
dural modeling (see an early attempt to detect linear frac-
tals [HCF97]).

Some recent related works describe attempts to actually
create procedural rules from user input. Ijiri et al. [IOI06]

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

O.Št’ava et. al. / Inverse Procedural Modeling by Automatic Generation of L-systems

Figure 2: System pipeline: 1. Similar elements of the input image are detected and terminal symbols are generated for each
group of similar elements. 2. Pairwise transformations are calculated and transformation spaces are filled with points corre-
sponding to each transformation. Mean shift clustering determines clusters of similarly oriented elements. 3. Cluster signif-
icance is calculated based on user-defined criteria. 4. Groups of elements are represented as L-system rules. Each group is
represented as a new non-terminal and the clusters in the transformations space that contain references to them are updated.
The process ends with a single element that represents the axiom of the L-system.

used a sketch-based system to code user strokes as an L-
system rule that is then used for an interactive plant gen-
eration. However, more complex rules cannot be generated
and the system allows only for matching one predefined rule.
Similarly Lipp et al. [LWW08] generate shape grammars
from user input. Again, in their system only a predefined
set of rules can be used. Ijiri et al. [IMIM08] introduced an
example-based framework for procedural element arrange-
ment generation and recently [YM09] used transformation
spaces to detect symmetries and curvilinear arrangement in
vector images. The above two user-assisted systems use sim-
ple algorithms for procedural models generation and they
can express only a limited number of effects and a limited
class of procedural models. The main difference between our
approach and previous work is that we express the output us-
ing automatically determined rules for an L-system.

Our work is inspired by the recent work on symmetry de-
tection. Mitra et al. [MGP06] introduced algorithms for de-
tecting symmetries in unstructured 3D models by selecting
dominant transformations in a transformation space. Simi-
lar concepts have since been used by others [LE06,PSG∗06,
XZT∗09]. The model is sampled to create local signatures.
The signatures are compared pairwise, and the results are
mapped as points into the transformation space. As clusters
of points correspond to potential symmetries, the clusters are
detected and the symmetries are stored in a symmetry graph.
The next paper by the same authors [MGP07] uses the sym-
metries to modify objects to express more symmetries than
the originals. Pauly et al. [PMW∗08] presented a paper on
discovering regular and repeated geometric structures. They
detect scaling, rotation, translation, and the combination of
structural elements in an input scene. The principal finding
of this work is that repetitive structures present themselves as
regularly spaced sets of clusters in the transformation space.
Other techniques for symmetry detection focus on detect-

ing features by first connecting them into a graph and then
using a RANSAC-based randomized subgraph searching al-
gorithm [BBW∗08, BBW∗09]. We exploit the concept of
transformation spaces in our work, with the following dif-
ferences. First, we do not use a single scene or a continuous
object. Instead our input scene is a set of atomic, oriented
elements. This allows us to use a particular transformation
space for pairs of elements of specific types, resulting in little
noise in each transformation space. Second, since our goal
is the creation of L-system rules, the transformation space
exploration is primarily driven by the desire to find the pro-
cedural rules and goes beyond just discovering symmetries.
Third, we explore subspaces of the transformation space to
detect rotated, translated, and scaled sequences of repetitive
objects. Finally, we update the transformation spaces by one
or multiple rules.

3. L-systems

We provide a brief description of L-systems and extensions
that have been introduced for our purposes. Readers famil-
iar with L-systems can skip this section keeping in mind that
there are the following extensions: 1) we introduce scaling
as a new command for the turtle, 2) the alphabet is divided
into two groups of symbols: terminal and non-terminal sym-
bols. Terminals are interpreted as turtle commands, and non-
terminals are used in the rewriting process and 3) the ter-
minal symbols are the standard turtle commands plus new
symbols that represent the elements from the input image.

Our L-system is defined as a tuple

G = 〈M,ω,�〉 , (1)

where M is the L-system alphabet that contains elements
{A(p1, p2, . . . , pn),B(p1, p2, . . . , pm), . . .} called modules.
Modules consist of the letters A,B, . . . and their parameters

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

O.Št’ava et. al. / Inverse Procedural Modeling by Automatic Generation of L-systems

p1, p2, . . . pn ∈ R. The symbol ω ∈ M+ (M+ denotes the re-
flexive closure) is a non-empty initial string of modules (ax-
iom). Finally, � is a set of productions (rules)

label : A(p0, p1, . . . , pn) : cond → A∗,

where label is the production identifier, cond is a Boolean
expression involving the parameters, and M∗ denotes the
reflexive-transitive closure i.e., the list of all strings includ-
ing the empty string ε. The symbol → denotes rewriting of
the module A(p0, p1, . . . , pn) with the string on the right side
of the rule. We drop the label if the rule is not reused.

The implicit rule for rewriting a single module is:

r0 : A(p0, p1, . . . , pn)→ A(p0, p1, . . . , pn), (2)

and it rewrites a module with its exact copy. This is applied
when there is no corresponding rule in � for a module from
M. The epsilon rule erases the symbol A(p0, p1, . . . , pn):

rε : A(p0, p1, . . . , pn)→ ε. (3)

Turtle Interpretation. The string of modules is interpreted
geometrically by a turtle [PH93]. The turtle has a posi-
tion [x,y], an uniform scaling factor s, and heading angle φ
that together define its state (x,y, s,φ). The turtle reads se-
quentially the modules from the string and interprets them
geometrically as described by Table 1.

module interpretation
f (Δ) translate in the direction of heading by Δ
+(δ) rotate by δ to the left
−(δ) rotate by δ to the right
∗(s) set scaling to s
[push the state on the stack
] pop the state from the stack, move to [x,y],

set scaling to s, and head in the direction φ

Table 1: Turtle interpretation of the modules.

Traditionally, the scaling is not associated with the tur-
tle. However, we found it convenient to include scaling as
a turtle command ∗(s) that affects all subsequent geometric
commands (e.g., rendering, translation).

Terminal and Non-Terminal Symbols. Using the com-
mands from the Table 1 the turtle can freely move in the 2D
plane. However, our goal is the generation of an input image
that is a collection of certain basic elements. Therefore, we
expand the turtle commands by a special "print" command
that draws an image element on a given turtle position. The
content of the print command depends on the input image
and it is not known in advance. Therefore, the Table 1 is ex-
tended dynamically by the elements from the input image.

Higher level rules use symbols that have no direct geo-
metric interpretation and are used as a proxy for groups of
elements. That is why we define the alphabet as the union
of two subsets - the terminal and the non-terminal symbols.

The terminal symbols are denoted by V , non-terminal sym-
bols by S and the alphabet M =V ∪S. The terminal symbols
have a geometrical interpretation either given by the Table 1,
or are printed as the elements of the input image, whereas
the non-terminals have no direct geometrical interpretation
as they represent a group of elements. The L-system rules
operate on the alphabet and if a terminal symbol appears on
the left side of the rule, the implicit rule r0 is applied.

4. Transformation Space Initialization

This section describes the two steps that initialize our algo-
rithm. First we detect all similar structures and we assign
them a single representative. Second, we fill the transforma-
tion spaces with information about pairwise transformations
between the elements and find clusters.

4.1. Input Element Similarity Detection

We define an image to be a collection of atomic structures
called elements. An element is denoted by ei, and the set of
all elements is E = {ei, i = 1,2, . . ., |E|}. The objective of
this step is to find all possible similar elements, regardless of
their position, orientation, or scale in the input image.

An input element is a sequence of connected lines or
curves. It is the smallest unit and the similar objects are then
detected during the process of rules generation. Unfortu-
nately, as vectorization software packages may produce dif-
ferent curves for similar elements we need to provide a con-
sistent way of measuring similarity of two input elements.
Let’s denote the similarity of elements ei and e j by φ(ei,e j).
We do the following:

1. We first uniformly sample both elements by a set of
points Si and Sj .

2. For each element set we evaluate the maximum distance
between two sample points dmax

i and dmax
j and calculate

a scaling factor s(ei,e j) = dmax
j /dmax

i .
3. The element e j is rescaled by s(ei,e j) and resampled

yielding a new set of sample points Sj . Thus both ele-
ments ei and e j are sampled at comparable sizes.

4. For all samples in Si and Sj we compute their normal
vector and curvature as described in [YM09].

5. For all samples in Si we detect corresponding samples
from S j that have a similar value of curvature. For ev-
ery corresponding pair of samples, we evaluate a trans-
formation Tk that transforms element ei to e j so that the
positions and orientation of both samples are matched.

6. All computed transformations Tk are inserted into a 3D
transformation space, mean shift clustering is performed,
and the cluster with the maximum number of points n is
determined.

7. The similarity of the two elements is then computed as:
φ(ei,e j) = n/

∣
∣S j

∣
∣ and two elements are considered simi-

lar when their similarity is greater than some user defined
threshold value (0.6 in our application).

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

O.Št’ava et. al. / Inverse Procedural Modeling by Automatic Generation of L-systems

The result of this step is a unique ID that identifies ele-
ments that are visually similar independently on their ori-
entation, position, and scaling. The result depends on the
choice of the similarity threshold and can fail for highly dis-
similar inputs.

4.2. Terminal Symbols by Inverse Instancing

All similar elements determined in the previous step are
grouped and the transformations necessary to locate them
at the corresponding position in the input image are deter-
mined. Each similarity group of elements is represented by
a single terminal symbol A ∈ V in the origin of the coordi-
nate system and a list of transformations TAi , specifying the
position, uniform scaling, and orientation of the i-th instance
of the element with respect to the origin (see Figure 3). All
similar elements can be generated from the representative
and the list of transformation.

Figure 3: Inverse instancing. Similar elements of the input
image are represented by a terminal symbol and a set of
transformations.

Using the L-system notation the transformation TAi can
be described by symbols +(αAi) f (dAi)∗(sAi)+(βAi), where
dAi is the distance between the origins of the world coordi-
nate system and the element’s local coordinate system, αAi

is the angle of the axis y to the vector v connecting the ori-
gins, and βAi is the angle of the element to the same vector v.
Scale sAi is given as the size ratio of one chosen representa-
tive and the instance Ai.

4.3. Transformation Spaces Filling and Clustering

In this step we determine mutual transformations between
pairs of elements represented as instances of terminal sym-
bols, and create various transformation spaces for them.

Figure 4: Transformation TA1B1 is a sequence of turtle com-
mands +(αA1B1) f (dA1B1)∗ (sA1B1)+ (βA1B1).

If TAi and TBj are transformations from the world coordi-
nate system to the element’s coordinate system we express
the transformation between Ai and Bj (see Figure 4) as

TAiB j = T−1
Ai

TBj ,

where T−1
Ai

is the inverse transformation to TAi . The trans-
formation TAiB j is described by the four values of t0 =
(α,d, s,β) that identify a point in a 4D transformation space.
We store each point as well as the backward link to the el-
ements Ai and Bj. There can be multiple points at the same
location representing multiple pairs of elements that undergo
the same transformation.

L-systems have a great expressive power for structures
with a high level of repetition and that is why we want
to discover relations between groups of similar elements.
So instead of using a single transformation space [MGP06,
PMW∗08], we use multiple transformation spaces. Specifi-
cally, having n terminal symbols we create (n× n) transfor-
mation spaces, one for each pair of terminals. In practical
cases such as in Figure 12 we have hundreds of transforma-
tion spaces. However, the transformation spaces are usually
not dense and their analysis is not time consuming.

Let’s recall that multiple points in the dual space corre-
spond to similarly distributed elements in the input image.
So in the next step, similar to the symmetry recognition ap-
proach by [MGP06], we perform mean shift clustering to
determine groups of elements with similar transformations.

5. Procedural Rules Generation

5.1. L-system Parameters

We chose to generate parametric context-free L-systems that
use only specific parameters and expressions in the rules yet
are powerful enough to capture a wide variety of repeating
structures in distance, angle, and scalings. Ideally, we would
like to use a single rule that would be easy to match yet allow
for a wide variety of combinations. We have found matching
this rule difficult and that is why we generate two kinds of
rules. The first rule provides sequences of symbols and the
second rule generates branching. It is important to note that
these two rules are not the direct output of the L-system gen-
eration but are the generic rules that are merged into more
complex rules during the analysis.

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

O.Št’ava et. al. / Inverse Procedural Modeling by Automatic Generation of L-systems

The condition cond of a rule in a parametric deterministic
context free L-systems (Section 3) or the values of param-
eters on the right side of each production can result from a
mathematical expression that uses the parameters p0, ..., pn.
Arbitrary expressions add too many degrees of freedom and
they make it difficult to fit such an L-system to a given set of
terminal symbols. We want to capture repetitive linear struc-
tures. These can be described by a single parameter m that is
used as a counter of the number of occurrences, and a vector
of parameters t0 = (α0,d0, s0,β0) that define the initial value
of the transformation. We limit the expressions used on the
right side of rules to a linear function of m:

t(m) = t0 + tΔ m, (4)

where t0 are the initial values and tΔ is a vector expressing
the difference in one step.

5.2. Atomic Rules

The transformation spaces provide pairs of elements so it is
convenient to use rules that work with pairs of elements. We
make an observation that any production with k symbols on
the right side can be replaced with k − 1 productions that
generate at most two symbols. For example, the production
A → BCD can be replaced by these three productions:

A → XY , X → BC, Y → D

Note that two additional non-terminal symbols X , Y are in-
troduced and that more steps are necessary to generate the
same string. Based on the observation about the length of
rules and the assumption of detecting structures with lin-
ear dependency of the transformations between elements, we
define sequence rules and branching rules.

Sequence Rules creating a sequence of symbols are:

r1 : P(m, t0) : m > 0 → [A] T (t(m)) P(m− 1, t0)
r2 : P(m, t0) : m == 0 → [B]

where P is a non-terminal and A can be either a terminal
or a non-terminal (representing an element or a group of
elements, respectively). Symbol T (t(m)) denotes a trans-
formation that in L-system notation can be expressed as
+(α(m)) f (d(m)) ∗ (s(m))+ (β(m)). The rule r2 terminates
the sequence of symbols A with a symbol B (symbol B can
be equal to symbol A or it can be ε). The brackets [and]
are necessary when symbol A or B is a non-terminal, and
will be further expanded. Note that for tΔ = 0 we can write
these rules without the parameter t0. Figure 5 illustrates the
use of rule r1 for a case of P(3, t0), t0 = (α,d, s,β), α = 60o,
β =−50o, s = 1, and d and tΔ = (10o,0,0,10o).

Note that the rules r1 and r2 can be used not only to gener-
ate sequences of equal symbols or sequences of equal sym-
bols terminated by a different symbol, but also an arbitrary
pair of elements A and B. More importantly, these rules can
express any parametric L-system with expressions (4). The

Figure 5: Geometric interpretation of the string gener-
ated by the rule r1 with the axiom ω = P(3, t0), t0 =
(60o,1,1,−50o), and tΔ = (10o,0,0,10o).

type of expressions allows us to represent sequences of el-
ements with the combination of: rotation, translation, scale,
and an additional rotation of the object itself.

Branching Rules. Arrangements such as circular, trans-
lational, or scaling sequences, or their combinations

P3(3)

P2(2)

P1(1)
P4(1)

A1

A4

A3

A2

Figure 6: Detecting branch-
ing structures using sequence
rules would only lead to too
many new non-terminals Pi.

(see Figure 9) can be
directly expressed by
one instance of rule
r1 and r2. However,
another arrangement
that appears often in
procedural patterns is
branching that can be
generated by several
instances of sequence
rules. The structure
from Figure 1a) can
be generated as four
sequences of the
symbol A generated
by rule r1 of lengths 3, 2, and 1, with initial symbols
Pi(i, t0), i = 1,2,3, and P4(1, t0), where t0 = (7,181,0.6,23)
and tΔ = 0 (see Figure 6). These symbols would be con-
nected together with each other and with the symbols Ai in
subsequent steps of our algorithm, but not in one sequence,
since the symbols Pi would be different from each other.
The resulting L-system would be valid, but the branching
would be described in a cumbersome way. Consequently,
we decided to add an explicit branching rule:

r3 : R(m, t0, t
′
0) : m > 0 → [A] [T (t(m)) R(m− 1, t0, t

′
0)]

T ′(t′(m)) R(m− 1, t0, t
′
0)

r4 : R(m, t0, t
′
0) : m == 0 → [B]

The example from Figure 6 can be then generated us-
ing a pair of rules r3 and r4 with t0 = (−17,64,0.8,−3),
t′0 = (7,181,0.6,23) and the initial symbol R(3, t0, t

′
0) (see

also Figure 1a). The following section describes how the
branching and sequence rules are constructed from clusters
in the transformation spaces.

5.3. Cluster Analysis

A cluster in the transformation space represents pairs of el-
ements of the general form AB or AA that can be generated
using the same rules. We could replace each such pair with a

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

O.Št’ava et. al. / Inverse Procedural Modeling by Automatic Generation of L-systems

non-terminal symbol P(1, t0) and the sequence rules r1 and
r2. However, the pair can be a part of a larger sequence of
similarly oriented elements, so we link the elements in the
cluster into a sequence that can be generated by P(m, t0),
where m is the number of the elements in the sequence.

We want to detect rules in which the values of α, d, s,
and β change linearly with respect to m as expressed by (4).
Transformations between elements generated by such a rule
are not represented by a single point in the transformation
space. Instead, they form regular structures. If only one value
changes with respect to m, say the value of α, there is a se-
quence of points in the transformation space with a constant
distance from each other in the α dimension. A similar prob-
lem has been addressed by Pauly et al. [PMW∗08] where
they find a regular grid in a three-dimensional space rep-
resenting symmetry transformations in 3D. Because of the
choice of the rules, we need to search for regularly spaced
points on a line in our transformation spaces only.

However, not all linear sequences of points in the trans-
formation space correspond to interesting structures. Struc-
tures with linearly changing distance or scale do not appear
frequently in the input scenes and we assume that only the
parameters α and β may change. This can be efficiently re-
stated as a task of finding clusters in each of the 2D subspace
of the transformation space (d, s) and determining if the val-
ues in the remaining two subspaces form regularly spaced
points and if they belong to one or more sequences of sym-
bols that can be generated by the rule r1.

The cluster analysis algorithm attempts to identify se-
quential or branching structures:

1. Find clusters Ci in the space (α,d, s,β).
2. Find clusters Dj in the two-dimensional subspace (d, s).
3. a. Sequential rules: Each point in a cluster represents

a pair of elements. If the second element of a pair
is equal to the first element of another pair, we con-
nect these two into a sequence. We find the longest
sequence in each cluster Ci and Dj.

b. Branching rules: If the second element of a pair is the
first element of two different pairs (from two differ-
ent clusters) it is a branching sequence. We find the
most frequently repeated branching sequences in each
cluster Ci and Dj.

5.4. Cluster Selection

Clusters vary in the number of elements and their con-
tent. In order to generate "reasonable" rules, and to allow
user control over the process of rules generation, we define
a weighted cluster importance function that assigns a value
of importance to each cluster. The parameters have been de-
termined based on assumptions we have made after visual
inspection of a number of input images. The function auto-
matically selects the branching or the sequence rule.

The first assumption is that the distance between elements

should be taken into account. The generated L-system rules
are more intuitive if we merge elements that are close to each
other rather than distant elements. An example would be a
sequence of equally-spaced elements where it is reasonable
to merge neighbors first. The second assumption is that it is
better to start with clusters with a higher number of points,
because they represent repeating patterns. The third assump-
tion is that it is better to merge similar elements first, since
that would be a natural way of creating procedural systems
by a human. Finally, the last assumption is to give priority
to clusters with long sequences of symbols as they lead to a
higher value of m in terminals P(m, t0) for rules r1 and r3.
The four assumptions are quantified into the cluster impor-
tance function that assigns a value to each cluster:

w = wnn+whh+wφφ+wll (5)

where n is the number of the sequential elements or num-
ber of branches (depending on the rule) in the cluster, h is
the proximity of two elements, φ is the element similarity,
and l is the average length of the sequences in the cluster.
The weights 0 ≤ wn,wh,wφ,wl ≤ 1 are defined by the user.

The normalized distance d(ei,e j) is defined as the closest
distance between point samples on the elements (not the dis-
tance between local origins of two elements). d ranges from
0 (overlapping elements) to 1 (for the maximum distance of
two elements in the input data). The similarity φ(ei,e j) is
also calculated from the point samples using the algorithm
described in Section 4.1. In order to account for symmetries,
we also flip the sets around the x and y axis. The number l
is the average length of all sequences in a cluster divided by
the maximum average length of sequences in all clusters.

Intuitively, setting the distance weight wh to a small value
allows merging of objects far from each other. Changing
the similarity wφ defines the level of error allowed for two
different but similar elements (or group of elements) to be
merged (see Figure 7). Manipulating the weight wl can lead
to rules generating smaller or larger sequences of elements.
The weight wn gives higher priorities to repeating structures
regardless of whether they are in a sequence.

a) b)

Figure 7: Cluster importance function. Color identifies
grouped elements. a) Users prefer distance to define group-
ing of elements, whereas in b) element similarity is preferred.

The values of n, h, φ, and l are associated with each clus-
ter. Note that all pairs of the elements in the cluster have
equal or similar values. The clusters are then sorted accord-
ing to the value of the cluster importance function (5). The
procedural rules generation then starts with the most impor-
tant cluster.

An example in Figure 7 shows influence of the sensitiv-
ity to the distance and similarity parameters. In Figure 7a)

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

O.Št’ava et. al. / Inverse Procedural Modeling by Automatic Generation of L-systems

the proximity of objects is preferred and the result is two
sequences. On the other hand, in Figure 7b) the object sim-
ilarity is preferred and the system detects three different se-
quences. The weight selection is intuitive but can be prob-
lematic for highly noisy input data.

5.5. Rule Generation

In this step we take the cluster with the highest weight and
create the corresponding sequential or branching rule. The
new rule is described by a new non-terminal symbol P(m, t0)
(or B(m, t0, t

′
0) for the branching rule), where m is the recur-

sion depth of the rule and t0 is the non-parametric portion of
the transformation described by the rule. While t0 (and t′0)
are constant for all points in the processed cluster, the value
of m can vary as one cluster can contain multiple sequences
with different lengths. Because identical rules with different
values of m produce different elements, we need to create a
new non-terminal symbol for every possible sequence length
m that is contained in the cluster.

5.6. Higher Level Rules Generation

When the rule is generated we eliminate its elements (or
group of elements) from the scene and substitute them with
the non-terminal symbol(s). The affected clusters are regen-
erated efficiently by keeping mutual links between elements
and the clusters.

Consequently, we replace each occurrence of an element
described by symbol A and transformation TA in any clus-
ter by the new non-terminal element P and transformation
TP = TA. In this way a group of elements becomes a new ele-
ment of the scene. Elements of a sequence or branching other
than the first one are removed from the associated clusters.
This mechanism prevents reclustering. However, the clus-
ter importance function must be recalculated for all clusters.
We use point sampling to determine distance and similarity
of the higher structural elements (groups) in the same way
as for the elements of the input image.

When the clusters are updated with the new element, it can
be merged into higher-level elements in the next iteration. In
this way we generate complex hierarchies where structures
on lower levels are either more abundant or more important
than the structures on higher levels. The algorithm completes
when there is a single non-terminal symbol X(m, t0) left.
This symbol and its transformation TX form the axiom of
the L-system ω : TX X(m).

Reinserting the new non-terminal symbols into transfor-
mation spaces assures that we find not only the basic com-
bination of transformations: rotation, translation, scale, and
an additional rotation of the object itself, but also their com-
binations. For example, we can find a grid of elements as
translation × translation, but also a grid of elements where
elements at each row are rotated around its origin by an in-
creasing angle: translation × translation × rotation, etc.

5.7. Post-processing rules

The generated rules are further processed and simplified.
First we clean up the generated rules. For rules that do not
use linear dependency of parameters on m, we skip the pa-
rameter t0 and use fixed values in the rule. We eliminate
meaningless transformations such as +(0) and −(0), scal-
ing by one, etc. We also combine together rules r1 and r2 for
P(1, t0) to a new rule:P → A T B.

Fig ele- rules init. generation total
ments [s] of rules [s] time [s]

10 72 4 14 2 16
11 1184 182 605 610 1215
12 500 42 55 154 209

Table 2: Time needed to analyze the figures from this paper.

6. Implementation and Results

We have implemented our system in C++. It uses OpenGL
for visualization of the structures. It reads standard SVG files
and generates corresponding L-systems. Most of the exam-
ples in this paper were analyzed within seconds or minutes.
The most complicated example (Figure 11) needed twenty
minutes (see Table 2).

a) b)

Figure 8: Two extreme cases detected (blue color) by the
system. a) The regular structure is captured by the rule r1
with P(4). b) The structure has no regularities and is rep-
resented as a sequence of transformations of pairs by the
rule r1 with multiple non-terminals P(1, ti).

Figure 8 shows examples that demonstrate a sequence de-
tection using our framework. On the left, a (blue) sequence
of five elements is detected and coded by the rule r1 with
parameters t0 = (70,50,1,70) and the axiom P(4). The right
image shows a clutter of similar elements that are detected
by the inverse instancing, but there is no repetition of trans-
formations. This is the worst case scenario and the elements
are coded as a set of pairs produced by the rule r1.

An opposite case is the helix in Figure 9 a) that shows
high structural symmetry and is stored as the L-system rule
r1 with t0 = (0,27.5,0.993,8.5o). i.e., P(m) → A f (27.5) ∗
(0.993)+ (8.5)P(m− 1) and an axiom ω : P(336). Figure 9
demonstrates the possibility of editing the generated struc-
tures by modifying L-system parameters.

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

O.Št’ava et. al. / Inverse Procedural Modeling by Automatic Generation of L-systems

a) b) c)

Figure 9: A) Helix detected from an input image is repre-
sented by the rule P(m)→ A f (27.5)∗(0.993)+(8.5)P(m−
1) and includes m == 336 repetitions. b) Helix generated
from the same rule with increased angle between two ele-
ments, and c) with increased distance between elements.

A branching structure in Figure 1 a) is recognized and
stored as a rule:

R(m) → A[−(17) f (64)− (3)R(m− 1)]

[+(7) f (181)+ (23)R(m− 1)

Figure 1 shows different outputs produced by changing the
number of recursive calls, internal angles, and scaling. This
example shows the expressive power of L-systems.

a) b)

Figure 10: Symmetrization using L-systems. Objects dis-
tributed with repetition but large randomness (left) are rec-
ognized by setting relaxed sensitivity to angle and distance.
The image on the right is generated from the detected rules.

An example of symmetrization on the level of L-system
rules is presented in Figure 10, where hierarchies of similar
elements are randomly rotated and translated. The relaxed
clustering merges the elements into clusters, the L-system
generator produces the axiom P3(2) and rules:

A → Window

P0(m) → A f (13)P0(m− 1)

P1(m) → P0(3)+ (90) f (10)− (90)P1(m− 1)

P2(m) → P1(4)+ (90) f (52)− (90)P2(m− 1)

P3(m) → P2(3) f (51)P3(m− 1)

that lead to the symmetrical composition in Figure 10 b).

Terminal or non-terminal symbol replacement is another
operation that can be applied directly to the rules of the gen-
erated L-systems and has an important effect on the gener-
ated image. This operation is demonstrated in Figure 11. The
input scene is analyzed and coded as L-system. The scene is
horizontally extended by changing the parameter m of the
axiom and some non-terminal symbols (i.e., different levels
of hierarchy) are then replaced by a terminal symbol.

A complex scene in Figures 12 demonstrates the power
of an editing system based on L-systems. The scene is con-
tinuously analyzed as the user defines different weights of

Figure 11: A complex structure is coded as an L-system (up),
enlarged, (middle), and a non-terminal symbol is replaced
by a terminal that substitutes a group of elements with an
element (down).

the cluster weighting function. By giving preferences to dif-
ferent weights in the cluster importance function, the system
finds different structures that are expressed as L-systems. By
changing the L-system parameters, the scene is modified, re-
sulting in a new image in Figure 12 b). Generation of a sim-
ilar result by manual editing of a vector image would take
significantly longer.

7. Conclusions and Future Work

We presented an important step towards the solution of the
problem of inverse procedural modeling by generating L-
systems that represent an input 2D scene. The key con-
cept behind our algorithm is an efficient analysis of various
transformation spaces that code mutual transformations be-
tween pairs of elements. We efficiently recognize and code
branching and non-branching sequences of linearly trans-
lated, scaled, and rotated elements and their hierarchies. The
L-system is a representation of the input image and it can
be used, for example, for scene randomization, symmetriza-
tion, editing of different structures, or substitution of ele-
ments and groups of elements by new symbols.

As future work, we would like to enhance the class of L-
systems that we can generate. We want to investigate the use
of more complex expressions in the L-system rules, such as
polynomials that can be evaluated using sequences of simple

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

O.Št’ava et. al. / Inverse Procedural Modeling by Automatic Generation of L-systems

a) b)

Figure 12: a) An input image is automatically coded as an L-system and b) edited by user by manipulating L-system parameters.

rules. We want to explore coding of structures, for which the
L-system rules require context as well as similarity among
different elements. An analysis of the resulting rules and de-
tecting the regularities between the rules at different levels
of the hierarchy would make it possible to automatically de-
tect other regular patterns in the rules besides branching. An-
other are of future work is the creation of a comprehensive
editing system based on L-systems that could interactively
generate L-system rules and allow local changes to propa-
gate through the L-system rules. We would like to extend
our system to the automatic coding of 3D structures and im-
prove the robustness of the algorithm and its sensitivity to
noise.

Acknowledgements

This work was supported by the Adobe Systems grant Vector
Pattern Modeling and Editing.

References

[ARB07] ALIAGA D. G., ROSEN P. A., BEKINS D. R.: Style
grammars for interactive visualization of architecture. IEEE
Trans. on Vis. and Comp. Graph. 13, 4 (2007), 786–797. 2

[BBW∗08] BERNER A., BOKELOH M., WAND M., SCHILLING

A., SEIDEL H.-P.: A graph-based approach to symmetry detec-
tion. In Symposium on Volume and Point-Based Graphics (Los
Angeles, CA, 2008), Eurographics Association, pp. 1–8. 3

[BBW∗09] BOKELOH M., BERNER A., WAND M., SEIDEL H.-
P., SCHILLING A.: Symmetry detection using line features.
Comp. Graph. Forum 28, 2 (2009), 697–706. 3

[DHL∗98] DEUSSEN O., HANRAHAN P., LINTERMANN B.,
MĚCH R., PHARR M., PRUSINKIEWICZ P.: Realistic modeling
and rendering of plant ecosystems. In SIGGRAPH ’98 Proceed-
ings (New York, NY, USA, 1998), ACM Press, pp. 275–286. 2

[EMP∗03] EBERT D. S., MUSGRAVE F. K., PEACHEY D., PER-
LIN K., WORLEY S.: Texturing and Modeling, 3rd ed. Academic
Press, Inc., Orlando, FL, USA, 2003. 1

[HCF97] HART J. C., COCHRAN W. O., FLYNN P. J.: Similarity
Hashing: A computer vision solution to the inverse problem of
linear fractals. Fractals 5, (1997), 35–50. 2

[IMIM08] IJIRI T., MECH R., IGARASHI T., MILLER G.:
An example-based procedural system for element arrangement.
Comput. Graph. Forum 27, 2 (2008), 429–436. 3

[IOI06] IJIRI T., OWADA S., IGARASHI T.: The sketch l-system:
Global control of tree modeling using free-form strokes. In Smart
Graphics (2006), vol. 4073 of LNCS, Springer, pp. 138–146. 2

[LE06] LOY G., EKLUNDH J.-O.: Detecting symmetry and sym-
metric constellations of features. In In ECCV (2006), vol. 2. 3

[Lin68] LINDENMAYER A.: Mathematical models for cellular in-
teraction in development. Journal of Theoretical Biology Parts I
and II, 18 (1968), 280–315. 2

[LWW08] LIPP M., WONKA P., WIMMER M.: Interactive visual
editing of grammars for procedural architecture. ACM Trans.
Graph. 27, 3 (2008), 102:1–10. Article No. 102. 3

[MGP06] MITRA N. J., GUIBAS L. J., PAULY M.: Partial and
approximate symmetry detection for 3d geometry. ACM Trans.
Graph. 25, 3 (2006), 560–568. 1, 3, 5

[MGP07] MITRA N. J., GUIBAS L. J., PAULY M.: Symmetriza-
tion. ACM Trans. Graph. 26, 3 (2007), 63. 3

[MP96] MĚCH R., PRUSINKIEWICZ P.: Visual models of plants
interacting with their environment. In SIGGRAPH ’96 Proceed-
ings (New York, NY, USA, 1996), ACM, pp. 397–410.

[MWH∗06] MÜLLER P., WONKA P., HAEGLER S., ULMER A.,
GOOL L. V.: Procedural modeling of buildings. In ACM Trans.
Graph. 26, 2 (2006) pp. 614–623. 2

[MZWG07] MÜLLER P., ZENG G., WONKA P., GOOL L. V.:
Image-based procedural modeling of facades. In ACM Trans.
Graph. 26 3, (2007), p. 85. 2

[PH93] PRUSINKIEWICZ P., HAMMEL M.: A fractal model of
mountains with rivers. In Proceedings of Graphics Interface’93
(1993), vol. 30(4), pp. 174–180. 2, 4

[PJM94] PRUSINKIEWICZ P., JAMES M., MĚCH R.: Synthetic
topiary. In SIGGRAPH ’94 Proceedings (New York, NY, USA,
1994), ACM Press, pp. 351–358.

[PL90] PRUSINKIEWICZ P., LINDENMAYER A.: The Algorith-
mic Beauty of Plants. Springer–Verlag, New York, 1990. 1, 2

[PM01] PARISH Y. I. H., MÜLLER P.: Procedural modeling of
cities. In SIGGRAPH ’01 Proceedings (New York, NY, USA,
2001), ACM, pp. 301–308. 2

[PMW∗08] PAULY M., MITRA N., WALLNER J., POTTMANN
H., GUIBAS L.: Discovering structural regularity in 3d geometry.
ACM Trans. Graph. 27, 3 (2008), 1–11. 1, 3, 5, 7

[Pru86] PRUSINKIEWICZ P.: Graphical applications of L-
systems. In Proceedings on Graphics Interface’86, Canadian In-
formation Processing Society, pp. 247–253. 2

[PSG∗06] PODOLAK J., SHILANE P., GOLOVINSKIY A.,
RUSINKIEWICZ S., FUNKHOUSER T.: A planar-reflective sym-
metry transform for 3d shapes. ACM Trans. Graph. 25, 3 (2006),
549–559. 3

[PSSK03] PRUSINKIEWICZ P., SAMAVATI F. F., SMITH C.,
KARWOWSKI R.: L-system description of subdivision curves.
International Journal of Shape Modeling 9, 1 (2003), 41–59. 2

[YM09] YEH Y.-T., MĚCH R.: Detecting symmetries and curvi-
linear arrangements in vector art. Comp. Graph. Forum (Proc.
EUROGRAPHICS) 28, 2 (2009), pp. 707–716. 3, 4

[XZT∗09] XU K., ZHANG H., TAGLIASACCHI A., LIU L., LI
G., MENG M., XIONG Y.: Partial Intrinsic Reflectional Symme-
try of 3D Shapes. ACM Trans. Graph. 28, 5 (2009) 3

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

