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Abstract 

We present a probe-based interface for the exploration of the results of a geospatial simulation of urban 

growth.  Because our interface allows the user great freedom in how they choose to define regions-of-interest 

to examine and compare, the classic geospatial analytic issue known as the modifiable areal unit problem 

(MAUP) quickly arises.  The user may delineate regions with unseen differences that can affect the fairness of 

the comparisons made between them.  To alleviate this problem, our interface first alerts the user if it detects 

any potential unfairness between regions when they are selected for comparison.  It then presents the 

dimensions with potential problematic outliers to the user for evaluation.  Finally, it provides a number of 

semi-automated tools to assist the user in correcting their regions’ boundaries to minimize the inequalities 

they feel could significantly impact their comparisons. 

  

Categories and Subject Descriptors (according to ACM CCS): Categories and Subject Descriptors (according to 

ACM CCS): I.3.8 [Computer Graphics]: Applications; I.6.6 [Simulation and Modeling] Simulation Output 

Analysis 

 

 

1. Introduction 

 

Our application seeks to present the results of an urban 

growth simulation to policy analysts, urban planners, etc. 

such that they can analyze historical growth patterns, 

examine predicted trends, and compare the characteristics 

of development between different regions.  We provide the 

user with the ability to probe the map-based data via 

selecting regions of any size and shape, resulting in 

coordinated visualizations reflecting those regions-of-

interest, and to directly compare these regions-of-interest 

with each other.   

However, by giving the user this freedom to select 

regions at such a wide range of shapes and sizes, we 

inadvertently make their analyses particularly vulnerable to 

unforeseen inequalities between regions being compared.  

For example, household level data, such as income or 

population, is aggregated into blocks to protect privacy.  

Depending on how one defines new regions cutting through 

these blocks, one can find different average values for the 

same locations.  This is part of the long standing problem 

in the field of geography and spatial analysis, known as the 

modifiable areal unit problem (MAUP).  Probe-based 

interaction is particularly prone to being effected by MAUP 

due to the inherent variability in areal units. 

  This prevalence of the MAUP in our application is 

compounded by the fact that the target audience does not 

necessarily have expert knowledge regarding all the 

“behind the scenes” data layers that have gone into guiding 

and dictating the underlying simulation’s behavior.  For 

example, a policy analyst may understand the zoning 

limitations that constrain growth in a particular area, but is 

unlikely to understand the geologic barriers to construction 

in the same region, i.e. soil suitability and parcel slope. 

To help alleviate the effects of the MAUP in our 

application, we have provided a number of enhancements 

to the previously available probe-based interface elements.  

First, when the user selects multiple regions to directly 

compare against each other, we evaluate the statistical 

distributions within the various dimensions and look for 

outliers with deviations that have the potential to be 

particularly problematic in the final analyses.  When these 

are detected, we alert the user to them and provide an 

overview of the possible inequalities in each dimension that 

may affect their intended analysis.  If the user decides that 

any of these inequalities might have a significant negative 

impact on their desired analysis, they can then choose to 

adjust them using a number of provided tools.  These tools 

provide methods to manipulate the boundaries of regions to 

assimilate and discard land coverage types, grow and 
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shrink in advantageous directions, and trade area amongst 

themselves to attempt to bring their disparities within the 

user’s selected bounds. 

We illustrate the usefulness of these enhancements 

with an example scenario in which the analysis of urban 

sprawl growth patterns for a number of suburbs around a 

major metropolitan area is complicated by predefined city 

boundaries containing disproportionate amounts of water 

and protected land, which the underlying simulation 

specifically ignore. 

  

2. Related work 

 

The modifiable areal unit problem (MAUP) is a long 

standing, unsolved problem in geography sciences.  It 

refers to the fact that when point data is aggregated into 

areal units, the variation in how the units, or regions, are 

delineated can cause significant variation in the aggregated 

values at any point.  The issue itself has been long known, 

but the term MAUP was coined and the problem described 

in detail by Openshaw [Ope84].  It is primarily studied in 

regard to its effects on geospatial analyses of aggregated 

data in the field of socio-economics, politics, and 

epidemiology. [FW91] [OA99] [Arm95] 

Traditionally, the MAUP is split into two components.  

The first, the scale problem, relates the choice in the 

number of regions being compared to its effects on the 

variation in the results of numerical analysis between those 

regions, especially when the source data was initially 

aggregated at a different resolution.  We do not address this 

component in our system, as in our case, it is more of an 

issue with how the underlying datasets are generated from 

data at different granularities. (More on this in Section 4)  

Further, to address its slight appearance on the interaction 

side, it would require drastic changes to the user’s freedom 

to select and compare any number of regions in an 

explorative manner.  This is more applicable to situations in 

which the map’s area is completely distributed into non-

overlapping, space-filling regions, and not the disconnected 

and sparsely covering region selections commonly made in 

our probe-based interface.  However, in the future, it might 

be worth considering the addition of automatic “split 

region” and “combine regions” behaviors if a sufficiently 

elegant method is devised to ensure these actions to not 

compromise the user’s analytical tasks. 

In this paper, we are primarily concerned with the 

second component of the MAUP, the aggregation problem.  

This problem relates the choice of where and how 

boundary lines are drawn between regions to the effect on 

variation in the resulting values for numerical analysis 

within those regions.  An good example of this problem 

arises when working with census derived data.  Due to 

privacy concerns, the individual household point data is 

never revealed.  Instead, average values are given for 

“census blocks”, which can be apartment complexes, city 

blocks, or arbitrary delineations of rural tracts of land.  The 

choice in how to delineate these blocks has a direct and 

significant impact on the aggregated values.  If the 

individual point data was instead aggregated into regions 

delineated by different methods, say a regular grid, or by 

postal code, the values available at any particular point on 

the map point would likely show significant variation from 

the “census block” method.  Thus, the MAUP problem is 

closely related to another often encountered problem in 

geography, the ecological fallacy, which states that it is 

wrong to make inferences as to the values of individuals in 

a region based on the aggregated values of that region. 

Research into the MAUP problem in geospatial 

analysis fields tends to focus on either understanding the 

variance or error that can be generated through different 

scales and aggregations so as to understand the effects that 

the MAUP can have on analyses performed on the 

aggregated data [CHC95], or on developing methods to 

calculate optimal aggregation zones [Nak98].  In contrast, 

we are interested in monitoring the ways the user chooses 

to define their own areal units, and then figuring out if 

these delineations could produce misleading results based 

on the differences across multiple dimensions.   

One of the most important differences between the 

MAUP situations commonly encountered in probe-based 

interfaces and those studied in the geospatial analysis field 

is that the MAUP research in the geospatial analysis field 

seems to focus primarily on space-filling regions that cover 

the map’s entire extent, and share boundaries.  While we do 

provide tools to deal with these conditions, we are 

primarily concerned with the disjunct regions, with large 

areas of unselected land, that are more common to our 

probe-based interaction.  These have more room to grow, 

and adjustments of multiple regions are rarely zero-sum 

cases. 

To the best of our knowledge there have been no 

similar visualization systems that attempt to find and alert 

users to potentially misleading dimensional inequalities 

between regions-of-interest being compared, and provide 

tools for the semi-automated adjustment of these 

questionable regions. 

This application represents the next generation of 

probe-based interface, and the first to be released into the 

hands of actual end users.  The considerations and tools for 

handling the MAUP detailed in this paper are one of the 

major new features that improve upon the original probe-

based interaction groundwork [BDW*08].  We believe 

these improvements significantly strengthen the 

technique’s power for geospatial analysis. 

 

3. Application 

 

In this section we describe our application, its background 

and basic functionality, as well as detailed descriptions of 

the MAUP overview and adjustment panels. 

 

3.1 Background 

 

Our application is the Urban Growth Decision Support 

System.  It is designed to provide a highly interactive 

interface for policy makers, urban planners, etc. to explore 

and analyze both 30 years of historical urban growth and 25 

years of predicted future growth.  It focuses on a 240 km 
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(150 miles) wide region around a major metropolitan area 

characterized by significant urban sprawl.   

Satellite imagery was used to classify historical land 

coverage as developed or undeveloped (e.g. natural 

vegetation versus impervious surfaces).  Protected lands 

such as forests and parks were recorded as well.  The 

currently remaining undeveloped land was then ranked by 

its attractiveness to new development.  This was done by 

considering positive factors, e.g. distance to major 

employment centers, percentage of surrounding parcels 

already developed, and established infrastructure such as 

road density, as well as negative factors, e.g. slope of 

terrain.  Then, by using forecasts of population growth for 

each region, and knowing how much land is used per 

person in each type of area (i.e. high density urban core, 

suburban fringe, etc), the appropriate amount of land was 

converted from undeveloped to developed for that 

particular time step, and the model was recalculated for the 

next time step.  The results of this simulation process are 

highly detailed land coverage maps for multiple time steps 

ranging from 1976 to 2030. 

The application was designed to run on a desktop for 

standard single-analyst usage, a laptop with projector for 

presentations to policy makers in the field, as well as on our 

multi-touch table for simultaneous collaborative use 

between multiple analysts and domain experts.  A sample 

view of the application being used is shown in Figure 1. 

 

 
Figure 1: An example workspace in our application. 

 

3.2 Probe creation 

 

As a probe-based interface, the primary direct interaction 

with the map (aside from navigation) is to define regions-

of-interest, which spawns coordinated probe interfaces 

allowing the analyst to examine the data within the 

associated region with a number of different visualizations.  

In our application we provide a wide variety of methods for 

selecting regions-of-interest.  The most basic, and free 

form, methods are the ability to lasso or circle a region of 

any shape or size, or to “paint” region masks directly onto 

the map, using either the mouse or the users fingers (when 

run on a touch table).  We also allow the user to select 

using the wide array of vector data commonly available 

from government geography databases.  The user can thus 

select a variety of predefined regions, such as school 

districts, city boundaries, voting districts, counties, water 

sheds, as well as combinations thereof. 

This wide assortment of selection methods available 

provides great freedom in how the user can query the data, 

but it also exacerbates the MAUP which inherently arises 

in this type of analytical situation. 

  

3.3 Comparisons 

 

After the user has selected multiple regions-of-interest, 

each spawning its associated probe-interface, they can 

choose to combine these interfaces with each other to form 

comparison interfaces.  In these interfaces, the 

visualizations pull the data from the individual regions-of-

interest and plot it directly against each other.  Upon the 

creation of a comparison interface, we calculate the 

statistical distribution of the regions across all relevant 

dimensions.  If we determine that any of the regions being 

compared are potentially significant outliers within a 

particular dimension, then we alert the user by displaying a 

large flashing exclamation mark on that comparison 

window’s toolbar. 

 

3.4 MAUP overview panel 

 

From within a comparison interface, pressing the MAUP 

interface icon switches the interface to the MAUP overview 

panel.  The purpose of this panel is to allow the user to 

evaluate any potentially problematic inequalities and 

choose which to take corrective action upon. 

In the MAUP overview panel, each dimension has its 

own one-dimensional plot and action button, as shown in 

Figure 2.  The plot itself is centered at the mean value for 

the dimension and expands three standard deviations above 

and below the mean on each side.  Each region being 

compared is then plotted as a vertical line color coded to 

match the region.  Regions beyond three standard 

deviations of the mean are plotted at the appropriate end of 

the plot.  We highlight any regions that were determined to 

be outliers with a yellow indicator above the plot, as well as 

automatically selecting that dimension for corrective 

action.  Under each dimension’s plot, there is a 

scale/measuring tool that allows the user to drag across the 

plot to quickly measure the actual range of values across a 

cluster of regions, as well as the actual value by which 

outliers deviate from these clusters. 

 

 
Figure 2: An example plot from the overview panel 

showing the distribution of eight regions in terms of 

average income.  Notice that the green region has been 

flagged as an potentially problematic outlier, and that the 

user has measured how far it deviates from the upper end 

of the main cluster. 
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One shortcoming of this technique is that there is a 

limit to how many regions can differentiated from each 

other with any color coding scheme.  There are only so 

many distinctive colors, and after about ten regions, it 

becomes hard to distinguish which lines correspond to 

which regions.  This can be overcome by labeling or 

highlighting the region on the map upon selection. 

Upon entering the MAUP overview panel, the user 

can quickly assess the situation by viewing the highlighted 

dimensions with potentially problematic outliers and 

choose whether to either accept the suggested and 

automatically selected dimensions, or select and deselect 

dimensions at will.  In practice, the user will rarely want to 

simply accept all of the suggested selections, as they are 

usually interested in looking at the differences between 

regions in at least one dimension.  At this point, pressing 

the “Adjust selected dimensions” button transfers the user 

and any selected dimensions to the MAUP adjustment 

panel. 

 

 
Figure 3: An example view of the MAUP overview panel. 

 

3.5 MAUP adjustment panel 

 

In the MAUP adjustment panel, each dimension that was 

selected in the MAUP overview panel is once again 

presented as a one-dimensional plot of the statistical 

distribution of the regions being compared.  However, now 

the purpose of this graph is to adjust min and max values 

for the boundaries as targets to be used during the region 

adjustment procedures.   

The user can move the ends of the selection box to 

correspond with existing or desired cluster boundaries.  The 

actual value range within the proposed cluster is presented 

below the plot.  A target value is also indicated by a 

upward pointing green triangle.  Outliers outside the 

desired cluster boundaries are those that the adjustment 

algorithms will adjust until they either reach it, get as close 

as possible, or fall within the cluster boundary, depending 

on which adjustment method is being used. 

Once the desired boundaries are set for each 

dimension, the user can choose from an assortment of 

adjustment tools, which are enabled or disabled based on 

the dimensions that have been selected for adjustment. 

 

 
Figure 4: An example view of the MAUP adjustment panel.   

 

Before adjustments are initiated, the user has the 

opportunity to use the region-of-interest selection tools to 

create constraints around regions, which they will not be 

allowed to grow beyond.  For example, as shown in Figure 

6, one might want to adjust the boundaries of local political 

jurisdictions which must always remain a subset of a larger 

political jurisdiction. 

 

 
Figure 5: Before and after an add area adjustment of a city 

boundary (orange) within a constraint (thick black line) set 

for the county boundary that the city must remain inside. 

 

The first, and most simple, adjustments available are 

“Add area” and “Remove area”.  These are available for 

dimensions with categorical data, such as land coverage 

types, e.g. water, protected, etc.  “Add area” attempts to 

expand regions that are below the minimum bound 

outwards into matching land types until either the target 

value is reached or until there is no available land within a 

reasonable distance. (“Reasonable” in this case is defined 

as how far we want to allow any added, non-contiguous 

regions to stray from the main region.)  “Remove area” 

erodes the boundaries of regions that are above the 

maximum bound inwards, removing matching land types 

until either the target value is reached or there is no more 

available land of that particular type to remove.  Both of 

these methods can be easily adjusted to maintain the 

existing connectivity of regions, however in practice this 

greatly reduces its effectiveness and ability to reach target 

values, and provides little more than an aesthetic benefit in 

analyses that do not require contiguous regions. 

 

 
Figure 6: Before and after a remove area adjustment is 

made to remove protected wild lands (darkest green). 
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The other adjustment tools are more complicated, but 

are able to adjust dimensions with continuous data.  The 

first is “Grow / Shrink regions”, which manipulates the 

boundaries of the regions both inward and outward at the 

same time, in an attempt to bring their values within the 

desired bounds.  This is done through an iterative process 

consisting of simultaneous combinations of both removing 

and adding area at the edges of the regions to maximize 

movement towards the desired bounds while not exceeding 

the bounds set on other dimensions.  The process completes 

when either the values for the selected dimensions fall 

within the desired bounds, or no more possible progress is  

achievable, e.g. no appropriate area is left available for 

removal.  When using this tool, regions can both initially 

overlap as well as overlap after adjustments are made.  If 

overlapping results are not desirable, regions can be 

prohibited from growing into each other. 

 

 

 
Figure 7: A grow/shrink adjustment of four regions to 

bring the population of each to be within ~1000 people of 

the mean.  Above are the original predefined city 

boundaries and below are the results of the adjustment. 

 

The final adjustment available here, “Trade area”, is 

the most complicated.  It is used to adjust border-sharing 

and space-filling regions, such as political jurisdictions, 

which cannot overlap and must collectively cover a certain 

area completely, as opposed to the collections of disjunct 

and overlapping regions adjustable by the previous 

methods.  It behaves much like the “Grow / Shrink 

regions”, in that it attempts to both grow and shrink 

portions of regions’ boundaries to bring values for selected 

dimensions within the desired ranges, but now it considers 

the costs and benefits of each boundary adjustment to the 

regions of each side of the boundary.   Thus it is actually 

weighing the benefits of trading bits and pieces of area 

between the regions.  It iteratively executes the most 

advantageous trades of area between regions, redrawing the 

boundaries of multiple regions in the process, until it 

achieves its goal or runs out of valid adjustments. 

 

 
Figure 8: Before and after a trade area adjustment of two 

regions to make their populations equal.  The thick black 

line is a constraint used to force the regions to stay within 

their non-shared boundaries. 

  

Careful consideration is still required by the user as to 

choosing which dimensions to adjust, target bounds, and 

adjustment methods.  However, the MAUP helper panel 

attempts to assist the user in making these choices through 

both helpful intuitive visualizations and enabling only those 

adjustment methods relevant for the selected dimensions. 

 

4. Implementation 

 

Our software accepts two main types of data.  The first is 

vector data that is used to provide both reference, e.g. 

roads, city names, as well as semi-automated assisted 

selection techniques, e.g. “select city bounds.”  We utilize 

the ESRI shapefile format for this type of data, as it is 

widely supported among all of our GIS collaborators.   

The second data type is raster based data layers, in .tif 

format.  These raster images provide the raw data for our 

application, such as land coverage and demographic 

information.  For most variables, conversion from existing 

GIS formats to our raster based format is fairly 

straightforward.  However, for many household based 

demographic variables, such as median income, 

consideration must be made with regard to ensuring the 

most accurate distribution of aggregate data to individual 

pixels, so as to minimize ecological fallacy effects.   

In creating our population maps, for example, instead 

of merely dividing the population of a census block by the 

number of pixels within it to get a population value for 

each pixel, we utilized supplementary data, including 

satellite imagery, to perform dasymetric mapping.  In this 

manner, if a census block contains farmland as well as an 

urbanized area, the pixels in the urbanized area would 

contain the majority of the population, while the farmland 

areas with no impervious surfaces would have near zero 

population values.  This was very important for our 

application, where users are interested in the differences 

between developed and undeveloped areas, and can select 

their own regions cutting through census blocks. 

The interface is written in C++ and uses OpenGL for 

all onscreen graphics. OpenCV [OCV09] is used to 

perform all image processing operations (erosion, dilation, 

etc.). 
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4.1 Statistical evaluation 

 

Our statistical evaluation is quite simple, but is sufficient 

for our purposes.  Upon comparison interface creation, the 

mean and standard deviation for each dimension is 

calculated by examining the precomputed values for all 

regions that are being compared.  The number of standard 

deviations from the mean value is used to detect outliers.  

We use greater than two standard deviations from the mean 

as a threshold, over which we alert the user to the detected 

outlier and automatically select that dimension for 

adjustment.  A more rigorous statistical evaluation could 

easily be substituted here if deemed necessary. 

  

4.2 Adding and removing area 

 

The “add area” and “remove area” functions, which 

expand or contract a regions boundary to include more or 

less of a particular categorical value, behave as follows:  

First we generate a search mask that is used to find 

candidate pixels to either add to or remove from the region.  

This process is visually explained in Figure 9. 

We begin by extracting a binary image mask (A) 

describing what areas make up in the current region.  If we 

want to add area, we perform morphological dilation on 

this mask, resulting in expanded mask (B).  We then 

generate a search mask (C), which equals (B AND (NOT 

A)).  The search mask is a ring around the outside of the 

original mask containing all pixels within the chosen kernel 

size (more on choosing this later) of, but not within, the 

original mask.   

Likewise, if we want to remove area, we perform 

morphological erosion on the original mask, resulting in a 

shrunken mask (B).  We then generate our search mask (C) 

as ((NOT B) AND A).  This results in a ring around the 

inside of the original mask, with all pixels within the 

original mask’s boundary by no more than the kernel size. 

After generating our search mask, we begin examining 

the pixels within individually to see if they match the 

categorical type we are interested in.  If we are trying to 

add area, these pixels are set as true in our original mask 

defining the region.  If we are removing area, they are set 

as false in the original mask.  We continue this until either 

the desired number of pixels has been added or removed, or 

we run out of candidate pixels in the search mask.  In the 

former case, we are done adjusting the region.  In the latter 

case, we repeat the process, generating a new, further 

reaching, search mask. 

After generating our search mask, we begin examining 

the pixels within individually to see if they match the 

categorical type we are interested in.  If we are trying to 

add area, these pixels are set as true in our original mask 

defining the region.  If we are removing area, they are set 

as false in the original mask.  We continue this until either 

the desired number of pixels has been added or removed, or 

we run out of candidate pixels in the search mask.  In the 

former case, we are done adjusting the region.  In the latter 

case, we repeat the process, generating a new, further 

reaching, search mask. 

 
(a)   (b) 

 
(c)   (d) 

 
(e)   (f) 

Figure 9: The process of calculating search masks for 

adding or removing area from a region. (a) is the region-

of-interest to be adjusted on the map, (b) is the binary 

image mask for the area inside this region, (c) is the dilated 

mask, (d) is the eroded mask, (e) is the dilation search 

mask, and (f) is the erosion search mask.  Notice that (e) = 

( (c) - (b) ) and that (f) = ( (b) - (d) ). 

 

Aside from achieving our target goal, there are two 

other stopping conditions:  When removing area, we stop if 

there are no longer any new candidate pixels being 

generated, i.e. all possible pixels that can be removed have 

been removed.  When adding area, we stop if a certain 

number of dilations have failed to unearth any candidate 

pixels that match our specific categorical type.  The number 

of fruitless dilations dictates how far away new disjunct 

regions can stray from the original region. 

The choice of kernel size for these morphological 

operations is a tradeoff between speed (less iterations 

required) and even growth (or reduction) patterns.  Larger 

kernel sizes have a tendency to provide more candidate 

pixels than needed.  The algorithm converts candidate 

pixels in a scanning pattern from the top left, and so this 

can result in growth mostly in the northern direction when 

kernel sizes are too large.  Lower kernel sizes ensure that 

multiple concentric rings of candidates will be evaluated, 

resulting in a more even, outward growth.  We have found 

a 7x7 kernel to be a good balance.  By using a 3x3 kernel 

one can ensure that only those pixels that are directly 

connected to the edges of the region will be added or 

removed, and hence no new disconnected islands or holes 

will be generated. 

 

4.3 Growing and shrinking regions 

 

The “grow and shrink regions” function attempts to 

automatically augment the size and shape of regions, 
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independently of each other, in order to adjust outlying 

values in selected dimensions to be within the specified 

value range.  Each region is checked to see if it has at least 

one value outside the desired range in any of the 

dimensions selected for adjustment.  If so, we attempt to 

adjust this region, then move on to evaluate the next region. 

The adjustment process for individual regions, which 

is visually explained in Figure 10, begins with the 

generation of search masks from both dilation and erosion 

operations on the region’s mask, as detailed in Section 4.2.  

Now that we have these two masks, which form rings both 

inside and outside of the region’s current boundary, we cut 

these masks up into a number of candidate sub-masks.  

This is done by finding the center of the region, and then 

generating a number of “pie slice” shaped masks emanating 

outwards from the center point (using OpenCV’s cvEllipse 

function).  We then generate our collection of candidate 

adjustment masks by computing the binary AND of each 

slice mask and the erosion and dilation masks.  If it is 

desirable to restrict regions from growing into each other, 

the other regions’ masks can be subtracted from the 

candidate masks. 

The number of slices to cut the original erosion and 

dilation masks into is a tradeoff between speed of 

computation and accuracy.  By making too few, and thus 

larger, slices, the regions are very restricted in their choice 

of growth directions, will not add or remove area as 

efficiently, and are less likely to reach their dimensional 

value goals.  A reasonable solution is to choose a number 

of slices based on the current size of the region.  Small 

regions (< 3km wide) may require as few as eight slices for 

sufficiently pleasing results, while larger regions (~30km 

wide) can benefit from as many as 30-40 slices.  Another 

option here is to vary the number of slices on each pass, as 

the size of the region changes.  By varying the number of 

slices in each pass, one also lessens the chance of unnatural 

looking radial patterns. 

All non-zero candidate masks are processed as 

temporary regions-of-interest and evaluated to determine 

the values it contains for each dimension of interest.  The 

temporary region-of-interest and mask are discarded, and 

the values are stored in a candidate adjustment object along 

with details including which operation type (erosion or 

dilation) and slice number was applied to generate it. 

After all candidate masks are processed into a list of 

candidate adjustments, they are sorted in descending order 

according to the progress they would make in bringing the 

values for the dimensions that still need adjustment within 

their desired ranges.  We then choose a subset of this list by 

starting at the top and evaluating if the adjustments would 

result in the region moving outside any of the bounds for 

the other dimensions, or overshooting our target values.  By 

deciding how far down the list to evaluate on each pass, we 

can make a tradeoff between speed and optimum results.  

Selecting only the single best adjustment from the list 

results in only the locally optimal choice being made on 

each pass.  Conversely, selecting all valid adjustments 

produces quick results, but they may be far from the 

optimal solution. 

 
(a)   (b) 

 
(c) 

 
(d)   (e) 

 
(f)   (g) 

Figure 10: The process of creating candidate adjustment 

masks.  (a) & (b) are the dilation and erosion search masks 

generated as in Figure 1. (c) is a sample of one of the many 

slice masks that are used to divide up the search masks. (d) 

& (e) show the slice mask superimposed on each search 

mask to show the Boolean operations.  (f) & (g) are the 

resulting masks, representing candidate adjustments. 

 

Once a subset of adjustments has been selected, we 

redraw two new slice masks, one containing all the slices 

that correspond to selected adjustments that were erosions, 

and one for the selected dilation slices.  We AND these 

slice masks with the corresponding erosion and dilation 

masks.  The resulting sliced erosion mask is then used to 

remove pixels from the regions mask, then the sliced 

dilation mask is used to add pixels to the regions mask. 

This whole process repeats itself until either the values 

for the selected dimensions are all within their desired 

boundaries, or no candidate adjustments are found to be 

acceptable, and thus there are no more adjustments that can 

be made.  In the latter case, a refinement can be made 

which increases the number of slices and searches again, 

with the candidate areas now of smaller area.  

  

4.4 Trading area 

 

The trade area function is similar to the “grow and shrink 

regions” function, but instead of adjusting the regions 

independently of each other, it adjusts regions with respect 

to each other.  This is used for cases where regions border 

each other, and the user does not want them to overlap, but 

is willing to allow the boundary between them to move. 



8                Submission #324 / Alleviating the Modifiable Areal Unit Problem 

submitted to Eurographics/ IEEE-VGTC Symposium on Visualization (2010) 

To accomplish the adjustment of multiple regions at 

once we use a modified greedy algorithm.  Our solution 

makes the optimal choices on each pass but does not 

guarantee the best possible solution.  It can however be fast 

enough to return results within a short enough amount of 

time (< 5 minutes) to maintain interactivity, whereas 

finding the optimal solution could take hours.  It is merely 

a proof of concept implementation at this point, and future 

work must be done to make this adjustment as efficient and 

effective as possible. 

We begin by generating a list of candidate adjustments 

in the manner described in Section 4.3, but this time we 

generate them for each region.  We also now record not 

only the effects the adjustment would have on the region it 

was generated from, but also its converse effect on any 

other regions that either currently contain, or are proposed 

to contain it. 

For each region and dimension that needs adjustment, 

we sort the list by how far the adjustments would move the 

outlying value into the desired bounds.  We then start at the 

top of the list and look for adjustments that are 

advantageous (they move the value towards the target) and 

do not bring the values in other dimensions outside those 

bounds.  Matching candidate adjustments have a preference 

value incremented each time they are chosen to be made by 

a region or dimension. 

After all regions and their dimensions have been 

considered, we sort the list by preference value.  We 

execute the top N adjustments from this list as long as they 

have a preference value of at least one.  The choice of N, 

how many of the top requested adjustments to make, is 

another trade-off between speed and how close the results 

with be to the optimal solution.  We like a value of 5% of 

the total number of candidate adjustments, but have used 

different values with varied success across situations. 

When executing the top N adjustments, we follow the 

same process as in Section 4.3.  However, when using these 

sliced dilation and erosion masks, we not only add or 

remove the pixels from the region the mask was generated 

from, but perform the opposite operation on the same pixels 

in the neighboring region.  In this manner, area/pixels are 

not gained nor lost, but instead transferred between regions. 

Once the adjustments are complete, we check to see if 

any regions still have values outside the desired bounds, if 

not then we are finished.  If so, then we make another pass.  

If another pass results in no acceptable candidate 

adjustments, we can either stop, or increase the number of 

slices per region in an attempt to find smaller valid 

adjustments on another pass. 

 

5. Scenario 

 

In this example scenario, the analyst’s goal is to compare 

the growth patterns, both historical and predicted, for a 

number of cities, and clusters of smaller cities, that are all 

suburbs of a major metropolitan area.  The analyst wants to 

examine the relationship between the amounts of land that 

change to developed with each time step, and during what 

times development rates peaked, for each region relative to 

the others.  As shown in Figure 11, they have selected 

regions-of-interest using the city selection tool.  However, 

some of the regions contain significant amounts of water, 

and others significant amounts of protected land.  The 

simulation is programmed to ignore both of these land-

cover types, and they will never get developed.  Their 

presence can cause misleading results for analyses or 

visualizations that rely on ratios involving developing land.  

This effect can be seen in the “land use pies” visualization 

shown in Figure 12, where water (blue) and protected land 

(dark green) slices squeeze the developed and undeveloped 

land slices into remaining degrees of the circle.  Comparing 

the angles between regions to see the relative amounts of 

growth that occurred in each time step is now misleading.  

The same amount of growth will appear smaller in the 

region with excess water. 

The user is alerted by the flashing MAUP alert icon, 

and enters the MAUP overview panel.  Here, as shown in 

Figure 13, the footprint (land developed per person), road 

density, undeveloped, protected, and water dimensions 

have been automatically selected due to outliers being 

detected within them.  Not concerned with footprint or road 

density, the user unselects those dimensions.  The user also 

unselects the undeveloped dimension, as the variations 

within that dimension are one of the aspects of the data 

they are interested in. 

 The user advances to the MAUP adjustment 

panel.  As shown in Figure 14, they set the target bounds 

for each dimension around the regions with the least 

amounts of water and protected land.  They then select the 

“remove area” tool to bring the other regions within those 

bounds.  Figure 15 shows the water and protected space 

being removed from the regions with excesses.  Finally, 

Figure 16 shows the pie charts, now free of the misleading 

distortions from excess water and protected land. 

  

 
Figure 11: The selected regions in the example scenario. 
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Figure 12: Pie charts of the amounts of land developed 

over each time step Notice the amount of water in the 7th 

region and protected land (darkest green) in the 3rd region. 

 

 
Figure 13: The MAUP overview panel from the scenario. 

 

 
Figure 14: The MAUP adjustment panel from the scenario. 

 

 
Figure 15: Regions before (left) and after (right) the 

adjustments made in the example  scenario.  Notice the 

removal of water (top) and protected land (bottom). 

 
Figure 16: The same pie charts as in Figure 12 after 

adjustment to remove excess water and protected land. 

 

5. Future Work 

 

As identified in the related work section, we could attempt 

to address the “scale problem” component of the MAUP 

through the introduction of tools to split and combine 

regions-of-interest.  This would require a more thorough 

understanding of how much modification of the user’s 

analysis is tolerable.  For example, the current model lets 

the user ask and answer questions such as “How are areas 

A, B, and C like area D?”, whereas a split operation might 

turn this into “How are areas A, B, and C like these 

similarly sized subsets of area D?” 

 It is also worth examining the processes our 

collaborators use to de-aggregate data into our raster based 

input.  This is an area in which both the scale component of 

the MAUP and the ecological fallacy are of supreme 

concern, as all analyses done within the interface rely on 

the accuracy of the underlying maps.  This has been studied 

in spatial analysis literature, but there may be specific 

concerns or loopholes related to our particular usage of the 

derived rasters. 

As noted in Section 4.4, our proof-of-concept “trade 

area” adjustment algorithm has much room for 

improvement.  We hope to bring in collaborators with 

image processing and geography backgrounds to help 

improve both the speed and effectiveness of our current 

technique. 

 

6. Conclusion 

 

We have explored the origins of the modifiable areal unit 

problem (MAUP), and based on these understandings we 

have identified the ways in which probe-based geospatial 

applications are particularly susceptible to the MAUP.  The 

user can probe the data by selecting their own regions-of-

interest using a wide range of selection tools operating at a 

range of scales.  When combined with the underlying 

raster-mapped data, generated from sources with different 

aggregation scales, the opportunities for the MAUP to 

affect the user’s analysis are infinite. 

While we cannot easily solve the MAUP, we can plan 

for its appearance in our geospatial analysis applications.  

By alerting the user to any potential issues with the 

regions-of-interest they select to compare, we remove much 

of the possibility that the comparisons they make will be 

misleading or misinterpreted.  Simple visualizations can 

provide quick indication of outliers in the distributions, 

allowing one to see at a glance what dimensions might 

become problematic in their analyses.  Finally, by 

providing semi-automated tools to help the user understand 

these inequalities, and then correct their selections, we 

minimize the impact of these unintended problems that are 

inherent to probe-based interfaces, with their great freedom 

in region-of-interest selection choices. 
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