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Abstract
We investigate semi-stochastic tilings based on Wang or corner tiles for the real-time synthesis of example-based
textures. In particular, we propose two new tiling approaches: (1) to replace stochastic tilings with pseudo-random
tilings based on the Halton low-discrepancy sequence, and (2) to allow the controllable generation of tilings based
on a user-provided probability distribution. Our first method prevents local repetition of texture content as common
with stochastic approaches and yields better results with smaller sets of utilized tiles. Our second method allows
to directly influence the synthesis result which—in combination with an enhanced tile construction method that
merges multiple source textures—extends synthesis tasks to globally-varying textures. We show that both methods
can be implemented very efficiently in connection with tile-based texture mapping and also present a general rule
that allows to significantly reduce resulting tile sets.

1. Introduction

Creating rich and complex content is a major problem

in computer graphics, especially in interactive applications

where large amounts of content have to be produced very

quickly and from limited data. Tile-based methods mitigate

this problem by synthesizing large amounts of content out of

a much smaller data set of tiles by generating a valid tiling.

For example-based texture synthesis, tilings based on square

Wang tiles with colored edges or, preferably, square corner
tiles with colored corners have proven particularly useful.

Once a set of carefully constructed tiles has been generated

from a provided input texture, arbitrary amounts of this in-

put texture can be produced at runtime in connection with

tile-based texture mapping.

So far, research has only focused on tilings of stochas-

tic nature which suffer from two unsolved problems. First,

they are prone to local repetition artifacts as the random dis-

tribution of tile edge or corner colors often leads to notice-

able clusters of tiles showing identical content (cf. Figure 5).

And second, they are limited to homogeneous (stationary)

textures as tiles are constructed only from a single input tex-

ture and are then distributed merely in a random i.e. in an

uncontrolled way. In this paper, we propose two new tiling

methods that solve these problems.

We show that the mentioned repetition artifacts can be

minimized by our first method which replaces the stochas-

tic distribution of tile colors with a pseudo-random distribu-

tion that is more uniform in the sense that it is less probable

that neighboring tile edges or corners are of the same color

(and hence represent the same content). Our method is based

on the Halton low-discrepancy sequence which we utilize to

pseudo-randomly enumerate the integer lattice and then as-

sign colors to each edge or corner on the basis of these enu-

meration indices. At the same time, it allows random access

to tiles which is important to maintain runtime synthesis in

combination with tile-based texture mapping.

The limitation of stochastic tilings to stationary texture

synthesis can be lifted by our second method which gener-

alizes the tiling process by allowing the user to control the

distribution of tiles. Tilings are derived from a user-specified

color probability function which defines the probability for

each edge or corner color at each point in the tiling space.

We assign related but different textures to each color and

construct tiles in a way that each texture content is repre-

sented equally in the resulting tile set. Since the controlled

distribution of colors directly translates to the distribution of

associated texture content, this strategy extends texture syn-

thesis to globally-varying textures. Analyzing the underlying

probability distribution with respect to occurring color com-

binations also allows us to significantly reduce the size of

resulting tile sets.
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2. Related Work

Tile-based methods have been applied to a variety of

synthesis problems, among them the synthesis of tex-

tures [Sta97,CSHD03,NWT∗05,LD06a], point distributions

[KCODL06, Ost07], and volume data [LEQ∗07, PGMG09].

A comprehensive overview can be found in [LKF∗08] and

a general introduction to tilings in [GS86]. For a good

overview over the broad field of example-based texture syn-

thesis we refer to [WLKT09].

Tile-based texture synthesis was first considered by

Stam [Sta97] and later extended to example-based tex-

ture synthesis in [CSHD03, NWT∗05, LD06a]. Cohen et

al. [CSHD03] merged different patches of an input texture

by constructing Wang tiles in correspondence to their edge

colors and presented a first stochastic tiling algorithm which

places tiles in scanline order. Wei [Wei04] and Lagae and

Dutré [LD06a] improved this algorithm by allowing ran-

dom access to tiles which is important for tile-based texture

mapping [LN03, Lef08]. Fu and Leung [FL05] extended the

tiling mechanism to arbitrary surfaces. Still, all of these ap-

proaches only generated stochastic tilings.

Cohen et al. [CSHD03] were also the first to consider

tile construction from multiple input textures in order to

generate non-stationary (globally-varying) results but still

only in a stochastic way. Example-based texture synthe-

sis of non-stationary characteristic was also considered by

several non-tile-based approaches [Ash01, MZD05] which,

however, do not allow runtime synthesis comparable to the

performance of tile-based texture mapping. The idea of con-

trolling tilings based on a probability distribution was con-

sidered for manually created textures or small patterns (tex-

tons) by [NC99, LN03] and for volume illustrations by Lu

et al. [LEQ∗07], but none of these techniques directly trans-

lates to example-based texture synthesis.

The problem of a more uniform distribution of colors

also roughly parallels problems in vector error diffusion

[SAFS99], color filter array design [Con09], or multi-class

Poisson disk sampling [Wei09] but these solutions do not al-

low local evaluation as needed by our application scenario.

3. Our Tiling Methods

Before we introduce two new tiling methods, let us briefly

recapitulate the necessary background on valid tilings based

on Wang or corner tiles. We also formulate a basic function

which captures such tiling methods in general.

3.1. Valid Tilings

Wang tiles are unit square tiles with colored edges [Wan61].

Since Wang tiles only enforce continuity with their horizon-

tal and vertical but not their diagonal neighbors, continuity

problems near tile corners may cause artifacts in synthesized

signals, a problem commonly known as the corner problem.

(x+1, y)

(x+1, y+1)

(x, y)

(x, y+1)

Figure 1: Tilings based on corner tiles may be evaluated lo-
cally by assigning colors to an underlying integer lattice and
then deriving the tile from the resulting color combination.

For this reason, corner tiles were proposed as an alterna-

tive to Wang tiles [NWT∗05, LD06a]. Corner tiles are unit

square tiles with colored corners that enforce continuity with

all their neighbors, and are stricter than Wang tiles in the

sense that every set of corner tiles can be transformed into

an equivalent Wang tile set, while the converse is not true.

For these reasons, the remainder of this paper concentrates

on corner tiles even though both of our tiling methods can

be used with Wang tiles as well.

Let T be a finite set of corner tiles and let C =
{0,1, . . . ,C − 1} be the set of C ≥ 2 different colors in T .

As the tiles have four corners, T can contain at most C4 dif-

ferent tiles. These tiles can be uniquely identified by their

corner color combination or by a tile index i, i.e. they can be

represented by C-ary numbers with 4 digits (cj)
3
j=0 or by the

decimal integers 0,1, . . . ,C4−1. The two representations are

connected by common radix conversion, i.e.

i =
3

∑
j=0

cj(i)C
j

and cj = (i/C j) mod C (1)

for 0 ≤ j ≤ 3.

We now consider tilings of the plane in which tiles are

placed on the integer lattice points with their edges axis-

aligned, so that they partition the plane. The tiles may not

be rotated. A given tiling is valid if tile corners have match-

ing colors everywhere.

A straightforward way to generate a valid tiling is to place

tiles in scanline order, ensuring that neighboring tiles have

matching corner colors [CSHD03]. This way, however, a

tiling has to be generated in its entirety in order to evaluate a

single tile of interest. A better way is to align tile corners to

the integer lattice points which have instead been assigned a

color c ∈ C (cf. Figure 1). This way, tiles are implicitly de-

fined by the resulting corner color combinations and can be

evaluated locally [Wei04,LD06a]. This approach is captured

by a function h that maps lattice points to colors, i.e.

h : Z
2 →C. (2)

We call h the color distribution function.

Existing research can be classified as choosing h as a

stochastic hash function that returns random color values at

each lattice point, hence producing stochastic tilings.
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Figure 2: (a) The first 72 points of the scaled Halton se-
quence induce a stratification grid of size 8×9. While the se-
quence unfolds the grid cells get enumerated as indicated by
the first 10 point indices. (b) Dividing the point set (and thus
the set of grid cells) on the basis of these indices into two
halves yields two evenly distributed corner color classes.

3.2. Deterministic Tilings

However, distributing colors randomly may lead to large

clusters of corners of the same color. As typically each color

corresponds to specific texture content during tile-based syn-

thesis, these clusters lead to local repetition artifacts in the

synthesized results. We thus propose an alternative method

for distributing corner colors that avoids such large clusters

of the same corner color yet still maintains a pseudo-random

appearance. In particular, we are interested in a more uni-

form distribution of corner colors in the sense that it is less

probable that neighboring corners have identical color, and

that each class of corner colors offers a distribution of com-

parable uniformity. At the same time we want to maintain

the independent evaluation of corner colors to ensure ran-

dom access to tiles just as existing direct stochastic tiling

algorithms.

These requirements parallel the characteristic of low-

discrepancy sequences from quasi-Monte Carlo theory

which unfold incrementally in a way that a set of n points

does not have to be discarded when generating the (n+1)-th
point [Nie92]. In fact, every subset of such a sequence of-

fers good uniformity properties with respect to axis-aligned

boxes anchored at the origin. Of particular interest are

radical-inverse based low-discrepancy sequences as they ex-

hibit intrinsic stratification and as such pseudo-randomly

enumerate voxels in any dimension [Kel04]. As we are only

interested in the enumeration of the two-dimensional integer

lattice (and not the points itself) we found the unscrambled

Halton sequence sufficient for our purposes.

Tiling Method The Halton sequence [Hal60] is based on

the van der Corput radical inverse function φb which maps

integers to the unit interval by mirroring its b-adic expansion

around the radix point [Nie92], i.e.

φb(i) =
∞
∑
k=1

ak(i) ·b−k
, (3)

where ak(i) denotes the k-th digit of the integer i ∈ N0 in

base b. The two-dimensional Halton sequence then consti-

tutes as

xi =
(
φb1

(i),φb2
(i)

)
,

where the bases b1 and b2 have to be relatively prime and

are typically picked as b1 = 2 and b2 = 3.

Multiplying the resulting point coordinates by powers of

their respective bases reveals the aforementioned stratifica-

tion property. An example is shown in Figure 2(a): here the

first 72 points induce a stratification grid of size 23 × 32. In

general, the scaled Halton sequence

x′i =
(
2

n1 φ2(i),3
n2 φ3(i)

)
induces a stratification grid of size 2n1 × 3n2 where the ex-

ponents n1,n2 ∈ N0 are chosen such that the intrinsic grid is

large enough to cover a desired tiling resolution Tx ×Ty, i.e.

2n1 ≥ Tx +1 and 3n2 ≥ Ty +1.

The key observation now is that the scaled Halton points

x′i pseudo-randomly enumerate the induced grid such that

each subset of points/grid cells is of nice uniformity. Thus,

we divide the set of grid cells on the basis of the Halton point

indices i′ into C classes corresponding to the C corner colors

of a desired tiling. Figure 2(b) shows an example for C = 2

colors where the first 36 cells are assigned to color class 0

(blue) and the second 36 cells to color class 1 (green).

In general, a corner color may be derived from a Halton

point index i′ by our color distribution function h with the

mapping

h : (x,y) �→
⌊

i′

2n1 3n2
C
⌋

. (4)

Tile indices may then be derived via Equation (1).

Implementation Currently, the Halton indices i′ are de-

rived only in a “forward” manner from the original inte-

gers i and not directly from tiling grid coordinates (x,y).
This is inefficient and prevents an implementation as a frag-

ment shader for tile-based texture mapping because we have

to compute every Halton point up to the one which falls

into (x,y).

It was recently shown by Raab et al. [RGAK09, RGK10]

that there is a direct way to compute the index of the first

Halton point that falls into a specified voxel. For our two

dimensional case their findings simplify to

i′ =
(
l1 p2 m1 + l2 p1m2

)
mod

(
p1 p2

)
, (5)

where an index i′ has been decomposed into i′ = bnj
j hj + lj

and is represented by its nj least significant digits lj and its

remaining most significant digits hj with respect to base bj in

dimension j. Furthermore, p1 = 2n1 and p2 = 3n2 with m1 =
(p−1

2 ) mod p1 and m2 = (p−1
1 ) mod p2 their multiplicative
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Figure 3: Tilings of size 30× 30 for various number of corner colors. Tile borders have been removed for a better view on
the resulting color distributions. In contrast to the stochastic approach our method produces tilings without any large clusters
of corners with identical color and an overall more “even” distribution of corner colors. This also becomes evident when
considering the individual classes of colors which are depicted below each tiling.

inverse, and

l1 = φ−1
2

(
x

2n1

)
and l2 = φ−1

3

(
y

3n2

)
,

where φ−1
bj

is the inverse of (3) and reverses the digits before

putting them to the left side of the radix point. For more

details, we refer to [RGAK09].

Still, a remaining problem with (5) is that the products

l1 p2 m1 and l2 p1m2 quickly grow very large which is of

special concern for the fragment shader implementation that

typically only supports 32-bit integers. However, by using

modular arithmetic we can rewrite (5) to yield

i′ =
(

p2(l1m1 mod p1)+ p1(l2m2 mod p2)
)

mod
(

p1 p2

)
.

(6)

Since l1,m1 ≤ p1 and l2,m2 ≤ p2, the largest subtotal then

is max
(

p2
1, p2

2,2p1p2

)
which effectively pushes the limit for

tilings based on (6) to e.g. square tilings of size ≈ 46,0002

before they would start to repeat. Also note that since the

divisors in (6) are powers of the fixed primes 2 and 3, the

modulo operations may be implemented as optimized ver-

sions using bitwise operators.

Evaluation Figure 3 compares various corner color distri-

butions based on our deterministic method with distribu-

tions obtained from the stochastic tiling algorithm by La-

gae and Dutré [LD06b]. In contrast to this stochastic ap-

proach our method produces tilings without large clusters

or long streaks of corners of identical color and shows an

C Neighbors mean Neighbors std. dev.
stochastic our stochastic our

2 3.9970 3.4967 1.4142 0.5857

3 2.6653 2.1548 1.3337 0.6322

4 1.9981 1.5566 1.2241 0.6620

5 1.5981 1.1536 1.1311 0.6965

6 1.3328 0.8032 1.0536 0.6720

7 1.1421 0.6968 0.9890 0.6516

8 0.9993 0.6058 0.9350 0.6236

Table 1: Mean and standard deviation for the number of
identically colored neighbors based on tilings of various
sizes. The results for the stochastic approach are based on
the stochastic hash function from Lagae and Dutré [LD06b].

overall distribution of corners colors that is more uniform,

yet still pseudo-random. This becomes particularly evident

when considering the individual classes of colors which are

depicted below each tiling.

We also performed a quantitative analysis of the result-

ing corner color distributions where we were interested in

identifying cluster of the same corner colors. For this pur-

pose, we analyzed the local 8-neighborhood of each cor-

ner and counted the number of identically colored neigh-

bors. Table 1 lists mean and standard (RMS) deviation for

this measure based on 100 tilings of random resolutions up

to 4096 × 4096. Compared to the stochastic approach our

method consistently generates corners with fewer neighbors

of identical color at smaller variance.
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3.3. Controllable Tilings

While our deterministic method generates tilings with a

more uniform distribution of corner colors, a natural exten-

sion to the tiling process is to allow the user to control the

distribution of corner colors. As each color is associated with

specific texture content during tile-based synthesis, this re-

sults in a direct way to influence the synthesized texture.

This extends example-based synthesis to globally-varying

textures as we will show in Section 4.

The key observation is that we can control resulting tilings

by defining a random field that provides the probability for

each corner color at each point in the tiling space. To deter-

mine a corner color at a given lattice point we then simply

have to sample the discrete probability distribution at this

lattice point.

Tiling Method Assume each point x ∈ [0,1]2 is assigned a

discrete random variable Xx that can take values from our set

of colors C = {0,1, . . . ,C−1}. Let pc ≡ Pr({Xx = c}),c ∈ C
be the probability that the color c is assigned to point x. Then

the table

P :=

(
0 1 · · · C−1

p0 p1 · · · pC−1

)
,

C−1

∑
c=0

pc = 1

is the discrete probability distribution (probability mass

function) of the random variable Xx.

With this definition, the user may provide a color proba-
bility function ρ with

ρ : [0,1]2 →P ,

where P = {P : C → [0,1] | ∑C−1
c=0 pc = 1} denotes the func-

tion space of all probability mass functions. Thus, ρ assigns

each point x ∈ [0,1]2 an individual discrete distribution Px.

To derive a tiling from such a color probability function

we simply sample ρ on the basis of our regular tiling grid

and then realize the corresponding random variable. Hence,

the corresponding color distribution function h is given by

the mapping

h : (x,y) �→ X
(

ρ
( x

Tx
,

y
Ty

))
, (7)

where (x,y) are the coordinates of the corner of interest and

Tx ×Ty the desired tiling resolution. Again, tile indices may

be derived via Equation (1).

This approach is a generalization of all tiling methods as

ρ may be designed in ways that simulate either strictly deter-

ministic or pure stochastic tilings. Note that it is nevertheless

better to apply our deterministic tiling method from the pre-

vious section directly as it is independent of a probability

distribution and extends naturally to arbitrarily large tilings.

Also note that this direct tiling algorithm requires that cor-

ners shared by neighboring tiles obtain the same color de-

spite being evaluated independently. One way to ensure this

k\C 2 3 4 5 6 7 8 9

1 87.5% 61.7% 43.0% 31.0% 23.3% 18.1% 14.4% 11.7%

2 - - 76.6% 58.2% 44.8% 35.2% 28.2% 23.1%

3 - - - - 64.4% 51.2% 41.5% 34.1%

4 - - - - - - 54.1% 44.7%

Table 2: Savings both in terms of tile construction time and
memory requirement if k disjunct pairs of corner colors can
be excluded from a C-color tiling.

is to utilize the same long-period hash functions that are used

for directly generating stochastic tilings [LD06b] as a (x,y)-
dependent random number generator. This is what we did in

our implementation.

Figure 4 shows various tilings using Equation (7). The

corresponding color probability functions ρ are depicted be-

low each tiling in the form of individual distribution layers

for each corner color. Some corners share the same distri-

butions such that their occurrence is equiprobable. Note that

the probabilities sum up to 1 (white) everywhere.

Reduced Tile Sets The number of possible tiles for C cor-

ner colors is C4, so the size of tile sets grows rapidly as C
increases. This is of special concern for tile-based texture

synthesis due to the amount of associated image content. For

example, a 6-color tile set already contains 64 = 1296 tiles.

But if we know that certain combinations of corner colors

can never occur, we can significantly prune the tile set for

a given color probability function ρ. For example, in Fig-

ure 4(c) ρ is designed in a way that the four corner colors in

the upper left will never be adjacent to the two corner colors

in the lower right. Likewise, in Figure 4(d), the two corner

colors from the center will never share a tile with the two

outer corner colors. Hence, all tiles containing such mutu-

ally exclusive pairs of corner colors can be safely omitted

during generation and storage.

Identifying non-adjacent pairs of corner colors is intricate

in the case of a continuous color probability function but

simple when it is provided in discrete form where a given

probability map may be analyzed very quickly for possible

corner color combinations, for example by linearly going

through the map and keeping track of probabilities greater

than 0 in the 8-neighborhood of each pixel. Analyzing the

consequences when excluding k specific pairs of corner col-

ors, however, is non-trivial and leads to an interesting combi-

natorial problem which we solve in Appendix A. In general,

if k disjunct pairs of corner colors will never be adjacent in

a tiling based on a provided probability function ρ, only

Nk =C4 −2k(6C2 −12C−6k+13)

tiles have to be generated and stored while still allowing to

generate every possible tiling based on ρ. For a single pair

of corner colors this already results in tile set reductions of

61.7%, 43.0%, 31.0% and 23.3% for a number of corner

colors of 3, 4, 5, and 6 (cf. Table 2). For the examples in
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Figure 4: User-controlled tilings based on the color probability functions depicted below each tiling. Some corner colors share
the same probability distributions such that their occurrence is equiprobable.

Figures 4(c) and 4(d) memory requirements even reduce by

82.0% and 61.7% since disjunct pairs of corner colors are

complemented by non-disjunct pairs. Note that for interac-

tive swapping of a probability function ρ, one may dynami-

cally swap the corresponding tile sets (e.g. a combined tex-

ture in our application scenario) as well.

Efficiency Generating a controllable tiling via (7) involves

the realization of a discrete random variable at each of a tile’s

four corners. As tilings may be arbitrary large, an efficient

realization of such variables is critical for the fast generation

of tilings using our approach. However, we can perform the

necessary computations elegantly in O(1) based on Walker’s

method of “aliases” [Wal77].

This method transforms a given discrete distribution table

P into two tables U and V , each the size of P, by precomput-

ing the decision for each outcome such that the realization

of the random variable reduces to a single comparison. For

our application, this implies that we can determine each cor-

ner color in constant time, i.e. independent of the number of

corner colors.

For discrete color probability functions, the two tables can

be generated for every point in O(C) during preprocessing.

It is even possible to combine them into a single table as each

entry in the first table U actually denotes a fractional part in

[0,1] and each entry in V an integer in {0, . . . ,C − 1}, our

corner colors. Thus, each entry may be range-compressed

into a single float, keeping the table size constant.

4. Example-Based Texture Synthesis

We now demonstrate the advantages of tilings based on our

two methods in the domain of example-based texture synthe-

sis where tile-based methods are of particular interest due to

their performance in connection with tile-based texture map-

ping. In this context, individual tiles are constructed from a

provided source texture and then get arranged by the tiling

algorithm to produce the output texture.

Tile Construction Corner tiles are usually constructed by

randomly choosing C patches from a single source texture

and arranging them for every tile according to its corner

color combination [NWT∗05, LD06a] (also cf. Figure 6(a)).

Hence, there is a direct connection between corner colors

and the synthesized result. Resulting patch borders are then

preferably covered by another unique center patch which is

merged with the corner patches via an optimization or graph-

cut technique [KSE∗03, NWT∗05, DZP07].

We extend this principle to multiple source textures where

each corner color is assigned an input patch from a fixed

corresponding source texture (cf. Figure 6(b)). Since we do

not want to favor one of the source textures in the resulting

tile set, the source texture for the gray center patch may be

obtained by interpreting a tile’s corner color combination as

another discrete probability distribution. When sampled, this

distribution yields the value of the predominant corner color

and hence the source texture. In Figure 6(b), e.g., it is twice

as probable that the center patch is chosen from the input

corresponding to the orange corner than from the other two.

The important observation is that this approach leads to a

balanced representation of each source texture in the result-

ing tile set. For controllable tilings, this means in particular:

if a user increases the probability of a desired corner color

for a specific tiling region, this leads to a proportional in-

crease of the probability that the associated texture content

will dominate this region after synthesis. Thus we maintain

the direct connection between corner colors and synthesized

content in case of multiple source textures.

Results We implemented both of our methods as fragment

shaders in connection with tile-based texture mapping. Fig-

ure 5 shows texture synthesis results for our determinis-

tic tiling method in comparison with current stochastic ap-

proaches. Here, all input textures (depicted below each re-

sult pair) are of resolution 128 × 128 while the displayed

results are 640×640 cutouts (10×10 tilings) from near infi-

nite tilings. All tiles were constructed using our variant from

Figure 6(b) in case of multiple input textures.

In the case of stochastic tilings, large clusters of the same

corner color translate to local repetition of texture content,

and increasing the number of corner colors from 2 to 3 or 4
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Figure 5: Texture synthesis results based on stochastic tilings and our deterministic approach. Large clusters of corners
with identical color may become harmful when synthesizing textures with salient features as in these examples. Increasing the
number of corner colors and/or related input textures does not necessarily improve on this behavior as indicated by the bottom
examples. Our method avoids large clusters of the same corner color such that undesirable repetition artifacts become much
less detectable. Note that the results for each method are based on the same set of synthesized tiles.

(and thus the number of tiles from 16 to 81 or 256) does not

necessarily improve results as indicated by the bottom exam-

ples. In contrast, the tilings produced by our method show a

more even distribution of corner colors that is free of color

clusters and makes repetition artifacts muss less detectable,

even for C = 2 colors with only 16 tiles. We want to em-

phasize that the results for both tiling methods are based on

the same set of synthesized tiles, i.e. the improvements stem

solely from the better arrangement of tiles using our method.

Figure 7 shows results based on user-controlled tilings

which were utilized to synthesize globally-varying textures

from source textures related in a non-stationary way. Syn-

thesizing a tile set from such input textures yields a rich set

of tiles which can be used to generate large amounts of the

same globally-varying texture, akin to stationary textures.

Both of our tiling methods are as fast as existing di-

rect stochastic tiling algorithms and run at several hundreds

frames per second on current graphics hardware. In the case

of controllable tilings we could also reduce memory require-

ments by a typical 40% to 70% (depending on the probabil-

ity map), as described in Section 3.3. In addition, tiles can be

interactively rearranged in correspondence to an underlying

probability distribution, and due to Walker’s alias method

these increased degree of freedoms come at negligible costs.
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Figure 6: (a) Common approach to tile construction for
example-based texture synthesis: (I.) Input patches are cho-
sen randomly from a single source texture, (II.) arranged on
a tile according to its corner color combination, (III.) cut
out to fit the tile size, and (IV.) get their seams covered by a
unique center patch. (b) (I.) Our approach extends this prin-
ciple to multiple source textures, and (II.) chooses the center
patch by interpreting the tile’s corner color combination as
a discrete probability distribution.

5. Conclusion

We introduced two new methods for generating tilings based

on Wang or corner tiles and demonstrated their advantages

in the domain of example-based texture synthesis. Our de-

terministic tiling method improves upon the results of cur-

rent stochastic approaches by preventing local repetition of

texture content. As a consequence, synthesized textures are

of better quality even when using smaller sets of tiles. Our

second method generalizes these approaches and allows the

user-controllable generation of tilings while maintaining the

speed of the others.

We introduced a novel variant for tile construction that

allows a balanced merging of multiple input textures such

that texture synthesis may be extended to the synthesis of

non-stationary textures at runtime. Both of our methods can

be efficiently employed in connection with tile-based tex-

ture mapping where significant amounts of memory may be

saved by excluding tiles corresponding to non-adjacent pairs

of corner colors.

In future work, we would like to investigate the applica-

bility of both methods for the synthesis of other signals such

as point distributions or volumetric content where tile-based

approaches are of particular interest.
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Appendix A: Excluding Tiles

In this appendix, we derive the number of affected tiles Nk
when excluding tiles with k disjunct pairs of corner colors.

A derivation including non-disjunct pairs works similar but

is a bit more involved.

As the total number of tiles in a complete corner tile set T
equals C4, the number of tiles without i ≤ C specific corner

colors equals Mi = (C − i)4. We are now interested in the

number of tiles Ts without an s-element set S ⊆ C of corner

colors, C = {0, . . . ,C− 1}, i.e. those tiles where all s colors

of S do not appear at the same time. Using Iverson notation

[GKP94] we observe for s = 2 colors {a,b}
T2 = ∑

T
[¬(a∧b)] = ∑

T
[¬a∨¬b]

= ∑
T
[¬a]+ [¬b]− [¬a∧¬b]

= ∑
T
[¬a]+∑

T
[¬b]−∑

T
[¬a] · [¬b]

= 2M1 −M2 = 2(C−1)4 − (C−2)4
.

(8)

It can be shown that for any s-element set of corner colors

this observation generalizes to

Ts =
s

∑
i=1

(
s
i

)
(−1)i+1Mi

=C4 −
s

∑
i=0

(
s
i

)
(−1)i(C− i)4

︸ ︷︷ ︸
=0 if s>4

.
(9)

The second summand disappears for s> 4 since Mi is a poly-

nomial of degree n = 4 [GKP94]. This reflects the fact that

there can be no tile with an (s > 4)-element set of corner

colors when we have tiles with just four corners.

Now let Nk denote the total number of tiles without k dis-

junct pairs of corner colors. Similar to (8) it can be observed

that for k = 2 disjunct pairs of corner colors {a,b} and {c,d}
N2 = ∑

T
[¬(a∧b)∧¬(c∧d)]

= ∑
T
[¬(a∧b)+¬(c∧d)]− [¬(a∧b∧ c∧d)]

= 2T2 −T4,

which, analogous to (8), can be shown to generalize to

Nk =
k

∑
p=1

(
k
p

)
(−1)p+1 T2p

(9)
=

(
k
1

)
T2 −

(
k
2

)
T4 +

k

∑
p=3

(
k
p

)
(−1)p+1C4

=C4 −2k(6C2 −12C−6k+13),

where 0 ≤ k ≤ �C/2
.
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