
submitted to Eurographics/ IEEE-VGTC Symposium on Visualization (2010)

Eurographics/ IEEE-VGTC Symposium on Visualization 2010

G. Melançon, T. Munzner, and D.Weiskopf
(Guest Editors)

Volume 29 (2010), Number 3

Alleviating the Modifiable Areal Unit Problem

within Probe-Based Geospatial Analyses

Submission # 324

Abstract

We present a probe-based interface for the exploration of the results of a geospatial simulation of urban

growth. Because our interface allows the user great freedom in how they choose to define regions-of-interest

to examine and compare, the classic geospatial analytic issue known as the modifiable areal unit problem

(MAUP) quickly arises. The user may delineate regions with unseen differences that can affect the fairness of

the comparisons made between them. To alleviate this problem, our interface first alerts the user if it detects

any potential unfairness between regions when they are selected for comparison. It then presents the

dimensions with potential problematic outliers to the user for evaluation. Finally, it provides a number of

semi-automated tools to assist the user in correcting their regions’ boundaries to minimize the inequalities

they feel could significantly impact their comparisons.

Categories and Subject Descriptors (according to ACM CCS): Categories and Subject Descriptors (according to

ACM CCS): I.3.8 [Computer Graphics]: Applications; I.6.6 [Simulation and Modeling] Simulation Output

Analysis

1. Introduction

Our application seeks to present the results of an urban

growth simulation to policy analysts, urban planners, etc.

such that they can analyze historical growth patterns,

examine predicted trends, and compare the characteristics

of development between different regions. We provide the

user with the ability to probe the map-based data via

selecting regions of any size and shape, resulting in

coordinated visualizations reflecting those regions-of-

interest, and to directly compare these regions-of-interest

with each other.

However, by giving the user this freedom to select

regions at such a wide range of shapes and sizes, we

inadvertently make their analyses particularly vulnerable to

unforeseen inequalities between regions being compared.

For example, household level data, such as income or

population, is aggregated into blocks to protect privacy.

Depending on how one defines new regions cutting through

these blocks, one can find different average values for the

same locations. This is part of the long standing problem

in the field of geography and spatial analysis, known as the

modifiable areal unit problem (MAUP). Probe-based

interaction is particularly prone to being effected by MAUP

due to the inherent variability in areal units.

 This prevalence of the MAUP in our application is

compounded by the fact that the target audience does not

necessarily have expert knowledge regarding all the

“behind the scenes” data layers that have gone into guiding

and dictating the underlying simulation’s behavior. For

example, a policy analyst may understand the zoning

limitations that constrain growth in a particular area, but is

unlikely to understand the geologic barriers to construction

in the same region, i.e. soil suitability and parcel slope.

To help alleviate the effects of the MAUP in our

application, we have provided a number of enhancements

to the previously available probe-based interface elements.

First, when the user selects multiple regions to directly

compare against each other, we evaluate the statistical

distributions within the various dimensions and look for

outliers with deviations that have the potential to be

particularly problematic in the final analyses. When these

are detected, we alert the user to them and provide an

overview of the possible inequalities in each dimension that

may affect their intended analysis. If the user decides that

any of these inequalities might have a significant negative

impact on their desired analysis, they can then choose to

adjust them using a number of provided tools. These tools

provide methods to manipulate the boundaries of regions to

assimilate and discard land coverage types, grow and

2 Submission #324 / Alleviating the Modifiable Areal Unit Problem

submitted to Eurographics/ IEEE-VGTC Symposium on Visualization (2010)

shrink in advantageous directions, and trade area amongst

themselves to attempt to bring their disparities within the

user’s selected bounds.

We illustrate the usefulness of these enhancements

with an example scenario in which the analysis of urban

sprawl growth patterns for a number of suburbs around a

major metropolitan area is complicated by predefined city

boundaries containing disproportionate amounts of water

and protected land, which the underlying simulation

specifically ignore.

2. Related work

The modifiable areal unit problem (MAUP) is a long

standing, unsolved problem in geography sciences. It

refers to the fact that when point data is aggregated into

areal units, the variation in how the units, or regions, are

delineated can cause significant variation in the aggregated

values at any point. The issue itself has been long known,

but the term MAUP was coined and the problem described

in detail by Openshaw [Ope84]. It is primarily studied in

regard to its effects on geospatial analyses of aggregated

data in the field of socio-economics, politics, and

epidemiology. [FW91] [OA99] [Arm95]

Traditionally, the MAUP is split into two components.

The first, the scale problem, relates the choice in the

number of regions being compared to its effects on the

variation in the results of numerical analysis between those

regions, especially when the source data was initially

aggregated at a different resolution. We do not address this

component in our system, as in our case, it is more of an

issue with how the underlying datasets are generated from

data at different granularities. (More on this in Section 4)

Further, to address its slight appearance on the interaction

side, it would require drastic changes to the user’s freedom

to select and compare any number of regions in an

explorative manner. This is more applicable to situations in

which the map’s area is completely distributed into non-

overlapping, space-filling regions, and not the disconnected

and sparsely covering region selections commonly made in

our probe-based interface. However, in the future, it might

be worth considering the addition of automatic “split

region” and “combine regions” behaviors if a sufficiently

elegant method is devised to ensure these actions to not

compromise the user’s analytical tasks.

In this paper, we are primarily concerned with the

second component of the MAUP, the aggregation problem.

This problem relates the choice of where and how

boundary lines are drawn between regions to the effect on

variation in the resulting values for numerical analysis

within those regions. An good example of this problem

arises when working with census derived data. Due to

privacy concerns, the individual household point data is

never revealed. Instead, average values are given for

“census blocks”, which can be apartment complexes, city

blocks, or arbitrary delineations of rural tracts of land. The

choice in how to delineate these blocks has a direct and

significant impact on the aggregated values. If the

individual point data was instead aggregated into regions

delineated by different methods, say a regular grid, or by

postal code, the values available at any particular point on

the map point would likely show significant variation from

the “census block” method. Thus, the MAUP problem is

closely related to another often encountered problem in

geography, the ecological fallacy, which states that it is

wrong to make inferences as to the values of individuals in

a region based on the aggregated values of that region.

Research into the MAUP problem in geospatial

analysis fields tends to focus on either understanding the

variance or error that can be generated through different

scales and aggregations so as to understand the effects that

the MAUP can have on analyses performed on the

aggregated data [CHC95], or on developing methods to

calculate optimal aggregation zones [Nak98]. In contrast,

we are interested in monitoring the ways the user chooses

to define their own areal units, and then figuring out if

these delineations could produce misleading results based

on the differences across multiple dimensions.

One of the most important differences between the

MAUP situations commonly encountered in probe-based

interfaces and those studied in the geospatial analysis field

is that the MAUP research in the geospatial analysis field

seems to focus primarily on space-filling regions that cover

the map’s entire extent, and share boundaries. While we do

provide tools to deal with these conditions, we are

primarily concerned with the disjunct regions, with large

areas of unselected land, that are more common to our

probe-based interaction. These have more room to grow,

and adjustments of multiple regions are rarely zero-sum

cases.

To the best of our knowledge there have been no

similar visualization systems that attempt to find and alert

users to potentially misleading dimensional inequalities

between regions-of-interest being compared, and provide

tools for the semi-automated adjustment of these

questionable regions.

This application represents the next generation of

probe-based interface, and the first to be released into the

hands of actual end users. The considerations and tools for

handling the MAUP detailed in this paper are one of the

major new features that improve upon the original probe-

based interaction groundwork [BDW*08]. We believe

these improvements significantly strengthen the

technique’s power for geospatial analysis.

3. Application

In this section we describe our application, its background

and basic functionality, as well as detailed descriptions of

the MAUP overview and adjustment panels.

3.1 Background

Our application is the Urban Growth Decision Support

System. It is designed to provide a highly interactive

interface for policy makers, urban planners, etc. to explore

and analyze both 30 years of historical urban growth and 25

years of predicted future growth. It focuses on a 240 km

 Submission #324 / Alleviating the Modifiable Areal Unit Problem 3

submitted to Eurographics/ IEEE-VGTC Symposium on Visualization (2010)

(150 miles) wide region around a major metropolitan area

characterized by significant urban sprawl.

Satellite imagery was used to classify historical land

coverage as developed or undeveloped (e.g. natural

vegetation versus impervious surfaces). Protected lands

such as forests and parks were recorded as well. The

currently remaining undeveloped land was then ranked by

its attractiveness to new development. This was done by

considering positive factors, e.g. distance to major

employment centers, percentage of surrounding parcels

already developed, and established infrastructure such as

road density, as well as negative factors, e.g. slope of

terrain. Then, by using forecasts of population growth for

each region, and knowing how much land is used per

person in each type of area (i.e. high density urban core,

suburban fringe, etc), the appropriate amount of land was

converted from undeveloped to developed for that

particular time step, and the model was recalculated for the

next time step. The results of this simulation process are

highly detailed land coverage maps for multiple time steps

ranging from 1976 to 2030.

The application was designed to run on a desktop for

standard single-analyst usage, a laptop with projector for

presentations to policy makers in the field, as well as on our

multi-touch table for simultaneous collaborative use

between multiple analysts and domain experts. A sample

view of the application being used is shown in Figure 1.

Figure 1: An example workspace in our application.

3.2 Probe creation

As a probe-based interface, the primary direct interaction

with the map (aside from navigation) is to define regions-

of-interest, which spawns coordinated probe interfaces

allowing the analyst to examine the data within the

associated region with a number of different visualizations.

In our application we provide a wide variety of methods for

selecting regions-of-interest. The most basic, and free

form, methods are the ability to lasso or circle a region of

any shape or size, or to “paint” region masks directly onto

the map, using either the mouse or the users fingers (when

run on a touch table). We also allow the user to select

using the wide array of vector data commonly available

from government geography databases. The user can thus

select a variety of predefined regions, such as school

districts, city boundaries, voting districts, counties, water

sheds, as well as combinations thereof.

This wide assortment of selection methods available

provides great freedom in how the user can query the data,

but it also exacerbates the MAUP which inherently arises

in this type of analytical situation.

3.3 Comparisons

After the user has selected multiple regions-of-interest,

each spawning its associated probe-interface, they can

choose to combine these interfaces with each other to form

comparison interfaces. In these interfaces, the

visualizations pull the data from the individual regions-of-

interest and plot it directly against each other. Upon the

creation of a comparison interface, we calculate the

statistical distribution of the regions across all relevant

dimensions. If we determine that any of the regions being

compared are potentially significant outliers within a

particular dimension, then we alert the user by displaying a

large flashing exclamation mark on that comparison

window’s toolbar.

3.4 MAUP overview panel

From within a comparison interface, pressing the MAUP

interface icon switches the interface to the MAUP overview

panel. The purpose of this panel is to allow the user to

evaluate any potentially problematic inequalities and

choose which to take corrective action upon.

In the MAUP overview panel, each dimension has its

own one-dimensional plot and action button, as shown in

Figure 2. The plot itself is centered at the mean value for

the dimension and expands three standard deviations above

and below the mean on each side. Each region being

compared is then plotted as a vertical line color coded to

match the region. Regions beyond three standard

deviations of the mean are plotted at the appropriate end of

the plot. We highlight any regions that were determined to

be outliers with a yellow indicator above the plot, as well as

automatically selecting that dimension for corrective

action. Under each dimension’s plot, there is a

scale/measuring tool that allows the user to drag across the

plot to quickly measure the actual range of values across a

cluster of regions, as well as the actual value by which

outliers deviate from these clusters.

Figure 2: An example plot from the overview panel

showing the distribution of eight regions in terms of

average income. Notice that the green region has been

flagged as an potentially problematic outlier, and that the

user has measured how far it deviates from the upper end

of the main cluster.

4 Submission #324 / Alleviating the Modifiable Areal Unit Problem

submitted to Eurographics/ IEEE-VGTC Symposium on Visualization (2010)

One shortcoming of this technique is that there is a

limit to how many regions can differentiated from each

other with any color coding scheme. There are only so

many distinctive colors, and after about ten regions, it

becomes hard to distinguish which lines correspond to

which regions. This can be overcome by labeling or

highlighting the region on the map upon selection.

Upon entering the MAUP overview panel, the user

can quickly assess the situation by viewing the highlighted

dimensions with potentially problematic outliers and

choose whether to either accept the suggested and

automatically selected dimensions, or select and deselect

dimensions at will. In practice, the user will rarely want to

simply accept all of the suggested selections, as they are

usually interested in looking at the differences between

regions in at least one dimension. At this point, pressing

the “Adjust selected dimensions” button transfers the user

and any selected dimensions to the MAUP adjustment

panel.

Figure 3: An example view of the MAUP overview panel.

3.5 MAUP adjustment panel

In the MAUP adjustment panel, each dimension that was

selected in the MAUP overview panel is once again

presented as a one-dimensional plot of the statistical

distribution of the regions being compared. However, now

the purpose of this graph is to adjust min and max values

for the boundaries as targets to be used during the region

adjustment procedures.

The user can move the ends of the selection box to

correspond with existing or desired cluster boundaries. The

actual value range within the proposed cluster is presented

below the plot. A target value is also indicated by a

upward pointing green triangle. Outliers outside the

desired cluster boundaries are those that the adjustment

algorithms will adjust until they either reach it, get as close

as possible, or fall within the cluster boundary, depending

on which adjustment method is being used.

Once the desired boundaries are set for each

dimension, the user can choose from an assortment of

adjustment tools, which are enabled or disabled based on

the dimensions that have been selected for adjustment.

Figure 4: An example view of the MAUP adjustment panel.

Before adjustments are initiated, the user has the

opportunity to use the region-of-interest selection tools to

create constraints around regions, which they will not be

allowed to grow beyond. For example, as shown in Figure

6, one might want to adjust the boundaries of local political

jurisdictions which must always remain a subset of a larger

political jurisdiction.

Figure 5: Before and after an add area adjustment of a city

boundary (orange) within a constraint (thick black line) set

for the county boundary that the city must remain inside.

The first, and most simple, adjustments available are

“Add area” and “Remove area”. These are available for

dimensions with categorical data, such as land coverage

types, e.g. water, protected, etc. “Add area” attempts to

expand regions that are below the minimum bound

outwards into matching land types until either the target

value is reached or until there is no available land within a

reasonable distance. (“Reasonable” in this case is defined

as how far we want to allow any added, non-contiguous

regions to stray from the main region.) “Remove area”

erodes the boundaries of regions that are above the

maximum bound inwards, removing matching land types

until either the target value is reached or there is no more

available land of that particular type to remove. Both of

these methods can be easily adjusted to maintain the

existing connectivity of regions, however in practice this

greatly reduces its effectiveness and ability to reach target

values, and provides little more than an aesthetic benefit in

analyses that do not require contiguous regions.

Figure 6: Before and after a remove area adjustment is

made to remove protected wild lands (darkest green).

 Submission #324 / Alleviating the Modifiable Areal Unit Problem 5

submitted to Eurographics/ IEEE-VGTC Symposium on Visualization (2010)

The other adjustment tools are more complicated, but

are able to adjust dimensions with continuous data. The

first is “Grow / Shrink regions”, which manipulates the

boundaries of the regions both inward and outward at the

same time, in an attempt to bring their values within the

desired bounds. This is done through an iterative process

consisting of simultaneous combinations of both removing

and adding area at the edges of the regions to maximize

movement towards the desired bounds while not exceeding

the bounds set on other dimensions. The process completes

when either the values for the selected dimensions fall

within the desired bounds, or no more possible progress is

achievable, e.g. no appropriate area is left available for

removal. When using this tool, regions can both initially

overlap as well as overlap after adjustments are made. If

overlapping results are not desirable, regions can be

prohibited from growing into each other.

Figure 7: A grow/shrink adjustment of four regions to

bring the population of each to be within ~1000 people of

the mean. Above are the original predefined city

boundaries and below are the results of the adjustment.

The final adjustment available here, “Trade area”, is

the most complicated. It is used to adjust border-sharing

and space-filling regions, such as political jurisdictions,

which cannot overlap and must collectively cover a certain

area completely, as opposed to the collections of disjunct

and overlapping regions adjustable by the previous

methods. It behaves much like the “Grow / Shrink

regions”, in that it attempts to both grow and shrink

portions of regions’ boundaries to bring values for selected

dimensions within the desired ranges, but now it considers

the costs and benefits of each boundary adjustment to the

regions of each side of the boundary. Thus it is actually

weighing the benefits of trading bits and pieces of area

between the regions. It iteratively executes the most

advantageous trades of area between regions, redrawing the

boundaries of multiple regions in the process, until it

achieves its goal or runs out of valid adjustments.

Figure 8: Before and after a trade area adjustment of two

regions to make their populations equal. The thick black

line is a constraint used to force the regions to stay within

their non-shared boundaries.

Careful consideration is still required by the user as to

choosing which dimensions to adjust, target bounds, and

adjustment methods. However, the MAUP helper panel

attempts to assist the user in making these choices through

both helpful intuitive visualizations and enabling only those

adjustment methods relevant for the selected dimensions.

4. Implementation

Our software accepts two main types of data. The first is

vector data that is used to provide both reference, e.g.

roads, city names, as well as semi-automated assisted

selection techniques, e.g. “select city bounds.” We utilize

the ESRI shapefile format for this type of data, as it is

widely supported among all of our GIS collaborators.

The second data type is raster based data layers, in .tif

format. These raster images provide the raw data for our

application, such as land coverage and demographic

information. For most variables, conversion from existing

GIS formats to our raster based format is fairly

straightforward. However, for many household based

demographic variables, such as median income,

consideration must be made with regard to ensuring the

most accurate distribution of aggregate data to individual

pixels, so as to minimize ecological fallacy effects.

In creating our population maps, for example, instead

of merely dividing the population of a census block by the

number of pixels within it to get a population value for

each pixel, we utilized supplementary data, including

satellite imagery, to perform dasymetric mapping. In this

manner, if a census block contains farmland as well as an

urbanized area, the pixels in the urbanized area would

contain the majority of the population, while the farmland

areas with no impervious surfaces would have near zero

population values. This was very important for our

application, where users are interested in the differences

between developed and undeveloped areas, and can select

their own regions cutting through census blocks.

The interface is written in C++ and uses OpenGL for

all onscreen graphics. OpenCV [OCV09] is used to

perform all image processing operations (erosion, dilation,

etc.).

6 Submission #324 / Alleviating the Modifiable Areal Unit Problem

submitted to Eurographics/ IEEE-VGTC Symposium on Visualization (2010)

4.1 Statistical evaluation

Our statistical evaluation is quite simple, but is sufficient

for our purposes. Upon comparison interface creation, the

mean and standard deviation for each dimension is

calculated by examining the precomputed values for all

regions that are being compared. The number of standard

deviations from the mean value is used to detect outliers.

We use greater than two standard deviations from the mean

as a threshold, over which we alert the user to the detected

outlier and automatically select that dimension for

adjustment. A more rigorous statistical evaluation could

easily be substituted here if deemed necessary.

4.2 Adding and removing area

The “add area” and “remove area” functions, which

expand or contract a regions boundary to include more or

less of a particular categorical value, behave as follows:

First we generate a search mask that is used to find

candidate pixels to either add to or remove from the region.

This process is visually explained in Figure 9.

We begin by extracting a binary image mask (A)

describing what areas make up in the current region. If we

want to add area, we perform morphological dilation on

this mask, resulting in expanded mask (B). We then

generate a search mask (C), which equals (B AND (NOT

A)). The search mask is a ring around the outside of the

original mask containing all pixels within the chosen kernel

size (more on choosing this later) of, but not within, the

original mask.

Likewise, if we want to remove area, we perform

morphological erosion on the original mask, resulting in a

shrunken mask (B). We then generate our search mask (C)

as ((NOT B) AND A). This results in a ring around the

inside of the original mask, with all pixels within the

original mask’s boundary by no more than the kernel size.

After generating our search mask, we begin examining

the pixels within individually to see if they match the

categorical type we are interested in. If we are trying to

add area, these pixels are set as true in our original mask

defining the region. If we are removing area, they are set

as false in the original mask. We continue this until either

the desired number of pixels has been added or removed, or

we run out of candidate pixels in the search mask. In the

former case, we are done adjusting the region. In the latter

case, we repeat the process, generating a new, further

reaching, search mask.

After generating our search mask, we begin examining

the pixels within individually to see if they match the

categorical type we are interested in. If we are trying to

add area, these pixels are set as true in our original mask

defining the region. If we are removing area, they are set

as false in the original mask. We continue this until either

the desired number of pixels has been added or removed, or

we run out of candidate pixels in the search mask. In the

former case, we are done adjusting the region. In the latter

case, we repeat the process, generating a new, further

reaching, search mask.

(a) (b)

(c) (d)

(e) (f)

Figure 9: The process of calculating search masks for

adding or removing area from a region. (a) is the region-

of-interest to be adjusted on the map, (b) is the binary

image mask for the area inside this region, (c) is the dilated

mask, (d) is the eroded mask, (e) is the dilation search

mask, and (f) is the erosion search mask. Notice that (e) =

((c) - (b)) and that (f) = ((b) - (d)).

Aside from achieving our target goal, there are two

other stopping conditions: When removing area, we stop if

there are no longer any new candidate pixels being

generated, i.e. all possible pixels that can be removed have

been removed. When adding area, we stop if a certain

number of dilations have failed to unearth any candidate

pixels that match our specific categorical type. The number

of fruitless dilations dictates how far away new disjunct

regions can stray from the original region.

The choice of kernel size for these morphological

operations is a tradeoff between speed (less iterations

required) and even growth (or reduction) patterns. Larger

kernel sizes have a tendency to provide more candidate

pixels than needed. The algorithm converts candidate

pixels in a scanning pattern from the top left, and so this

can result in growth mostly in the northern direction when

kernel sizes are too large. Lower kernel sizes ensure that

multiple concentric rings of candidates will be evaluated,

resulting in a more even, outward growth. We have found

a 7x7 kernel to be a good balance. By using a 3x3 kernel

one can ensure that only those pixels that are directly

connected to the edges of the region will be added or

removed, and hence no new disconnected islands or holes

will be generated.

4.3 Growing and shrinking regions

The “grow and shrink regions” function attempts to

automatically augment the size and shape of regions,

 Submission #324 / Alleviating the Modifiable Areal Unit Problem 7

submitted to Eurographics/ IEEE-VGTC Symposium on Visualization (2010)

independently of each other, in order to adjust outlying

values in selected dimensions to be within the specified

value range. Each region is checked to see if it has at least

one value outside the desired range in any of the

dimensions selected for adjustment. If so, we attempt to

adjust this region, then move on to evaluate the next region.

The adjustment process for individual regions, which

is visually explained in Figure 10, begins with the

generation of search masks from both dilation and erosion

operations on the region’s mask, as detailed in Section 4.2.

Now that we have these two masks, which form rings both

inside and outside of the region’s current boundary, we cut

these masks up into a number of candidate sub-masks.

This is done by finding the center of the region, and then

generating a number of “pie slice” shaped masks emanating

outwards from the center point (using OpenCV’s cvEllipse

function). We then generate our collection of candidate

adjustment masks by computing the binary AND of each

slice mask and the erosion and dilation masks. If it is

desirable to restrict regions from growing into each other,

the other regions’ masks can be subtracted from the

candidate masks.

The number of slices to cut the original erosion and

dilation masks into is a tradeoff between speed of

computation and accuracy. By making too few, and thus

larger, slices, the regions are very restricted in their choice

of growth directions, will not add or remove area as

efficiently, and are less likely to reach their dimensional

value goals. A reasonable solution is to choose a number

of slices based on the current size of the region. Small

regions (< 3km wide) may require as few as eight slices for

sufficiently pleasing results, while larger regions (~30km

wide) can benefit from as many as 30-40 slices. Another

option here is to vary the number of slices on each pass, as

the size of the region changes. By varying the number of

slices in each pass, one also lessens the chance of unnatural

looking radial patterns.

All non-zero candidate masks are processed as

temporary regions-of-interest and evaluated to determine

the values it contains for each dimension of interest. The

temporary region-of-interest and mask are discarded, and

the values are stored in a candidate adjustment object along

with details including which operation type (erosion or

dilation) and slice number was applied to generate it.

After all candidate masks are processed into a list of

candidate adjustments, they are sorted in descending order

according to the progress they would make in bringing the

values for the dimensions that still need adjustment within

their desired ranges. We then choose a subset of this list by

starting at the top and evaluating if the adjustments would

result in the region moving outside any of the bounds for

the other dimensions, or overshooting our target values. By

deciding how far down the list to evaluate on each pass, we

can make a tradeoff between speed and optimum results.

Selecting only the single best adjustment from the list

results in only the locally optimal choice being made on

each pass. Conversely, selecting all valid adjustments

produces quick results, but they may be far from the

optimal solution.

(a) (b)

(c)

(d) (e)

(f) (g)

Figure 10: The process of creating candidate adjustment

masks. (a) & (b) are the dilation and erosion search masks

generated as in Figure 1. (c) is a sample of one of the many

slice masks that are used to divide up the search masks. (d)

& (e) show the slice mask superimposed on each search

mask to show the Boolean operations. (f) & (g) are the

resulting masks, representing candidate adjustments.

Once a subset of adjustments has been selected, we

redraw two new slice masks, one containing all the slices

that correspond to selected adjustments that were erosions,

and one for the selected dilation slices. We AND these

slice masks with the corresponding erosion and dilation

masks. The resulting sliced erosion mask is then used to

remove pixels from the regions mask, then the sliced

dilation mask is used to add pixels to the regions mask.

This whole process repeats itself until either the values

for the selected dimensions are all within their desired

boundaries, or no candidate adjustments are found to be

acceptable, and thus there are no more adjustments that can

be made. In the latter case, a refinement can be made

which increases the number of slices and searches again,

with the candidate areas now of smaller area.

4.4 Trading area

The trade area function is similar to the “grow and shrink

regions” function, but instead of adjusting the regions

independently of each other, it adjusts regions with respect

to each other. This is used for cases where regions border

each other, and the user does not want them to overlap, but

is willing to allow the boundary between them to move.

8 Submission #324 / Alleviating the Modifiable Areal Unit Problem

submitted to Eurographics/ IEEE-VGTC Symposium on Visualization (2010)

To accomplish the adjustment of multiple regions at

once we use a modified greedy algorithm. Our solution

makes the optimal choices on each pass but does not

guarantee the best possible solution. It can however be fast

enough to return results within a short enough amount of

time (< 5 minutes) to maintain interactivity, whereas

finding the optimal solution could take hours. It is merely

a proof of concept implementation at this point, and future

work must be done to make this adjustment as efficient and

effective as possible.

We begin by generating a list of candidate adjustments

in the manner described in Section 4.3, but this time we

generate them for each region. We also now record not

only the effects the adjustment would have on the region it

was generated from, but also its converse effect on any

other regions that either currently contain, or are proposed

to contain it.

For each region and dimension that needs adjustment,

we sort the list by how far the adjustments would move the

outlying value into the desired bounds. We then start at the

top of the list and look for adjustments that are

advantageous (they move the value towards the target) and

do not bring the values in other dimensions outside those

bounds. Matching candidate adjustments have a preference

value incremented each time they are chosen to be made by

a region or dimension.

After all regions and their dimensions have been

considered, we sort the list by preference value. We

execute the top N adjustments from this list as long as they

have a preference value of at least one. The choice of N,

how many of the top requested adjustments to make, is

another trade-off between speed and how close the results

with be to the optimal solution. We like a value of 5% of

the total number of candidate adjustments, but have used

different values with varied success across situations.

When executing the top N adjustments, we follow the

same process as in Section 4.3. However, when using these

sliced dilation and erosion masks, we not only add or

remove the pixels from the region the mask was generated

from, but perform the opposite operation on the same pixels

in the neighboring region. In this manner, area/pixels are

not gained nor lost, but instead transferred between regions.

Once the adjustments are complete, we check to see if

any regions still have values outside the desired bounds, if

not then we are finished. If so, then we make another pass.

If another pass results in no acceptable candidate

adjustments, we can either stop, or increase the number of

slices per region in an attempt to find smaller valid

adjustments on another pass.

5. Scenario

In this example scenario, the analyst’s goal is to compare

the growth patterns, both historical and predicted, for a

number of cities, and clusters of smaller cities, that are all

suburbs of a major metropolitan area. The analyst wants to

examine the relationship between the amounts of land that

change to developed with each time step, and during what

times development rates peaked, for each region relative to

the others. As shown in Figure 11, they have selected

regions-of-interest using the city selection tool. However,

some of the regions contain significant amounts of water,

and others significant amounts of protected land. The

simulation is programmed to ignore both of these land-

cover types, and they will never get developed. Their

presence can cause misleading results for analyses or

visualizations that rely on ratios involving developing land.

This effect can be seen in the “land use pies” visualization

shown in Figure 12, where water (blue) and protected land

(dark green) slices squeeze the developed and undeveloped

land slices into remaining degrees of the circle. Comparing

the angles between regions to see the relative amounts of

growth that occurred in each time step is now misleading.

The same amount of growth will appear smaller in the

region with excess water.

The user is alerted by the flashing MAUP alert icon,

and enters the MAUP overview panel. Here, as shown in

Figure 13, the footprint (land developed per person), road

density, undeveloped, protected, and water dimensions

have been automatically selected due to outliers being

detected within them. Not concerned with footprint or road

density, the user unselects those dimensions. The user also

unselects the undeveloped dimension, as the variations

within that dimension are one of the aspects of the data

they are interested in.

 The user advances to the MAUP adjustment

panel. As shown in Figure 14, they set the target bounds

for each dimension around the regions with the least

amounts of water and protected land. They then select the

“remove area” tool to bring the other regions within those

bounds. Figure 15 shows the water and protected space

being removed from the regions with excesses. Finally,

Figure 16 shows the pie charts, now free of the misleading

distortions from excess water and protected land.

Figure 11: The selected regions in the example scenario.

 Submission #324 / Alleviating the Modifiable Areal Unit Problem 9

submitted to Eurographics/ IEEE-VGTC Symposium on Visualization (2010)

Figure 12: Pie charts of the amounts of land developed

over each time step Notice the amount of water in the 7th

region and protected land (darkest green) in the 3rd region.

Figure 13: The MAUP overview panel from the scenario.

Figure 14: The MAUP adjustment panel from the scenario.

Figure 15: Regions before (left) and after (right) the

adjustments made in the example scenario. Notice the

removal of water (top) and protected land (bottom).

Figure 16: The same pie charts as in Figure 12 after

adjustment to remove excess water and protected land.

5. Future Work

As identified in the related work section, we could attempt

to address the “scale problem” component of the MAUP

through the introduction of tools to split and combine

regions-of-interest. This would require a more thorough

understanding of how much modification of the user’s

analysis is tolerable. For example, the current model lets

the user ask and answer questions such as “How are areas

A, B, and C like area D?”, whereas a split operation might

turn this into “How are areas A, B, and C like these

similarly sized subsets of area D?”

 It is also worth examining the processes our

collaborators use to de-aggregate data into our raster based

input. This is an area in which both the scale component of

the MAUP and the ecological fallacy are of supreme

concern, as all analyses done within the interface rely on

the accuracy of the underlying maps. This has been studied

in spatial analysis literature, but there may be specific

concerns or loopholes related to our particular usage of the

derived rasters.

As noted in Section 4.4, our proof-of-concept “trade

area” adjustment algorithm has much room for

improvement. We hope to bring in collaborators with

image processing and geography backgrounds to help

improve both the speed and effectiveness of our current

technique.

6. Conclusion

We have explored the origins of the modifiable areal unit

problem (MAUP), and based on these understandings we

have identified the ways in which probe-based geospatial

applications are particularly susceptible to the MAUP. The

user can probe the data by selecting their own regions-of-

interest using a wide range of selection tools operating at a

range of scales. When combined with the underlying

raster-mapped data, generated from sources with different

aggregation scales, the opportunities for the MAUP to

affect the user’s analysis are infinite.

While we cannot easily solve the MAUP, we can plan

for its appearance in our geospatial analysis applications.

By alerting the user to any potential issues with the

regions-of-interest they select to compare, we remove much

of the possibility that the comparisons they make will be

misleading or misinterpreted. Simple visualizations can

provide quick indication of outliers in the distributions,

allowing one to see at a glance what dimensions might

become problematic in their analyses. Finally, by

providing semi-automated tools to help the user understand

these inequalities, and then correct their selections, we

minimize the impact of these unintended problems that are

inherent to probe-based interfaces, with their great freedom

in region-of-interest selection choices.

10 Submission #324 / Alleviating the Modifiable Areal Unit Problem

submitted to Eurographics/ IEEE-VGTC Symposium on Visualization (2010)

References

[Arm95] C. Armhein. “Searching for the Elusive

Aggregation Effect: Evidence from Statistical Simulations”

Environment & Planning A, vol. 27, pp 105-120. 1995

[BDW*08] Thomas Butkiewicz, Wenwen Dou, Zachary

Wartell, William Ribarsky, and Remco Chang. “Multi-

Focused Geospatial Analysis Using Probes” InfoVis 2008 /

IEEE Transactions on Visualization and Computer

Graphics (TVCG) vol. 14, no 6. pp. 1165-1172, Nov/Dec,

2008.

[CHC95] S.L. Cutter, D. Holm, and L. Clark. “The role of

geographic scale in monitoring environmental justice” Risk

Analysis, vol. 16, no. 4, pp 517-525, 1995.

[FW91] A. S. Fotheringham and D.W.S. Wong. “The

modifiable areal unit problem in statistical analysis”

Environment and Planning A, vol. 23, pp 1025-1044. 1991.

[Nak98] Tomoki Nakaya. “An Information Statistical

Approach to the Modifiable Areal Unit Problem in

Incidence Rate Maps” Environment and Planning A, vol.

32, pp 91-109, 2000.

[Ope84] Stan Openshaw. “The Modifiable Areal Unit

Problem” Concepts and techniques in modern geography,

issue 38, Geo Books, 1984.

[OA99] Stan Openshaw, Seraphim Alvandies. “Applying

Geocomputation to the analysis of spatial distributions.” In

Geographic Information Systems: Principals and Technical

Issues. vol. 1, 2nd ed., 1999.

[OCV09] Open Computer Vision Library

http:/sourceforge.net/projects/opencvlibrary/

