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Abstract
This paper presents a straightforward algorithm for constructing connections on discrete surfaces that are as
smooth as possible everywhere but on a set of isolated singularities with given index. We compute these connections
by solving a single linear system built from standard operators. The solution can be used to design rotationally
symmetric direction fields with user-specified singularities and directional constraints.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation—
Line and curve generation

1 Introduction
Numerous applications in computer graphics need to com-
pare tangent directions that originate at different points on a
surface (consider smoothing a vector field). A natural ques-
tion to ask, then, is “how do we map one tangent space to
another?” One answer is provided by a connection, which
describes how any tangent vector changes as it moves along
the surface. Ideally, though, we want to map vectors from
one point to another consistently, i.e., independent of the
path taken to get there. In this paper, we demonstrate that
connections satisfying this fundamental requirement can be
computed easily and efficiently.

1.1 Previous work
Early work on smooth, consistent transitions between
tangent spaces was motivated by decoration of surfaces
with consistently oriented textures and curvature-aligned
strokes [PFH00, HZ00, Tur01]. While these algorithms were
framed in terms of smoothly varying direction fields, we
view them as some of the first which constructed connections
on discrete surfaces. Later motivation for this type of algo-
rithm came from the requirements of quadrilateral remesh-
ing [TACSD06, KNP07, BZK09], where directions are speci-
fied only up to rotations by π/2 (a.k.a., “cross fields”). These
applications led to tools for designing fields with more gen-
eral rotational identifications [PZ07, RVLL08, LJX*10].

A major tension in the computation of direction fields is be-
tween simplicity of the formulation and total control over
all aspects of the field. Efficient methods for vector field

Figure 1: Fields produced by our method have singularities
precisely where desired (left) and nowhere else (right).

design have been proposed (e.g., [ZMT06, FSDH07]), but
unintended singularities often arise. At the other extreme,
methods which offer full control over singularities (loca-
tion and index) require sophisticated non-linear solvers (e.g.,
[LJX*10]). Several approaches provide a trade-off between
efficiency and control by applying repeated linear solves
(e.g., [RVAL09, BZK09]).

Discrete connections have also appeared in the context of
mesh deformation [LSLCO05,KG08] as a way to encode the
relationship between adjacent frames on a mesh. While these
approaches discretize the Christoffel symbols, we will instead
focus on an intrinsic, scalar discretization of connections.
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Figure 2: The natural setting for a discrete connection is on
the dual edges of a triangulated surface (bottom, center).

1.2 Contributions
We give an algorithm for the computation of trivial connec-
tions on orientable simplicial surfaces of arbitrary genus with
and without boundary. The primary variables are angles at-
tached to dual edges (an angle-valued dual 1-form). These
angles are determined by the solution to a linear system, and
are globally optimal in the sense that they describe the triv-
ial connection closest to Levi-Civita among all connections
with a prescribed set of singularities. These singularities can
be placed at arbitrary vertices with any indices that satisfy
a global topological constraint. The method is guaranteed
not to produce spurious singularities and comes with a rig-
orous theoretical foundation. Relative to previous methods
our algorithm is surprisingly simple, and can be implemented
using standard operations from mesh processing and linear
algebra.

The next section gives a pragmatic description of our algo-
rithm in terms of familiar operations on meshes. Section (3)
justifies the decisions made in our algorithm and explores its
relationship with smooth differential geometry. Section (4)
demonstrates results and provides a more direct comparison
with previous work.

2 Algorithm
We work with a triangulated 2-manifold K = {V,E,F} and
its dual (Figure 2) – note that we do not need to explicitly
construct a dual mesh since we can store dual quantities on
the corresponding primal elements. Most of the tools we need
are standard operations from discrete exterior calculus (DEC).
Although we review the essential concepts, a more general
overview can be found in [ES06]. Ultimately, we need to
solve for a set of adjustment angles that tell us how to rotate
a vector whenever it moves across an edge. Our algorithm
for computing these angles consists of a few simple steps:

1. Find a set of basis cycles.
2. Compute the angle defect around each basis cycle.
3. Specify singular vertices and their indices.
4. Solve a linear system for the adjustment angles.

These angles can be used for various mesh processing tasks;
we use them to construct direction fields with user-specified
singularities (Section 2.7).

Figure 3: Loops on a surface can be contractible (ζ) or
noncontractible (ξ).

2.1 Finding basis cycles
In the context of our algorithm, a cycle is a sequence of con-
sistently oriented dual edges that form
a loop. More explicitly, a cycle is rep-
resented by a vector c ∈ Z|E| that has
nonzero entries only for dual edges in
that cycle. The sign of these entries is de-
termined by the orientation of each dual
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edge relative to some canonical orientation: positive if it
agrees, negative otherwise. A cycle around the boundary of a
collection of dual cells is a boundary cycle.

Given this representation, it is straightforward to construct
a basis for all possible cycles on the surface. Note that any
particular cycle is either contractible, meaning that it can
be continuously deformed to a point, or noncontractible,
meaning that it cannot (Figure 3). We first construct a matrix
d0 ∈ R|E|×|V | whose columns span the contractible cycles:

(d0)i j =

{
±1, dual edge i is contained in dual cell j
0, otherwise.

Here each column is the boundary cycle of a single dual
cell, hence sign is given by relative orientation (we use d0
to denote this matrix since it is the discrete exterior deriva-
tive on 0-forms [DKT08]). Technically, this matrix defines a
spanning set since only |V |−1 columns are independent.

We compute a basis for the noncontractible cycles using the
tree-cotree decomposition of Eppstein [Epp03]:

∙ compute a spanning tree T of primal edges;

∙ compute a spanning tree T* of dual edges that do not cross
edges of T ;

∙ for any dual edge not contained in T* and not crossed
by T , follow both of its vertices to the root, completing a
cycle.

On a surface of genus g, we get exactly 2g independent non-
contractible cycles or generators. This basis is again repre-
sented by the columns of a matrix H ∈ R|E|×2g given by

Hi j =

{
±1, if dual edge i is in generator j
0, otherwise.

We combine all basis cycles into a single matrix

A =
[

dT
0

HT

]
.
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Figure 4: The holonomy of the discrete Levi-Civita connec-
tion is the usual angle defect δ (left) found by translating a
vector across a sequence of unfolded triangles (right).

2.2 Computing angle defects
Each cycle in our basis specifies a sequence of dual edges, or
equivalently, a sequence of primal triangles. The angle defect
δ of a cycle is simply the angle between initial and final edges
when these triangles are unfolded isometrically in the plane
(Figure 4, left). More explicitly, given any initial angle αi in
face i, we compute a new angle α j in neighboring face j as

α j = αi−θi j +θ ji, (1)

where θi j and θ ji are the angles between the shared edge e
and an arbitrary but fixed reference direction in triangles i
and j, respectively (Figure 4, right). Repeating this procedure
for n consecutive dual edges in a cycle gives us a sequence
of angles α0, . . . ,αn, and the resulting angle defect is given
by δ = αn−α0. In the case of contractible basis cycles, this
procedure yields the usual discretization of Gaussian curva-
ture. We hence use K ∈ R|V | to denote the vector of defects
around contractible cycles; we use z ∈ R2g to denote defects
around noncontractible cycles.

2.3 Setting singularities
To control the placement and behavior of singularities, we
specify an index for each primal vertex. The index determines
the number of full rotations experienced by a vector trans-
ported along a small loop around the vertex (Figure 5); most
vertices will have index zero. (In the discrete case the index
is simply the discrete holonomy divided by 2π – see Sec-
tion 3.2.) We can also control the number of rotations expe-
rienced by vectors transported around generators (Figure 6).
In our algorithm, we simply specify a vector k ∈ Z|V |+2g of
indices corresponding to the cycles in our basis. The only re-
quirement is that ∑i ki = χ over vertices and boundary loops
(Section 2.6), where χ = |V |− |E|+ |F| is the Euler charac-
teristic – indices of the remaining generators may be assigned
arbitrarily. These indices are used to modify angle defects

Figure 5: On most surfaces, direction fields must have at
least one singularity. Left to right: saddle (-1), tripod (-1/2),
thorn (+1/2), focus (+1), apple (+3/2) [Nik01].

Figure 6: Constraining the holonomy around generators
causes the field direction to “spin” along any noncontractible
cycle (generator holonomy from left to right: 0,2π,4π,6π).

around basis cycles: K̃i = Ki− 2kiπ, and z̃i = zi− 2kiπ. We
then concatenate these values into a single vector b∈R|V |+2g

of modified defects b = [ K̃ z̃ ]T .

More flexibility is achieved by permitting identification of
directions by rotations of 2π/N for some fixed N ∈ N (e.g.,
N = 4 for cross fields – see Figure 7). This is achieved by
simply setting fractional singular indices ki = ni/N, ni ∈ Z
and proceeding as before. Singularities can be placed by hand
or determined by an automatic method such as [RVAL09].

2.4 Solving for adjustment angles
Finally, to compute the adjustment angles we solve the con-
vex problem

min
x
||x||2 s.t. Ax =−b, (2)

which has a unique global minimum at x*. Further, the con-
straints encode the index prescribed at each vertex (see Sec-
tion 3.4), so we cannot end up with more singularities than we
asked for. Note that the system Ax = b always has solutions –
see Appendix A.

At this point, standard algorithms for convex problems (e.g.,
equality-constrained Newton’s method) could be applied to
obtain the minimizer x*. However, the simple structure of
this problem permits a more efficient approach. Since the
system of constraints is underdetermined, x* is the unique
solution to Ax =−b that has no component in the kernel of A
– all other solutions have larger `2 norm. One way to compute

Figure 7: Our algorithm generates direction fields smooth
up to local rotations by multiples of 2π/N (here N = 4).
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Figure 8: Fields on surfaces with boundary do not require 
singularities (left), but we can easily add singularities and 
still get natural boundary behavior (right).

x* is to first find any solution x̃  to  the constraint equation 
Ax = −b and then project out its null space component. For 
this operation we need an explicit representation of the null 
space, which is given by the rows of d1, the discrete ex-
terior derivative on 1-forms [ES06]. The optimal solution
is thus given by x* = x̃ − d1

T (d1d1
T )−1d1x̃, which entails an 

additional linear solve. However, a number of efficient linear 
solvers directly compute solutions with no nullspace compo-
nent – in practice, we use the multifrontal sparse QR factor-
ization method implemented in SuiteSparseQR [Dav08].

2.5 Area weights

We can easily include a diagonal matrix D ∈ R|E|×|E| in our 
objective to control the importance of smoothness over the 
mesh. In particular, we use the standard cotangent weights

Dkk =
√

2(cotϕi + cotϕ j)−1,

to get proper area weighting over the diamond areas associ-
ated with each edge (see [DKT08]). Here ϕi and ϕ j are the
angles opposing edge k. To solve the augmented problem,
we apply the change of variables y = Dx and solve for y ex-
actly as before, recovering the final solution via x* = D−1y*.
(Note that in this case we never have to explicitly evaluate
the reciprocal of cotϕi + cotϕ j , which avoids potential insta-
bility.)

2.6 Surfaces with boundary
For surfaces with boundary our constraint matrix A needs to
include boundary loops and omit cycles around the dual cells
associated with boundary vertices. This entails three simple
modifications to our algorithm:

∙ Skip dual cells incident on the boundary when building
the basis for contractible cycles;

∙ Skip boundary vertices when constructing the primal span-
ning tree T ;

∙ Skip dual edges that cross the boundary when extracting
loops from the tree-cotree decomposition.

The (modified) tree-cotree decomposition will now yield a
generator from every class of noncontractible cycles, includ-
ing boundary loops.

At this point there are a number of ways one could modify
the vector b to control behavior at the boundary. Perhaps
the simplest is to require only that the sum of the indices
of singular vertices equals zero – Figure 8 demonstrates the
resulting effect.

2.7 Constructing direction fields
Once we have a vector x of connection angles, constructing
a global direction field is straightforward: starting with an
arbitrary face f0 and initial direction β0, traverse the primal
faces in any order. Across each edge ek, compute the angle
in the next triangle via

β j = βi−θi j +θ ji− xk. (3)

Note that Eq. (3) is just the operation used to compute angle
defects (Eq. (1)), augmented with the adjustment angles x.
Because of the way we compute x, the resulting direction
field is independent of traversal order, and is only a function
of the choice of β0 (see Section 3.3).

2.8 Directional constraints

We can specify a set of faces where the field direction is fixed
by prescribing the angle γ in each of these
faces (Figure 9). To accommodate these
constraints we build an additional span-
ning tree Tc of the primal faces rooted
at one of the constrained faces f0. Each
time we encounter a constrained face fm,
we follow the tree back towards the root

until we encounter another constrained face fn (possibly the
root f0). The sequence σ of dual edges between fm and fn
in Tc forms an additional row in our constraint matrix A. We
then transport the constraint angle γm along σ using Equa-
tion (1) to get γ

′
m, and store the difference γn − γ

′
m in the

corresponding entry of b. Finally, we make sure to compute
our direction field starting at f0 using the initial angle γ0. This
way, all directional constraints are satisfied by construction.

Figure 9: We can fix the direction of the field at specified
faces by constraining transport between pairs of fixed faces.
Notice that we still obtain a smooth field with only the speci-
fied singularities.
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Figure 10: Because our method is intrinsic, it is robust to
noise (center) and extreme perversions of the input (right).

3 Interpretation
Our algorithm provides a nice link between the smooth
geometric perspective and discrete differential geome-
try [BSSZ08]: quantities computed by our algorithm can be
put into direct correspondence with objects from classical
Riemannian geometry. In this section we review these con-
cepts and discuss their relationship with our discrete setup.

3.1 Connections
On a smooth surface, a connection ω describes how a tangent
vector changes when moved an infinitesimal distance along
a given direction – it “connects” neighboring tangent spaces.
Often, we care only about the direction of vectors (i.e., not
their magnitude). In this case we can think of a connection
as associating an infinitesimal rotation with each possible
direction of motion. (Formally, this describes a principal
connection on the frame bundle of a smooth surface, which
is encoded by an so(2)-valued 1-form.) By integrating these
infinitesimal changes along a curve, we can parallel transport
a vector from one point to another (Figure 11, left).

When developing a discrete theory of connections, the first
question is: how should we represent tangent vectors? Storing
vectors at vertices is a popular choice [LSLCO05,LJX*10],
but requires that we define approximate tangent planes in
terms of extrinsic geometry (i.e., directions in R3), which can
be delicate. Putting vectors on faces (as in [KG08, RVAL09])
is perhaps more natural because here tangent directions can
be described intrinsically, making them well-defined even
for poorly discretized surfaces (see especially Figure 10).
This setup also leads to a discretization where the curvature
associated with the Levi-Civita connection is just the usual
discrete Gaussian curvature – see Section 3.3.

Given this choice of tangent planes, a discrete connection
ω̂ is easy to define: for each dual edge e?

k we store a single
angle ω̂k that represents the total (i.e., integrated) rotation of
a vector as we travel from one face to the next (see Figure 11,
right). In terms of our algorithm, this angle is given explicitly
by ω̂k = θ ji− θi j − xk, i.e., a change of frame followed by
an “adjustment.” In the language of DEC, a value per dual
edge is a (dual) discrete 1-form [DKT08], which in our case
is angle valued. Hence, this interpretation puts us in direct
correspondence with the smooth theory: integrating infinites-

Figure 11: Left: in the continuous setting, a connection de-
termines how tangent vectors change along a curve. Right: a
discrete connection can be represented by a rotation angle
ωi j =−ω ji associated with each oriented dual edge e?

i j.

imal rotations along a path connecting two neighboring faces
produces a finite rotation.

Discrete parallel transport also becomes easy to define at this
point: starting with an initial direction α0, we add consecu-
tive angles ω̂k along a sequence of dual edges. Since each
value ω̂k is the integral of infinitesimal rotations along a path
from one face to the next, this sum corresponds to piecewise
integration of a smooth connection. We use this procedure
to construct our direction field in Equation (3). (Note that
the discussion of discrete parallel transport in several recent
papers [PS98, LJX*10] refers specifically to transport by the
Levi-Civita connection.)

3.2 Holonomy
In general, a vector transported around a closed loop ` by a
connection ω will not return to its original orientation. The
difference in angle between the initial and final vector is
called the holonomy of ω around ` (Figure 12). Since we
have given discrete objects the same names as their smooth
counterparts, the definition of discrete holonomy is identical:
it is the difference in angle found after a vector has been
(discretely) parallel transported around a cycle by a (discrete)
connection.

Every connection ω also has an associated curvature. Namely,
the curvature of ω at a point x is the holonomy of an infinites-
imal loop around x, and the curvature integrated over any

Figure 12: In general, a vector parallel transported around a
loop will not end up where it started – the resulting difference
is called the holonomy.
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Figure 13: Every connection has an associated curvature. In
the discrete case, the curvature of a region is just the “angle
defect” of a vector transported around the region’s boundary.

region C equals the holonomy around its boundary ∂C. Since
we do not have infinitesimal loops in the discrete case, the
latter formulation gives the full story: the curvature of a (dis-
crete) connection ω̂ over a region C is the (discrete) holonomy
around its boundary cycle ∂C (Figure 13). The converse is
not true, however: curvature does not tell us everything about
holonomy, since not every cycle is a boundary – this fact
plays a critical role in the formulation of our algorithm.

3.3 Trivial connections
With all this machinery in place, we arrive at the central ques-
tion: which connection should we use? In other words, how
should we transport vectors around the surface in practice?

One answer is given by the canonical Levi-Civita connection,
whose curvature is the usual Gaussian curvature of the sur-
face [Do 92]. Parallel transport via the discrete Levi-Civita
connection is computed as in Equation (1), and the resulting
holonomy or “angle defect” δ around a dual cell corresponds
to the standard discretization of Gaussian curvature in terms
of vertex tip angles (Figure 4). This choice is popular in com-
puter graphics because it is straightforward to compute and
agrees with our usual notion of straightness [PS98].

However, in many practical situations this simple scheme
is problematic: since the holonomy of the Levi-Civita con-
nection equals the Gaussian curvature, a vector transported
around a closed loop is not mapped back to itself. As a con-
sequence, transport from one point to another will depend
on the choice of path, since we can “pick up” additional
curvature along the way (see Figure 14, left).

Instead, we seek a trivial connection, i.e., a connection where
the holonomy around every cycle is zero. It is easy to see
that transport via a trivial connection is path-independent: in
particular, consider transport along any two paths f and g
from a point x to a point y (Figure 14, right) – the only way
the total change around the combined loop f -g can be zero
is if change along f equals the change along g.

Though not formulated explicitly in terms of connections,
this basic premise is the underlying idea in recent work on di-
rection field design [RVAL09,LJX*10]. Ray et al. [RVAL09]
effectively compute a connection where curvature vanishes
and then apply smoothing to obtain a globally consistent
result. The reason smoothing is needed here is that curva-

Figure 14: Left: transporting a vector v0 from a to b along
two different paths may yield different results (v′, v′′) since
we can pick up different amounts of curvature along the way.
Right: a trivial connection guarantees that transport is path-
independent since any loop f -g must have zero holonomy.

ture alone is not sufficient to characterize consistency – as
noted earlier, it describes holonomy only around boundary
cycles (see Figure 15). More recently, Lai et al. [LJX*10]
acknowledge the importance of the holonomy around gen-
erators, but are concerned that constraining the holonomy
around all loops is computationally infeasible. Like Ray et
al., their solution is to first eliminate curvature (by computing
a flat metric with cone singularities), and then account for the
generator holonomy with a “rotation compensation” field.

In fact, the holonomy around any cycle can be easily ex-
pressed in terms of the curvature over any region and the
holonomy around a set of generators. In the discrete case, it
is especially straightforward to compute a small set of basis
cycles that encode this information, which is the approach
we take in our algorithm (Section 2.1). More specifically, the
“adjustment angles” in our algorithm (or what Ray et al. call
the “field curvature”) actually describe the deviation of our
discrete connection ω̂ from the (discrete) Levi-Civita connec-
tion. Hence, our linear constraint Ax =−b states that the sum
of these deviations around any cycle should exactly cancel
the holonomy we find via Levi-Civita (Section 2.2). Implic-
itly, we are constructing a connection for a surface with a

Figure 15: Left: transport via Levi-Civita is not globally con-
sistent, and yields discontinuities in direction (in red). Center:
a flat metric improves the situation, but inconsistencies re-
main. Right: a trivial connection achieves global consistency
by constraining all cycles – including noncontractible ones.
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flat metric, but expressing this connection with respect to
the given embedding. This way we do not need to explicitly
construct a flat metric. Notably, however, a trivial connection
is more specific than a flat metric since a trivial connection
also has zero holonomy around any noncontractible cycle.

We can now give an interpretation of our objective as well:
||Dx||2 is the `2 distance between our trivial connection and
the discrete Levi-Civita connection. The diagonal factor D –
or ?

1/2
1 in the language of DEC – simply gives the appropriate

area-weighted norm on x (Section 2.5). Overall, then, our op-
timization problem seeks a globally consistent way to trans-
port vectors that agrees with our usual notion of “straight”
(i.e., geodesic) as much as possible.

3.4 Singularities
Not every surface admits a trivial connection, however: the
Gauss-Bonnet theorem states that the total curvature of a sur-
face is 2πχ, where the Euler characteristic χ is a topological
invariant. In other words, our surface must have curvature
somewhere, but we get to choose where this curvature goes.

Ideally, we would like to put curvature where it will not inter-
fere with the transport of vectors. Since curvature describes
the holonomy around region boundaries (Section 3.2), we
want the curvature of every region to be an integer multiple
of 2π so that vectors transported around closed loops are
mapped back to themselves – even if they experience several
full rotations along the way. If we can do this, then transport
from one point to another is still consistent up to rotations by
2kπ, hence the vector we end up with will remain the same.

An easy way to achieve this goal is to concentrate all of
our curvature at a set of isolated points or singularities, in
increments of 2π. In the discrete case, this is equivalent to
constraining the holonomy around some small set of vertices
(possibly just one) as done in Section 2.3. For surfaces with
boundary, we can also concentrate curvature on boundary
loops. (Note that these considerations place no restriction on
the holonomy around generators.) Further, if we instead use
increments of 2π/N, then transport will be consistent up to
rotations by 2kπ/N – suitable for line fields, cross fields, etc.
Thus, from the perspective of connections, the generalization
of the Poincaré-Hopf theorem given in Ray et al. [RVLL08] is
a straightforward consequence of the Gauss-Bonnet theorem.

3.5 Summary
Our computational setup can be seen as a projection of the
smooth theory onto discrete meshes. Dual edges carry finite
angles which equal path integrals of incremental rotations
between neighboring faces. A zero-holonomy condition on
the space of loops induces a finite dimensional linear system
of sum conditions around discrete cycles of dual edges. The
minimum `2 norm solution of this linear system is the mini-
mum L2 norm solution of the projected energy with respect
to the underlying smooth 1-form. The result is a connection
with nonzero curvature only at a fixed set of singularities with
specified index.

Figure 16: Fast direction field editing makes it easy to wrap
a T-rex in ribbon (top) or build a horse out of flexible drinking
straws (bottom).

4 Results
Now that we have discussed some of the theoretical differ-
ences between our approach and previous work (Section 3),
we focus on performance and robustness. Results are shown
in figures throughout; in all examples we were able to achieve
exactly the prescribed field topology (Figure 1). Figure 17
shows that our method can be used to drive quadrilateral
parameterization algorithms such as QuadCover [KNP07],
which maps a cross field to a vector field on a multiple cov-
ering of the input surface. One nice feature of our approach
is that it provides exact matchings between different sheets
of the covering, even near singular vertices of large index.
Figure 16 shows two artistic applications of our method.

4.1 Performance
We tested performance on several standard meshes of varying
size and element quality. Since singularities and constraint
directions depend only on the data vector b, we can prefac-
tor our constraint matrix A and perform edits in real time
(Figure 19). Adding directional constraints entails updating
A; factorization took no more than 9 seconds on our largest
model of 400k faces (Figure 18, right). As noted in Sec-
tion 2.4, our solutions are globally optimal since they are
simply the minimum-norm solution to an underconstrained
linear system. Overall we observed very consistent perfor-
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Figure 17: The fields we generate can be used as input to
QuadCover [KNP07]. Here a small set of hand-picked singu-
larities yields a parameterization with very little distortion.

mance, even on fields with many singularities of large index
(Figure 20). A large number of directional constraints can
increase the size of the system, though at most we will have
only |E| constraints (see Appendix A).

On a mesh of 100k faces, we can edit direction fields roughly
15-48x times faster than with the method described in Ray et
al. [RVAL09] depending on the convergence rate of their
nonlinear solver. Note that their method cannot guarantee
optimality since it relies on iterative reprojection onto a non-
convex constraint set. The method in Lai et al. [LJX*10]
computes a globally optimal solution via discrete Ricci flow,
but is nonlinear. Hence we can edit singularities about 25-
30x faster (on comparable hardware using the same meshes),
and can edit directional constraints at roughly the same rate.
Fisher et al. [FSDH07] also compute a solution via a sin-
gle linear solve, but their method may produce unwanted
singularities and cannot deal with fractional indices.

Figure 18: Left: real-time editing makes it easy to place
singularities in locations that are geometrically uninteresting
but artistically relevant. Right: even very large meshes (here:
400k faces) can be edited in about a second on a standard
laptop.

ed
it

Figure 19: Timings of our implementation for all meshes
shown in figures (2.4 GHz Core 2 Duo laptop, single thread).
On our largest mesh (400k faces), each editing operation
took roughly 1.3s after 8.2s of setup time.

4.2 Robustness
As depicted in Figure 21, our results are consistent across
different discretizations of the same surface. More remark-
ably, fields retain the same qualitative behavior even after
significant noise or distortion has been applied to the mesh
(Figure 10), a consequence of the intrinsic, variational nature
of our formulation. Note that some angles may have nega-
tive cotangents. In this case we simply clamp cotangents to
zero when computing area weights (Section 2.5) – alterna-
tively, we can simply use unit weights on all edges (D = I).
In practice these options produce very similar results; we did
not encounter any meshes where bad triangles resulted in a
visible problem.

Finally, our method had no difficulty dealing with singulari-
ties of large index (see Figure 20, right) – even on extremely
coarse meshes – since we can encode an arbitrarily large
amount of “turning” across a single edge. In comparison,
methods that store absolute angles per face [RVAL09] or
vertex [LJX*10] may need to refine the mesh or cut out a
boundary region near such singularities, since the angle de-
fect around a single vertex can only encode so much curva-
ture.

Figure 20: Left: we can easily handle high genus and many
singularities (here: 60 singularities, g = 11). Right: since
we do not need an explicit metric, we have no trouble repre-
senting singularities of arbitrarily large index (here: index
+20).
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5 Conclusion
We have provided a simple, effective foundation for geometry
processing tasks that need to compare frames or directions
on surfaces. Although our algorithm is quite simple from
the perspective of mesh processing, it comes from a solid
geometric foundation that links together several aspects of
discrete differential geometry. On the practical side of things,
we believe that robustness, efficiency, and ease of implemen-
tation make our algorithm a valuable tool for a number of
graphics-related applications.

A Existence of solutions
The constraint system Ax = −b always has at least one so-
lution. For surfaces without boundary, recall that we have
|V |+2g holonomy constraints: one around each vertex and
generator. However, only |V |− 1 of the contractible cycles
are independent since the boundary of any dual cell can be ex-
pressed as the (negated) sum of all other dual cell boundaries.
Directional constraints consist of disjoint subsets of dual
edges from a spanning tree (Tc) on |F| faces. Hence, we have
at most |F|−1 mutually independent directional constraints,
which are also independent of the holonomy constraints since
no collection of paths in Tc can be combined to form a cycle.
In total we have at most |V |+ |F|+2g−2 = |E| independent
constraints for |E| degrees of freedom. The matrix A thus has
only one redundant constraint and Stokes’ theorem gives us
the condition for consistency: ∑i bi = 0, where the sum is
over vertices only. This condition holds as long as the indices
ki sum to χ since (by Gauss-Bonnet)

∑
i

bi = ∑
i

Ki−2πki = 2πχ−2πχ = 0.

For surfaces with boundary, the same argument holds if we
imagine that each boundary loop actually bounds a dual cell
with the prescribed curvature.
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