
Pacific Graphics 2010
P. Alliez, K. Bala, and K. Zhou
(Guest Editors)

Volume 29 (2010), Number 7

Modeling Complex Unfoliaged Trees
from a Sparse Set of Images

Luis D. Lopez, Yuanyuan Ding, and Jingyi Yu

University of Delaware, USA

Abstract
We present a novel image-based technique for modeling complex unfoliaged trees. Existing tree modeling tools
either require capturing a large number of views for dense 3D reconstruction or rely on user inputs and botanic
rules to synthesize natural-looking tree geometry. In this paper, we focus on faithfully recovering real instead
of realistically-looking tree geometry from a sparse set of images. Our solution directly integrates 2D/3D tree
topology as shape priors into the modeling process. For each input view, we first estimate a 2D skeleton graph
from its matte image and then find a 2D skeleton tree from the graph by imposing tree topology. We develop a
simple but effective technique for computing the optimal 3D skeleton tree most consistent with the 2D skeletons.
For each edge in the 3D skeleton tree, we further apply volumetric reconstruction to recover its corresponding
curved branch. Finally, we use piecewise cylinders to approximate each branch from the volumetric results. We
demonstrate our framework on a variety of trees to illustrate the robustness and usefulness of our technique.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Modeling Applications

1. Introduction

The problem of modeling and generating realistic trees has
attracted much attention from many research areas in recent
years. Applications are numerous, from the computer graph-
ics perspective as well as from the plant sciences perspec-
tive. For example, realistic 3D tree models can be integrated
into film footage to reproduce a special season, or with ar-
chitectural designs to add the realism to virtual urban envi-
ronments. Recovering geometric structures of real trees can
also reveal new botanic rules, and help plant scientists to
study the influence of genetic and environmental factors on
tree growth.

In computer graphics, tremendous efforts have been
focused on developing easy-to-use tools for synthesizing
naturally-looking tree models. Rule-based systems, such as
L-system, apply botanic rules or geometric patterns to guide
tree generation. Sketch-based approaches allow users to
draw coarse tree geometry and then synthesize structural de-
tails via physical-based simulation [OOI06], probabilistic
optimization [CNX∗08], or texture synthesis [TFX∗08].
These methods can produce visually pleasing results, al-

though the synthesized tree geometry may differ greatly
from the real ones. For example, synthesized tree branches
have homogenous shapes whereas real branches often ap-
pear irregular and exhibit complex occlusions between each
other, as shown in Fig 1.

In this paper we present a new image-based technique to
faithfully reproduce real instead of realistically-looking ge-
ometry of unfoliaged trees. Previous approaches have used a
3D scanner to obtain the range data of the tree [XGC05].
However, they require elaborate point cloud registrations
and hole filling [BF05, EL99] and are less suitable for
portable, on-site acquisition. Our work is inspired by the re-
cent image-based approach by Tan et al. [TZW∗07] that
recovers 3D tree geometry from a set of images. The ma-
jor difference is that their method requires capturing a large
number of images over a wide range of view angles for con-
ducting reliable 3D reconstruction whereas we only use a
very small number (4∼6) of images over a moderate range of
view angles. Therefore, our method is more suitable for on-
site acquisition with a hand-held (e.g., a digital SLR) cam-
era.

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.
Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and
350 Main Street, Malden, MA 02148, USA.

L. Lopez & Y. Ding & J. Yu / Modeling Complex Unfoliaged Trees from a Sparse Set of Images

Figure 1: Recovering an Unfoliaged Eml Tree Using Our Approach. Left: the 4 input images; Middle: our recovered 3D skeleton
tree; Right: our reconstructed 3D tree model.

For each input view, we first estimate a 2D skeleton graph
from its matte image and then estimate a 2D skeleton tree
from the graph. Notice that real tree branches often obscure
each other in 3D, and thus exhibit complex partial occlu-
sions in images. Therefore, we impose 2D tree topology for
recovering 2D skeleton trees from the images. We then de-
velop a simple but effective technique to find the optimal 3D
skeleton tree that is most consistent with the 2D skeletons.
Our solution is based on matching the nodes between the 2D
skeleton trees using a hypothesis tree, where we apply ge-
ometric and topological cues for efficient pruning. For each
edge in the recovered 3D skeleton tree, we further apply vol-
umetric reconstruction to recover its corresponding curved
branch. Finally, we use piecewise cylinders to approximate
the branch, where the cylinder radii are estimated from the
volumetric results. We demonstrate our framework on a vari-
ety of trees, and show that our method can not only faithfully
reproduce complex 3D geometry but also minimize user ef-
forts by using much fewer images.

2. Previous Work

Most existing tree modeling methods can be classified into
two categories: synthesis-based and reconstruction-based.

Synthesis Methods: Approaches in this category focus
on synthesizing tree geometry from heuristics or knowl-
edge such as botanic rules [NRS01,WP95], shape grammar
[PJM94], physical simulations [OOI06], or probabilistic
optimization [CNX∗08]. Rule-based methods assume that
the growth of trees follows specific patterns that can be de-
rived from botanic science [DREF∗88]. [MP96] integrates a
small set of generative rules/grammar with the L-system for
synthesizing both branch and leaves. These rules or grammar
are commonly associated with a large number of parameters.
Therefore, most rule-based systems rely on user’s familiarity
with the model to construct specific types of trees. Recently,
Chen et al. [CNX∗08] build a tree database that contains typ-
ical tree exemplars along with their associated parameters.
With their modeling system, the user only needs to draw a
simple 2D sketch of the tree and the best matching exemplar
in the database is used to generate its complete 3D geometry.

Image-based methods have also been developed for syn-
thesizing 3D trees [HZ03, Sak98]. Reche-Martinez et al.
[RMMD04] compute a volumetric representation of the tree
from only three images. They estimate variable opacity for
the voxels and apply volume rendering for synthesizing
new views. Their volumetric results, however, do not re-
veal the actual geometric structures of trees. Neubert et al.
[CNX∗08] allow the user to draw skeleton geometry on top
of tree images and use particle flow simulation to synthesize
3D tree structure. Most recently, Tan et al. [TFX∗08] devel-
oped a simple sketching method that can synthesize realistic
3D tree models from a single image. In their system, the user
only needs to mark up the leaf region, the main trunk, and a
few branches, and their algorithm automatically synthesizes
3D tree geometry from a library of elementary trees. It is
important to note that all these approaches aim to generate
realistically-looking trees, and the synthesized tree geometry
may differ greatly from the real one.

Reconstruction Methods: In contrast, reconstruction-
based methods aim to faithfully recover 3D tree geometry.
Xu et al. [XGC05] use a laser scanner to acquire the range
data of the tree. Their method is able to produce very high-
quality 3D models. However, like most range data, their tree
model contains holes, and it relies on robust geometric al-
gorithms for filling in the missing information. The use of
a laser scanner also makes it less appealing for portable,
on-site acquisition. Instead of using the scanner, Tan et al.
[QTZ∗06] capture a large number of images surrounding
the tree for dense 3D reconstruction. Their method is able
to recover highly accurate tree models. A downside of their
technique, however, is that it requires the user to segment
the tree out from the back in each image. Even with ad-
vanced segmentation [RKB04, KZ02] and matting tools
[WC07, LSTS04], segmenting a large number of images is
time consuming and tedious. Therefore, we pursue a solution
that uses much fewer images. Classical stereo matching and
volumetric reconstruction algorithms use a small number of
images, and, in theory, could also be used to recover un-
foliaged trees. In practice, these algorithms perform poorly
on tree-shaped objects, as tree geometry violates many com-
mon assumptions in these methods: trees are highly concave,

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

L. Lopez & Y. Ding & J. Yu / Modeling Complex Unfoliaged Trees from a Sparse Set of Images

3D Surface Model

2D Graph

Construction

Input Images

Matte Images
3D Geometry

Recovery

Structure

from Motion

3D Model

Reconstruction

Figure 2: Overview of Our Image-based Tree Modeling System.

(a) (b) (c)

Figure 3: Matte Estimation using algorithm [WC07] (A)
Source Image; (B) User Input Strokes; (C) Estimated Alpha
Matte.

tree branches have very similar appearance and they obscure
each other; branch occlusion also appear significantly dif-
ferent across the views. In line with our method, Shlyakhter
et al. [SRDT01] reconstructs a visual hull according to im-
age silhouette and compute the medial axis of the volume
to fit a simple L-system for branch generation. Sakaguchi et
al. [Sak98] use simple branching rules in voxel space. How-
ever, their recovered tree geometry is in general very coarse
and lacks realism due to low quality volumetric reconstruc-
tions. We also use the medial axis in our approach; the dif-
ference is that we apply it to approximate 2D skeleton trees
and use prior-based multi-view reconstruction to recover the
3D skeleton tree.

3. Recovering 2D Skeleton Trees

3.1. Matte Estimation and Camera Calibration

Similar to the image-based tree modeling method
[QTZ∗06], we start with segmenting the foreground
tree from the background environment. While [QTZ∗06]
uses hard segmentation, we choose to estimate the alpha
matte of the tree. This is because, unlike bushes or heavily
leaved trees, unfoliaged trees contain thin branches that
blend into the background and are difficult to segment.
The alpha matte, instead, can capture these details and is
consistent with our approach for finding the medial-axis
representation (Section 3.2). To compute the alpha matte,
we directly use the Robust Matting [WC07] algorithm that
allows the user to draw foreground and background strokes
and progressively refine the alpha matte. Figure 3 shows

(a) (b) (c)

Figure 4: Skeleton Estimation from Alpha Matte: (a) input
matte image; (b) distance transform on (a); (c) the estimated
Median Axis of (a).

the recovered alpha matte of a sample input image. For
trees with many small twigs, we further post-process the
matte images to remove these fine details. Specifically, we
threshold the matte image and then apply a median filter.

Our method requires obtaining the camera calibration ma-
trix for each view. In [QTZ∗06], structure-from-motion
(SfM) technique was used for conducting both camera cali-
bration and dense point cloud reconstructions. In their case,
plants/trees contain many heterogenous features (e.g., leaves
vs. branches) that appear coherently across the views. In our
case, branches of unfoliaged trees have very similar colors
and textures and the occlusion patterns vary significantly
across views due to sparse sampling.

To resolve this problem, we put special calibration tar-
gets on ground and onto tree trunks at the acquisition stage,
and then treat them as feature points in the standard point-
based calibration. In case that we could not find sufficient
calibration features across the views, we allow the user to
hand mark correspondences, e.g., using the tip of recogniz-
able branches. It is important to note that by using a small
set of images, we significantly reduce the user efforts even
counting for manual calibrations.

3.2. 2D Skeleton Graph

Next, we construct a 2D skeleton graph for each matte im-
age. Our solution consist on finding the medial axis geome-
try of the matte by using the gradient vector diffusion tech-
nique [XP98]. As follows, we briefly reiterate the main steps
for computing the skeleton geometry.

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

L. Lopez & Y. Ding & J. Yu / Modeling Complex Unfoliaged Trees from a Sparse Set of Images

From the matte image, we first compute a distance field
image DT [Bor86]: for each pixel p, we compute its shortest
distance to the background pixels (i.e., whose alpha value is
zero). We further apply spatially variant Gaussians to smooth
DT [LLBL07]. We use D̃T to represent the smoothed dis-
tance field. Next, we compute gradient vector field GV F of
D̃T as GV F =∇D̃T =

(
∂D̃T
∂x , ∂D̃T

∂y

)
and apply isotropic dif-

fusion to further smooth GV F as ˜GV F . We then construct
a Skeleton Strength Map (SSM) [XP98]: for every pixel p,
we compute the consistency of its gradient vector along all
possible directions as:

SSM(p) = max

(
0, ∑

p′∈N(p)

˜GV F(p′) · (p′− p)
‖p′− p‖

)
(1)

where N(p) is the set of eight neighbors of p.

Finally, we identify the critical points (i.e., the ones lying
on the medial axis) as local maxima on the SSM. It is com-
monly observed that the critical points form disconnected
regions [LLBL07]. Therefore, for each region, we find two
points inside the region with the minimal || ˜GV F ||, where
|| · || represents the magnitude of the gradient, and connect
the points by finding the shortest distance on ˜GV F . We also
connect the regions in the similar way. Figure 4(c) shows
the medial axis image computed from 4(a).

3.3. From Graph to Tree

Once we recover the 2D skeleton graph, we construct its cor-
responding 2D skeleton tree. To do so, we first identify the
root node and the leaf nodes in the graph. The leaf nodes
are detected by finding the endpoints on the skeleton graph
and the lowest leaf node corresponds to the root. Next, for
each leaf node, we trace its shortest path to the root on the
skeleton graph.

To further identify the bifurcation/multi-furcation nodes,
we apply a simple labeling scheme. We sequentially traverse
the shortest paths for all leaf nodes. For each shortest path,
we assign a unique label to all pixels lying the path. As we
traverse along a specific path, we detect the first pixel on
it that has been previously labeled and mark it as a junc-
tion node. Notice that there are two types of junction nodes:
Y-junction nodes that correspond to the real bi- or multi-
furcation points and should be included in the tree and X-
junction nodes that are caused by occlusions between the
branches and should be discarded as shown in Fig 5. For X-
junctions, we also need to fix the child-parent relationship.

To do so, once we finish labeling all shortest paths, we
check whether the detected junction node is attached to any
unlabeled path. If this is the case, the junction node is an
X-junction. Otherwise, it is a Y-junction. For a X-junction
node, we need to splice the node and fix the connectiv-
ity. Therefore, we check the angles between the edges and
apply a Greedy algorithm to find the optimal connectivity

a) Medial Axis Image b) End-point Nodes c) “Y” Junctions

d) X-Junctions e) Disambiguation

f) 2D Skeleton Tree

X

Figure 5: Reconstructing 2D Skeleton Trees from 2D
Graphs. (a) A 2D skeleton graph. (b) to (d): We identify the
endpoints and the junction nodes. (e): We fix the X-junction
nodes. f): Our final recovered 2D tree.

that yields to the highest angle consistency. In the rare case
when multiple branches occlude each other by two or more
branches at the same point, it is highly challenging to auto-
matically correct the connectivity between the nodes. There-
fore, our framework allows the user to manually fix the con-
nectivity in such cases.

4. 3D Skeleton Tree Reconstruction

In this section, we present a simple but efficient algorithm
to reconstruct the 3D skeleton tree from the recovered 2D
skeleton trees. Our solution is based on using geometric and
topological cues for robust 2D tree matching.

We use a 4-tuple t = (v,e,r,θ) to denote the 2D skeleton
trees, where v = {vi, i = 1,2, · · · ,N} represents the set of 2D
nodes in t, e ⊂ v× v is the set of edges contained by t, r is
the root, and θ = (K, [R|T]) is the camera parameters.

We start by matching a pair of 2D skeleton trees. The
matching result corresponds to a bijective correspondence
set between the nodes on the pair of trees. Given two trees tl

and tr, our first step is to compute the matching cost between
the nodes in both trees. For clarity, we use li to represent the
i-th node in tl and r j to represent the j-th node in tr.

Matching Cost Table We compute the matching cost
Ci j by first finding the corresponding rays (lines) passing
through li and r j in their cameras. In theory, if they match,
they should correspond to the same 3D point and intersect
in 3D space. In reality, since the tree nodes are obtained
via skeletonization and the camera calibrations contain er-
rors, the rays are generally oblique. Therefore, we compute
the distance di j between the rays and find the corresponding
midpoint Q̇i j of the minimal distance segment. We also iden-
tify the "impossible" matching node-pairs: if di j is too large
or Q̇i j lies outside our pre-defined frustum, we simply mark
Ci j = +∞. Otherwise, we set Ci j = di j . We further assign a
penalty cost for resolving occlusion matches.

Pair-wise Tree Matching. Next, we find the optimal
matching between tl and tr that would yield to the minimal
total matching cost. It is well known that 2D tree match-
ing is an NP hard problem. In this paper, we adopt a sim-
ple exhaustive search approach by constructing a hypothesis

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

L. Lopez & Y. Ding & J. Yu / Modeling Complex Unfoliaged Trees from a Sparse Set of Images

α

b

a

fe

dc

β

γ

δ

ε ζ

Left Tree Right TreeHypothesis Tree

XXXXXXXXXXXXXXXXXXX

Figure 6: Pair-wise 2D Tree Matching. Based on the hypoth-
esis that α matches a, we generate a sequence of new hypoth-
esis nodes and apply pruning to reduce the search space.

tree. To prevent the hypothesis tree growing too fast, we use
the cost matrix to efficiently prune the hypothesis. We as-
sume that the root nodes l0 and r0 always match and make
the matching pair as the root of the hypothesis tree. Given
two matched nodes li and r j , we check all possible bijective
mappings between the child nodes CH(li) and CH(r j) as hy-
pothesis, where we allow a node to match to nil. If a specific
bijective mapping contains a pair of nodes with∞matching
cost, we simply discard the hypothesis. We recursively grow
the hypothesis tree via breadth first search and propagate the
average matching cost to the next level, as shown in Fig 6.

Since each 2D skeleton tree is constructed separately, a
child node directly connected to its parent node in one view
may connect to some intermediate node before its parent
node in the other. Therefore, we need to consider poten-
tial "splicing" between the nodes. To resolve this issue, we
also consider the hypothesis of matching grandchild nodes
GCH(li) and GCH(r j) against the child nodes CH(r j) and
CH(li) respectively when constructing the hypothesis tree.
Fig 7 shows the pseudo code of our pair-wise tree matching
algorithm.

3D Skeleton Trees. Next, we apply the pairwise 2D tree
matching results to reconstruct the 3D skeleton tree. In the-
ory, we should conduct our matching algorithm between all
possible pairs between the K 2D skeleton trees. In practice,
we adopt a simpler approach: we pick the skeleton tree t f

that contains the most visible branches as the reference view
and match it with the rest of the skeleton trees. For each
node v f

i , we find its matching nodes in the rest of the skele-
ton trees. Each matching pair has already stored its corre-
sponding 3D point Q̇ (i.e., the midpoint of the short segment
between the corresponding rays). We map all these points to
the 3D space and apply K-means cluster to remove the out-
liers. Finally, we compute their centroid as the correspond-
ing 3D node for fi. We apply our technique to all nodes
in t f to find their corresponding 3D nodes and impose the
topology of t f for connecting them. Fig 9 shows example
3D skeleton trees recovered by our method.

double matchingTrees(TreeNode &l0 , TreeNode &r0)
{ compute CH(l0), CH(r0), GCH(l0), and GCH(r0);

list the set M of combinations of bijective matchings between
CH(l0), GCH(l0), GCH(r0) and CH(r0), CH(r0), CH(l0);

min_cost = +∞ ;
for Mk ∈ M
{ bDiscard = false; C̄ = 0; acc_recurr = 0;

for (li, r j) ∈ Mk

{ Look up C, get the cost Ci j ;

if (Ci j == +∞) {

bDiscard = true; break ;
}
C̄+ = Ci j ;

if (CH(li)!=∅ or CH(r j)!=∅) {

acc_recurr += matchingTrees(ui , vi);
}

}
if (bDiscard==true) {

discard Mk ; continue ;
}
tot_cost = C̄ + acc_recurr ;
if (tot_cost < min_cost) {

Mmin = Mk ; min_cost = tot_cost ;
}

}
return min_cost ;

}

Figure 7: Pseudo Code of Our Tree Matching Algorithm.

5. Branch Recovery

Once we extracted the 3D skeleton tree from the images,
we construct the complete 3D tree geometry. Our approach
first applies per-branch-based volumetric reconstruction and
then estimates the branch geometry (e.g., shape and size)
from the volumetric result. The major difference between
our reconstruction method and the classical visual hull ap-
proach [SRDT01] is that we use the recovered 3D skeleton
tree as priors to effectively reduce the initial volume size.
Furthermore we show that, even with highly noisy volumet-
ric reconstruction results, our technique is still able to faith-
fully and robustly recover high quality tree geometry by us-
ing the 3D skeleton tree prior.

5.1. Per-Branch Volumetric Reconstruction.

Classical volumetric reconstruction first bounds the scene
with a 3D volume by intersecting the view frustums of all
cameras. The volume is then discretized into voxels with a
size coherent with the input image resolution. Notice that in
order to recover fine branches from the input images, full
image resolution needs to be used for discretization (e.g.,
2Kx2K in our case) and the resulting volume size would be
too large to process or store. Therefore, existing volumetric-
based tree modeling methods have trade off volume resolu-
tion for processing speed, and they are only able to recover
very coarse tree geometry [SRDT01].

Our technique resolves the resolution issue by directly
using the recovered 3D skeleton tree to guide volume dis-
cretization. Specifically, we use a 3D cylinder to bound each
branch. The radius of the cylinder is chosen large enough to

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

L. Lopez & Y. Ding & J. Yu / Modeling Complex Unfoliaged Trees from a Sparse Set of Images

a) Input 3D Tree

d) Minimal cost path e) 3D surface Model

b) 3D Edge c) Local Voxel Carving

Figure 8: Per-Branch Volumetric Reconstruction.

cover all pixels of the branch when back-projected onto the
views. We then discretize each cylinder into voxels at a reso-
lution of twice the image resolution to avoid undersampling.
Since each branch only covers a small amount of pixels, our
method significantly reduces the initial volume size. In our
experiments, the size of our cylinder volume representation
is usually only 5 percent or less of the standard view frustum
discretization.

Next, we apply local space carving on each cylinder vol-
ume. For each voxel inside the cylinder, we project it back to
all input images. To further reduce the computational over-
head, we simply carve out the voxel if its corresponding
pixel lies in the background of the matte image in any views.
For the remaining voxels, we compute their color consis-
tencies across the input images and store the mean and the
variance of each voxel.

To recover the actual branch geometry, standard volumet-
ric reconstruction [KS00] could be applied to refine the vol-
ume. However, since we only use very few views, the volu-
metric results are usually very noisy, as shown in Fig 8(C).
Therefore, we set out to find a curve that best matches the
shape of the branch and then use primitive geometry such as
cylinders along the curve to approximate the branch. Specif-
ically, we first locate two voxels that correspond to the end-
points of the branch edge in the 3D skeleton tree. We then
use Fast March algorithm [TvW02] to compute the optimal
path between the two nodes that minimizes the inconsistency
cost. Finally, we approximate the branch geometry by con-
catenating cylinders along the pass. To estimate the cylinder
radius, at every voxel V on the optimal path, we estimate
a local cut plane and find all uncarved voxels lying on the
plane. We compute the weighted distance of the voxels us-
ing their stored consistency values. We further average the
radii over all voxels on the path and use it as the radius of the
curved cylinder to approximate the 3D branch. Since the pe-
ripheral voxels of a branch are often less reliable and hence
are assigned with a smaller weight, our estimated cylinder
radius tends to be smaller than its actual value. Fig 8(E)
shows our reconstruction result of a sample branch on an
Elm tree. We refer the readers to the supplementary video to
view the complete tree.

Sequence Images Resolution Branches
Eml 4 1408×940 58

CoffeeTree 5 2448×3264 48
Oak 4 1880×2816 80

Table 1: Tree/Image Information in Our Experiments.

6. Results and Discussions

We demonstrate our framework on reconstructing 3D tree
models using captured images of real trees. In all our exam-
ples, we only use 4-6 images that span 100◦ to 160◦ angles.
The images were captured using a Canon EOS Digital Rebel
Xti SLR camera.

We conduct our reconstruction algorithms on a DELL PC
with Intel DualCore 2.4Ghz CPU and 4GB of RAM. We ap-
ply the Robust Matting algorithm [WC07] for alpha matte
estimation. It takes about 2 minutes per image for the user to
specify the strokes and obtain the mattes. Our 2D skeleton
tree reconstruction algorithm takes about 5 seconds for each
image. As was discussed in Section 3, our system occasion-
ally requires manual separation of the overlapping branches
in the 2D skeleton graph. In our experiments, such user in-
terventions occur only four times on average for each image.
The 3D Skeleton Tree is then automatically reconstructed
using the algorithm described in Section 4 in less than 2
seconds. Branch geometry reconstruction takes about 10 to
25 seconds depending on the number of branches in the tree.
Table 1 summarizes the image resolution (after cropping)
and the estimated number of branches of the input trees.

Elm. The first row of Figure 9 shows an Elm tree recon-
structed by our algorithm. For camera calibration, we stick
8 calibration targets onto the tree trunk and to the ground
and our algorithm automatically detects and matches these
targets via SfM. We capture 4 images towards the tree that
span about 100 degree view angle. The tree contains many
tiny branches on top of the major branches, making it chal-
lenging for the segmentation and skeletonization process.
We thus post-process the matte images to remove these small
branches while preserving the main branches. Column (a)
shows the view that we pick for 3D reconstruction. Column
(b), (c), and (d) show our recovered 3D skeleton geometry
and branch geometry. Our method accurately captures the
shape characteristics of the tree although it misses a few
branches that are invisible to the view. We refer the reviewers
to the supplementary video for the complete 3D tree geome-
try recovered by our algorithm.

Kentucky Coffee Tree. The second row of Fig 9 shows
our reconstruction result of a coffee tree. The tree has only a
few large leaves and appears significantly different from the
background. These features make the matte estimation much
easier. In our experiment, the user only needs to draw four to
six strokes to obtain the high quality alpha mattes. However,
the branches of the tree are very thin and we were unable to
attach the calibration patterns to the tree trunk. Therefore, we

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

L. Lopez & Y. Ding & J. Yu / Modeling Complex Unfoliaged Trees from a Sparse Set of Images
E

lm
C

o
ff
e

e
 T

re
e

O
a

k

b)a) c) d)

Figure 9: Our Recovered 3D Tree Models. (a): The reference view used for tree reconstruction. (b) The recovered skeleton tree.
(c) and (d): Two views of our final reconstructed 3D tree model. Each tree is reconstructed using no more than 6 input images.

require that user manually mark correspondences on the five
input images. Our recovered 3D tree geometry contains few
discrepancies in the diameter of the branches. This is due to
errors in the camera calibration results that later lead to less
accurate volumetric reconstruction. Our technique, however,
is still able to recover a reasonably good 3D reconstruction
to faithfully represent the overall tree geometry.

Oak. In the bottom row of Fig 9, we apply our reconstruc-
tion method on a complex Oak. We capture four images to-
wards the tree that span about 120 degree angle views. Sim-
ilar to the Elm tree, it contains hundreds of tiny branches.
To avoid reconstruction errors, we remove these branches
in the matte images via median filters. Notice that although
the tree geometry is highly irregular and several branches
are strongly curved, our technique is able to faithfully re-
cover most branches of the trees. In all three examples, our
reconstructed tree models are not only consistent with the
input images but also appear more realistic compared with
the synthesis-based approaches.

7. Limitations and Future Work

We have presented a new image-based technique for mod-
eling complex unfoliaged trees. Our method is able to faith-
fully capture, rather than synthesize, 3D tree geometry by

only using a sparse set of images. The core of our algorithm
is to actively integrate 2D and 3D tree topology as shape pri-
ors into the modeling process. Specifically, we have applied
2D tree topology for constructing the 2D skeleton trees from
the matte images and further imposed 3D tree topology for
matching 2D skeleton tree pairs. We have also used the re-
sulting 3D skeleton tree to guide per-branch volumetric re-
construction for recovering the complete tree geometry. We
have demonstrated our framework on a variety of trees. Our
results on real tree images have shown that our method is
robust and reliable.

An apparent limitation of our technique is that it can only
handle unfiolaged trees. In our framework, we rely on ac-
curate recovery of 2D skeleton trees for robust 3D recon-
struction. If the tree is covered by leaves, it would be very
challenging to construct the 2D skeleton tree from the im-
age. One possible solution is to combine the 3D scanning
technique [XGC05] or the dense multi-view reconstruction
method [QTZ∗06] to first obtain the 3D point cloud and
then apply color/texture based segmentation to separate the
branches from the leaves. The resulting branches, however
will contain many holes due to leave occlusions. Rule-based
methods may help to infer and complete the 2D skeleton
trees.

Another limitation of our approach is that we pick the im-

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

L. Lopez & Y. Ding & J. Yu / Modeling Complex Unfoliaged Trees from a Sparse Set of Images

age that contains most visible branches as the reference view
for recovering the 3D skeleton tree. In other words, we do
not equally treat all input images, and if there is a branch
missing in the reference view, we will not be able to re-
cover it. In the future we plan to study more sophisticated
3D skeleton tree reconstruction algorithm that can recover
the branches observed from any view. Our method is also un-
able to reconstruct detailed tree geometry such as twigs. This
is because our algorithm relies on coherent image matte and
2D skeleton estimation across the views to robustly recover
the 3D geometry. For trees with fine twigs, it is challenging
to maintain consistent topology in all views when applying
the matting and skeletonization tools to individually process
each image.

Our algorithm is purely image-based and does not use the
botanic rules. In the future, we also plan to explore combin-
ing the Markov Random Field approach [CNX∗08] to inte-
grate these rules into 2D/3D skeleton tree reconstructions.
For example, we could directly query the tree database to
find the most consistent 3D skeleton tree from the 2D ones
for further improving reconstruction quality. Finally, since
our method provides a convenient way for recovering 3D
tree geometry, we plan to capture a wide range of trees and
contribute to the tree geometry database for studying new
botanic rules and generating more realistic model templates.

Acknowledgements. We would like to thank the anony-
mous PG reviewers for their valuable comments and sug-
gestions. The authors are supported in part by NSF grants
MSPAMCS-0625931, IIS-CAREER-0845268 and CONA-
CYT 171570.

References
[BF05] BRECKON T. P., FISHER R. B.: Non-parametric 3d sur-

face completion. In Proc. of the 5th Int. Conf. on 3D Digital
Imaging and Modeling (2005), pp. 573–580.

[Bor86] BORGEFORS G.: Distance transformations in digital im-
ages. Comput. Vision Graph. Image Process. 34, 3 (June 1986),
344–371.

[CNX∗08] CHEN X., NEUBERT B., XU Y.-Q., DEUSSEN O.,
KANG S. B.: Sketch-based tree modeling using markov random
field. ACM Trans. Graph. 27, 5 (2008), 1–9.

[DREF∗88] DE REFFYE P., EDELIN C., FRANÇON J., JAEGER
M., PUECH C.: Plant models faithful to botanical structure and
development. In SIGGRAPH ’88 (1988), pp. 151–158.

[EL99] EFROS A. A., LEUNG T. K.: Texture synthesis by non-
parametric sampling. Computer Vision, IEEE International Con-
ference on 2 (1999), 1033.

[HZ03] HAN F., ZHU S.-C.: Bayesian reconstruction of 3d
shapes and scenes from a single image. In HLK ’03: Proc. of the
1st IEEE International Workshop on Higher-Level Knowledge in
3D Modeling and Motion Analysis (2003), p. 12.

[KS00] KUTULAKOS K., SEITZ S.: A theory of shape by space
carving. IJCV 38, 3 (July 2000), 199–218.

[KZ02] KOLMOGOROV V., ZABIH R.: What energy functions
can be minimized via graph cuts? In ECCV ’02: Proceedings of
the 7th European Conference on Computer Vision-Part III (Lon-
don, UK, 2002), pp. 65–81.

[LLBL07] LONGIN J. L., LI Q., BAI X., LIU W.: Skeletoniza-
tion using ssm of the distance transform. In ICIP (5) (2007),
pp. 349–352.

[LSTS04] LI Y., SUN J., TANG C.-K., SHUM H.-Y.: Lazy snap-
ping. In SIGGRAPH ’04: ACM SIGGRAPH 2004 Papers (New
York, NY, USA, 2004), ACM, pp. 303–308.

[MP96] MĚCH R., PRUSINKIEWICZ P.: Visual models of plants
interacting with their environment. In SIGGRAPH ’96: Proceed-
ings of the 23rd annual conference on Computer graphics and
interactive techniques (NY, USA, 1996), ACM, pp. 397–410.

[NRS01] NOSER H., RUDOLPH S., STUCKI P.: Physics-
enhanced l-systems. In WSCG (2001), pp. 214–221.

[OOI06] OKABE M., OWADA S., IGARASHI T.: Interactive de-
sign of botanical trees using freehand sketches and example-
based editing. In ACM SIGGRAPH 2006 Courses (2006).

[PJM94] PRUSINKIEWICZ P., JAMES M., MĚCH R.: Synthetic
topiary. In SIGGRAPH ’94: Proceedings of the 21st annual con-
ference on Computer graphics and interactive techniques (New
York, NY, USA, 1994), ACM, pp. 351–358.

[QTZ∗06] QUAN L., TAN P., ZENG G., YUAN L., WANG J.,
KANG S. B.: Image-based plant modeling. ACM Trans. Graph.
25, 3 (2006), 599–604.

[RKB04] ROTHER C., KOLMOGOROV V., BLAKE A.: "grabcut":
interactive foreground extraction using iterated graph cuts. In
SIGGRAPH ’04 (2004), pp. 309–314.

[RMMD04] RECHE-MARTINEZ A., MARTIN I., DRETTAKIS
G.: Volumetric reconstruction and interactive rendering of trees
from photographs. ACM Trans. Graph. 23, 3 (2004), 720–727.

[Sak98] SAKAGUCHI T.: Botanical tree structure modeling based
on real image set. In SIGGRAPH ’98 (1998), p. 272.

[SRDT01] SHLYAKHTER I., ROZENOER M., DORSEY J.,
TELLER S.: Reconstructing 3d tree models from instrumented
photographs. IEEE Comput. Graph. Appl. 21, 3 (2001), 53–61.

[TFX∗08] TAN P., FANG T., XIAO J., ZHAO P., QUAN L.: Single
image tree modeling. ACM Trans. Graph. 27, 5 (2008), 108.

[TvW02] TELEA A., VAN WIJK J. J.: An augmented fast march-
ing method for computing skeletons and centerlines. In VISSYM
’02: Proc. of the symposium on Data Visualisation (Aire-la-Ville,
Switzerland, 2002), Eurographics Association, pp. 251–ff.

[TZW∗07] TAN P., ZENG G., WANG J., KANG S. B., QUAN
L.: Image-based tree modeling. In SIGGRAPH ’07: ACM SIG-
GRAPH 2007 papers (New York, NY, USA, 2007), ACM, p. 87.

[WC07] WANG J., COHEN M. F.: Optimized color sampling for
robust matting. In Computer Vision and Pattern Recognition,
2007. CVPR ’07. IEEE Conference on (2007), pp. 1–8.

[WP95] WEBER J., PENN J.: Creation and rendering of realistic
trees. In SIGGRAPH ’95 (1995), pp. 119–128.

[XGC05] XU H., GOSSETT N., CHEN B.: Knowledge-based
modeling of laser-scanned trees. In SIGGRAPH ’05: ACM SIG-
GRAPH 2005 Sketches (New York, USA, 2005), ACM, p. 124.

[XP98] XU C., PRINCE J. L.: Snakes, shapes, and gradient vector
flow. Image Processing, IEEE Transactions on 7, 3 (1998), 359–
369.

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

