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Abstract
In computer graphics, modeling the geometry of hair and hair-like patterns such as grass and fur remains a sig-
nificant challenge. Hair strands can exist in an extensive variety of arrangements and the choice of an appropriate
representation for tasks such as hair synthesis, fitting, editing, or reconstruction from samples, is non-trivial. To
support such applications we present a novel mathematical representation of hair based on a class of minimal
surfaces called generalized helicoids. This representation allows us to characterize the geometry of a single hair
strand, as well as of those in its vicinity, by three intuitive curvature parameters and an elevation angle. We
introduce algorithms for fitting piecewise generalized helicoids to unparameterized hair strands, and for inter-
polating hair between these fits. We showcase several applications of this representation including the synthesis
of different hair geometries, wisp generation, hair interpolation from samples and hair-style parametrization and
reconstruction from real hair data.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Line and curve generation I.3.5 [Computer Graphics]: Computational Geometry and Object
Modeling—Curve, surface, solid, and object representations

1. Introduction

Hair-like patterns, comprised of dense distributions of
smooth curves, are ubiquitous in our world. Consider exam-
ples arising in nature including fur, grass, feathers or muscle
fibers, or those arising in man-made structures, such as opti-
cal fibers, cables or thread. Modeling the geometry of such
patterns in computer graphics remains a significant chal-
lenge due to the extensive variety of possible arrangements
of the component strands. Whereas there is an intuitive sense
in which hair can be straight, wavy or curly, expressing this
mathematically is not trivial. Furthermore, applications con-
strained by time efficiency or storage requirements demand
a suitable level of abstraction. Considering that there are typ-
ically more than 100,000 strands [Rob02] on a human head,
it can be impractical to represent each individually.

To simplify the modeling of hair strands, assumptions are
often made about their length, their continuity and their local
geometry. For example, strands generated through biological
processes typically have a coherent orientation and curvature
in a local neighborhood. In the computer vision literature,
such locally parallel dense curves have been dubbed texture
flows [BSZ03]. The coherency is a direct result of the lo-
cal forces – static, interaction, and external – that apply on

a scale larger than each individual strand. This suggests the
use of local differential geometric models to express conti-
nuity in such patterns.

Motivated by these considerations, we present methods
for generating, fitting and interpolating hair patterns using
a parametric model based on a class of minimal surfaces
called generalized helicoids. A generalized helicoid is char-
acterized by three parameters that control curvature in the
tangent, normal, and binormal directions to each strand, and
a fourth parameter to control elevation angle above a tangent
plane [Sav09]. This intuitive representation equips a strand
with information not only about its own geometry but also
about the “flow” of hair strands in a local volumetric neigh-
borhood. As a result, the model can be used for a variety of
applications including hairstyle synthesis and hairstyle re-
construction from sparse samples.

Our major contributions include:

1. The introduction of a generalized helicoid-based frame-
work to model the geometry of a hair strand and its local
(volumetric) neighborhood.

2. The synthesis of different hair types by sampling from a
generalized helicoid-based representation.
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3. The use of the model to “fill-in” a patch of hair between
hair strand samples, by interpolation.

4. The use of the model to fit unparametrized hair strand
data, which when combined with interpolation allows for
efficient hairstyle reconstruction from sparse samples.

2. Related Work

We begin by reviewing related work in the area of modeling
the static geometry of hair, or hairstyling. We also refer the
reader to review articles on the related topics of hair dynam-
ics and rendering [WBK∗07, BHC∗08].

2.1. Optimizations

The human scalp is typically populated by more than
100,000 hair strands, that vary in width from 0.05 mm to
0.09 mm [Rob02]. Given this level of resolution, it is neces-
sary to abstract a representation for hair geometry (as well
as for rendering and dynamics) particularly in real-time ap-
plications. A common strategy is to subsample and select a
small number of guide hairs that are representative of the
full hairstyle. Additional hair strands can then be interpo-
lated from this subset. These hair strands can be further
grouped into larger units to improve the efficiency of sub-
sequent computations, as well as the appearance and texture
of the rendered hair. A common approach to grouping in-
volves the formation of wisps, where existing hair strands
are locally duplicated, displaced and redrawn, e.g., by us-
ing trigonal prisms [WS91]. The wisps are often formed be-
fore solving for hair dynamics, as they provide a way to con-
strain the interactions between larger volumes while requir-
ing fewer pairwise interactions. For simple hairstyles, this
optimization is highly convenient at the design, animation,
and rendering stages. Consistency is not directly enforced
between hair strands belonging to distinct wisps. Cluster-
based methods have also been proposed for wisp genera-
tion [YXYW00, XY01] and the notion of a skeleton along
with a deformable envelope has been used to capture local
and global hair motion by Plante et al. [PCP01]. Choe and
Ko [CK05] represent wisps as generalized cylinders.

2.2. Explicit versus Implicit Methods

Explicit hair modeling approaches describe hairs as a series
of connected geometric primitives. Examples include the use
of trigonal prisms [WS91], polylines [KN99, TCC∗96] or
cylindrical segments [DTKT93] and their cluster-based ex-
tensions [CK05, KN02, XY01, YXYW00], the multi-layer
wisp model of Plante et al. [PCP01], and super-helices for
modeling hair geometry and dynamics [BKMT10, Ber09,
BK08, BAC∗06]. We note that whereas a super-helix mod-
els a single hair strand, the generalized helicoid is a higher
dimensional structure that also models the curvature and
smoothness of a volumetric neighborhood of streamlines.
Pseudo-physical hair systems, where hairs are represented

as serial multi-body chains or spring-connected masses ro-
tating about hinges, have also been proposed [Had06], while
Kmoch et al. [KBMT09] use elastic rods to describe hair-
like objects.

In contrast, implicit approaches describe hair as the out-
put of a function in a continuous medium. A texture-based
method was first described by Csuri et al. [CHP∗79], while
Perlin and Hoffert [PH89] were the first to use volume densi-
ties. A textured polygonal mesh is used by Neyret [Ney98],
while Yuksel et al. [YSK09] use hair meshes to define the
large-scale topology of a hairstyle and generate a refined ver-
sion by growing hairs along them. In a somewhat different
approach, hair geometry can also be modeled by streamlines
of a single global fluid flow, which wraps around the scalp
and is characterized by sources and vortices [HMT01,Yu01].
This approach is perhaps most similar in spirit to our use
of generalized helicoids for incorporating a notion of flow.
However, a key difference is that ours is a differential geo-
metric model that is applied locally to capture the geometry
of hairs in a neighborhood, and is thus not limited to a single
fluid flow for modeling the hairstyle.

2.3. Multiresolution Methods

Multiresolution approaches employ different level of detail
computational models depending on the distance from the
viewer to the hair, in order to speed up rendering and the
simulation of dynamics. For instance, some use a dual rep-
resentation where the hair is approximated by connected
surface patches or strips at large scales, while at smaller
scales it is represented by a set of thin cylinders spread over
these surfaces [KN00,KH00]. For rendering fur or short hair,
Lengyel et al. [LPFH01] use a polyline hair representation
for nearby views, while for distant views, concentric texture
layers are employed. Others use a hierarchy of generalized
cylinders to represent hair [WYZG09, KN02], while Ward
et al. [WLJ∗03] use a hierarchical representation based on
strips, clusters and individual strands.

2.4. Capturing Hair Models from Images

An alternate approach to the modeling of hair geometry in-
volves the capture of real hair data. Perhaps the first such
approach is described by Kong et al. [KTN97], where a
hair volume is reconstructed from pictures taken from dif-
ferent viewpoints by using a point matching heuristic. Paris
et al. [PBS04] and Grabli et al. [GSML02] use a shape from
inverse lighting approach to develop a sophisticated method
for reconstructing the visible hairs from a small set of im-
ages. Similarly, Wei et al. [WOQS05] also use images cap-
tured from multiple views to recover the hair geometry. Paris
et al. [PCK∗08] build on earlier work and simplify the cap-
ture of complex features such as concavities and curls. Al-
though they make use of a parameteric model based on struc-
ture tensors, it does not immediately translate into a hair
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modeling framework, where curvature can be controlled in
an intuitive manner. Finally, Jakob et al. [JMM09] extract
features from hair macrophotographs and uses a sequence of
least squares fitting iterations to grow hair strands in a cloud
of hair features.

The hair capture methods discussed above show promise
in capturing real hair data, but little work has been carried
out thus far to parametrize this data so as to facilitate fur-
ther processing. In fact, the general question of how to ob-
tain a qualitatively faithful reconstruction of a hairstyle from
sparse samples remains largely open. Progress on this prob-
lem could benefit applications that involve hairstyle editing
or transfer. As we shall show, the generalized helicoid-based
representation, equipped with algorithms for fitting and in-
terpolation, contributes to this goal.

3. Hair Modeling using Generalized Helicoids

The generalized helicoid is a well-known mathematical ob-
ject and is the only nonplanar ruled minimal surface. Intu-
itively, if a curve rotates about a fixed axis and is displaced
parallel to this axis such that the displacement rate is always
proportional to the angular velocity of rotation, then this gen-
erates a generalized helicoid [Che96].

The generalized helicoid model describes the two orien-
tation angles θ(x,y,z) and φ(x,y,z) of a 3D flow by a pa-
rameter vector k = (kT ,kN ,kB,α), in a Cartesian reference
frame. In spherical coordinates, these two orientation angles
are given by

θ(x,y,z) = arctan
(

kT x+ kNy
1+ kNx− kT y

)
+ kBz,

φ(x,y,z) = αθ(x,y,z). (1)

Here θ represents the orientation in the xy plane, φ repre-
sents the elevation angle out of this plane, and α is a con-
stant. As shown by Savadjiev [Sav09], where this abstrac-
tion has been used to model white matter fiber tracts of the
brain in diffusion MRI, the generalized helicoid has two key
mathematical properties. First, the hypersurfaces (x,y,z,θ)
and (x,y,z,φ) are both minimal surfaces, i.e., surfaces with
mean curvature zero. As such, the orientation of the flow is
guaranteed to vary smoothly in a local neighborhood. Sec-
ond, the parameters kT ,kN , and kB are each related to a no-
tion of a tangential, normal, and bi-normal curvature, respec-
tively, of the underlying flow field. Continuity for φ in Eq. 1
is ensured by counting and adding the number of 2π cycles
θ completes.

To gain the intuition behind this model consider a frame
field at the origin, with its tangential, normal and binormal
components given in spherical coordinates by

ET = (cosφcosθ,cosφsinθ,sinφ)

EN = (−sinθ,cosθ,0) (2)

EB = (−sinφcosθ,−sinφsinθ,cosφ) .

(a) (0.5,0,0,0) (b) (0.5,−0.2,0,0) (c) (0.5,0,0.5,1)

Figure 1: Varying the parameter vector k = (kT ,kN ,kB,α)
can produce streamlines that (a) bend and remain in the xy
plane, (b) approach a sink, and (c) twist out of plane. The
vector field in the xy plane is shown along with a hair strand
(red), shadow (grey), and streamlines (white).

Let the tangential component be aligned with the direction of
a local flow pattern. The generalized helicoid then describes
the fashion in which the frame field must be rotated, in a lo-
cal neighborhood, to fit the flow pattern at a point (x,y,z).
As illustrated in Fig. 1, kT describes curvature in the tan-
gential direction, kN provides normal curvature, effectively
wrapping the streamlines in a coil-like fashion or fanning
them out, and kB and α allow for local torsion, twisting the
streamlines away from or towards the osculating plane. One
can observe that flipping the sign of kT merely results in a
reflection of the streamline in the ET -EB plane. This behav-
ior can also be obtained by considering only the magnitude
of kT and instead applying a rotation of π radians about EN ,
a strategy we will use in some cases (as described in Sec-
tion 4.1).

3.1. Tracing Hair Strands

With a generalized helicoid, the geometry of a hair strand
is parameterized as H(k,Q,p0,L), where k is the parameter
vector, Q is the coordinate frame at the root of the strand
obtained by a rigid body transformation of the frame field at
the origin, p0 is the origin of the root, and L is the length of
the hair. An explicit sequence of points on the hair strand is
computed as a trace of the frame field described by Eq. 1 (see
the red curve in Fig. 1). This representation simultaneously
equips the hair strand with implicit information about the
curvature of strands in its vicinity (the streamlines in Fig. 1).
As such, the generalized helicoid is a hybrid between explicit
and implicit representations, with the ability to control hair
strand curvature intuitively and efficiently.

To trace a hair strand we use forward Euler integration
along the tangential direction ET of the frame field, start-
ing from a root location p0 with the orientations θ(p0) and
φ(p0). In all, n steps of length h are taken to produce a hair
of length L = nh, where points on the hair strand are given
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by

pi+1 = pi +hp′i
p′i = ET (θ(pi),φ(pi)) . (3)

We observe that higher order integration methods are unnec-
essary due to the fixed hair length and smoothness of the
frame field.

3.2. Adding Waviness

With a hair strand parametrized by a generalized helicoid,
additional effects can be included for hairstyling. We briefly
illustrate a waviness offset effect that is simple to control,
efficient to compute (it reuses the precomputed Frenet frame
moving along the curve), and couples well with the gener-
alized helicoid tracing algorithm while achieving realism.
The basic idea is to preserve the large scale geometry of the
hair strand, while adding local helical perturbations. Let the
Cartesian coordinates for generating the displacement be re-
placed by the Frenet coordinates of the generalized helicoid.
We parameterize the offset with s and using an amplitude
(radius) a and frequency 2πb map it in the plane spanned by
the binormal and normal as follows:

p̃(s) = p(s)+acos(bs)EB(s)+asin(bs)EN(s). (4)

Fig. 2 shows a hair strand (blue) along with its waviness off-
set (red) for amplitudes and frequencies of different magni-
tudes. In practice we fix the amplitude of the helical offset
while allowing the frequency to vary. Additionally, stochas-
tic perturbations can be trivially added to the generalized he-
licoid tracing algorithm to produce realistic variations.

(a) a = 0.1,b = 0.15 (b) a = 0.1,b = 0.3 (c) a = 0.05,b = 0.5

Figure 2: Original hair (blue) and waviness offset (red) with
helical radii a and frequencies b.

3.3. Modeling Wisps

The implicit nature of the generalized helicoid model can
be leveraged to model wisps very efficiently. The basic idea
is to offset the origin p0 in Eq. 3, to obtain a dense dis-
tribution of locally parallel hair strands. Examining Fig. 1,
this amounts to tracing additional streamlines that surround
a master hair strand. In a sense this can be viewed as a type

of “extrapolation”, but with essentially no additional com-
putation required. This feature is of particular interest for
proponents of the hair wisp model.

Random orientation perturbations can be added to further
emphasize the fanning of the wisp. To illustrate, Fig. 3 shows
a wisp generated by extrapolating 256 strands around a guide
hair by sampling and tracing streamlines from a neighbor-
hood of its root location.

Figure 3: A wisp generated by offsetting the origin p0 and
sampling additional streamlines from the generalized heli-
coid. The guide strand of the helicoid is shown in red, with
the extrapolated hairs comprising the wisp shown in gold.

3.4. Hairs as Piecewise Helicoids

A more powerful and flexible way of representing hairs with
complex geometry is to make use of a composite model,
which we refer to as a piecewise-helicoid or a p-helicoid.
A p-helicoid is obtained by concatenating multiple gener-
alized helicoids, aligning them using the Frenet frame con-
structed by Eq. 2. This characterization of hair strands pro-
vides C∞ continuity along a piece and enforces continuity
of the Frenet frame as it moves from one piece to the next, a
condition stronger than C1 continuity.

Piecewise helicoids can be used to generate the geometry
of more complex hairstyles, and as described above, wavi-
ness offsets can be added for additional realism. Fig. 4 and 5
show several examples of p-helicoid based hair strands with
waviness effects, along with their extrapolated wisps. Fig. 4
shows a long hair composed of 2 helicoid pieces with vary-
ing curvature parameters. Fig. 5 shows a “messy” hair ob-
tained using 3 helicoidal pieces with different curvature pa-
rameters and a curly hair composed of 4 helicoidal pieces
having similar curvature. In all cases the wisps are com-
prised of 256 hairs.
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(a) A long hair. (b) A long hair with a waviness offset.

Figure 4: A long hair in red (left) combined with a waviness offset (right). Two helicoid pieces are used. The associated
extrapolated wisps are shown in brown.

(a) A “messy” hair. (b) A curly hair.

Figure 5: A “messy” hair (in red, on the left) using three helicoid pieces, and a curly hair (in red, on the right) using four helicoid
pieces. The extrapolated wisps are shown in brown.

4. Hair Interpolation

The property that any orientation vector field characterized
by Eq. 1 is a generalized helicoid suggests a very natural
approach to filling in sparse regions between hair strands or
hairstyle completion. The essential idea is to interpolate be-
tween the parameter vectors k associated with each strand
by an inverse distance weighting (IDW) scheme to generate
new hair strands. This enforces a smooth variation in cur-
vature. We first consider interpolation of single generalized
helicoids and p-helicoids on a surface that is described ex-
plicitly. We then develop the more general case of interpo-
lating on an arbitrary surface, where new root node locations
must first be determined.

4.1. Interpolation Between Single Helicoids

Consider the simple case of interpolating single-piece gen-
eralized helicoids on an explicit surface. Let the set of guide
hairs, Hi for i = 1...N, have roots at xi and parameters ki,
Qi, pi, and Li. For a new root location sampled at x̃, a new
hair H̃ is obtained by interpolating the parameters. We use
a simple Shepard inverse distance scheme for the interpola-
tion weights, wi = φi/∑

N
i=1 φi, where φi = ||x̃−xi||−1

α
. Vary-

ing α provides a control of the interpolated hairstyle, either
smoothing it out or generating clumps of hair. We use α = 3
in all our examples.

Note that if a guide hair has a negative kT we can rotate
its orientation frame Q by π radians about EN , and negate
kT . This does not change the hair geometry but improves

the interpolation by preventing two geometrically identical
guide strands deferring only in the sign of kT from producing
a “straight” helicoid between them.

Fig. 6 (left) illustrates the process of interpolation be-
tween two guide hairs (shown in red) along a line drawn be-
tween them to generate new hair strands (shown in brown).
In this example the two guide hairs are π-rotated copies
of one another. Fig. 6 (right) illustrates an alternative ap-
proach of interpolating using only the points sampled along
the guide hairs. Observe that the generalized helicoid-based
interpolation leads to a smoother flow from one guide hair to
the other, i.e., one with less curvature variation. In addition,
it is many orders of magnitude faster since only the (small
number of) helicoid parameters need to be interpolated.

(a) Helicoid-based (b) Sample Point-based

Figure 6: A comparison of interpolating guide hairs using
generalized helicoids (left) and using only points sampled
along the guide strands (right). The two guide hairs (red) are
π-rotated copies of each other, with k = (1,−0.1,0.3,1).
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4.2. Interpolation Between p-Helicoids

The extension of the method to handle guide strands de-
scribed by p-helicoids on an explicit surface uses the same
interpolation scheme and weighting function. However, the
new interpolants must now populate not only root locations
on the growth surface but also locations above it. This is ac-
complished with a piece by piece strategy. For the first piece
of each new hair strand we use exactly the same strategy
as with single helicoids, interpolating k,Q,p0 and L. Ad-
ditional pieces of equal length are then computed, in a se-
quential fashion, such that their Frenet frames are aligned at
touching endpoints and the sum of their length is L. Thus,
for the additional pieces beyond the first we only interpolate
k. The number of pieces in interpolated p-helicoids is de-
termined using the weighting method described in 4.1. Fig.
7 and 8 illustrate that the interpolation between p-helicoid
guide hairs on a line, and on a plane, respectively, achieves
a smooth variation in curvature between the guide hairs.

We observe that interpolation of p-helicoids is fast, even
with our unoptimized implementation. For instance, using a
cluster of 9 p-helicoid guide hairs with an average of 4 pieces
each, 1000 p-helicoids can be interpolated in 0.67 s using
a single 2.4GHz processor. This translates to an average of
0.7 ms per hair, or approximately one minute to interpolate
a dense head of hair (90k hair strands). These interpolations
can be sped up considerably by computing them in parallel
on multiple processors.

(a) Example 1 (b) Example 2

Figure 7: Two examples of p-helicoid interpolation on a line.
Distinct pieces of the p-helicoid interpolants are shown in
different colors. Two guide hairs are used, one at each end
point (in bold).

4.3. Interpolation on an Arbitrary Surface

To interpolate across guide hairs on an arbitrary surface, root
locations for new hairs (follicles) must be determined. The
method we use is based on a particle sampling approach.
First, an implicit surface is fit to vertices on the initial object
model using the thin-plate energy minimization technique
described by Turk and O’brien [TO02]. An adapted imple-
mentation of Witkin and Heckbert’s [WH94] is then used
to sample a particle system, driven by repulsion forces and
implicit constraints. This method distributes particles across

(a) Example 1 (b) Example 2

Figure 8: Two examples of interpolation between p-helicoids
on a plane. The four guide hairs are shown in red.

the implicit surface in a near-regular manner, by allowing
particles to fission (divide in two) and die. Fixed particles
constrain the sampling within a region on the implicit sur-
face. This process is illustrated in Fig. 9.

Figure 9: Follicle locations (green) sampled on an arbitrary
surface. The scalp contour (red) is defined by fixed particles.
The red and blue points represent constraints for the implicit
surface.

The normal to the implicit surface serves to orient a coor-
dinate frame W at each root node location. The local frame
Q of an interpolated p-helicoid is obtained by combining
this coordinate frame W with an interpolation of the coordi-
nate frames of the neighboring guide hairs using the scheme
described in Section 4.1. Fig. 10 illustrates the interpola-
tion process on a patch of scalp, using a single helicoid for
each strand for simplicity. The method creates a tuft of hair
(shown in gold) with smoothly varying curvature between
the guide strands (shown in red). One can also apply the in-
terpolation technique to obtain a smooth variation between
guide strands of varying geometry, as shown in Fig. 11. In
this latter example, long and curly hairs (on the side) transi-
tion to a straight hair parting on the forehead. Fig. 12 illus-
trates the process of creating a “fauxhawk” hairstyle using
the methods discussed in this section. The hairstyle was con-
structed from 20 p-helicoid guide hairs of varying p-helicoid
parameters, length, and orientation frames.

5. Hair Fitting

In the examples presented so far we have synthesized hair
patterns from scratch using generalized helicoids. There are
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Figure 10: Interpolation of single helicoids on an implicit
surface to create a tuft of hair. In this example the guide
hairs, shown in red, are generated with random parameter
vectors k and coordinate frames Q. The interpolated strands
are shown in gold.

(a) Front view (b) Back view

Figure 11: Seven guide hairs (red) are interpolated (brown).

other situations, however, where real hair data may be avail-
able, described for example by a set of polylines. In such
cases it might be desirable to parametrize this data so as
to be able to efficiently edit and manipulate it. We address
this goal by devising an algorithm for fitting a p-helicoid to
a polyline representation of a hair strand. When combined
with the methods for interpolation of the previous section
it becomes possible to reconstruct a hairstyle, qualitatively,
from a sparse set of samples. We provide some striking ex-
amples of this using hairstyles from the hair photobooth
database [PCK∗08].

5.1. The Fréchet Similarity Measure

A key component in the process of fitting a trace of points
sampled from a generalized helicoid to a polyline represen-
tation of a hair strand is the measure by which the quality
of fit is judged. Alt and Godau [AG95] provide an intuitive
description of the Fréchet distance, using the analogy of a

Figure 12: Creation of a hairstyle (brown) from a set of 20
guide hairs (red).

dog and its handler walking on their respective paths. Both
the man and the dog can control their speed independently
but can never backtrack. The Fréchet distance between these
two curves is the minimal length that a leash must have, over
all possible manners that the dog and the handler can move
from the starting points of the two curves to their respec-
tive endpoints. In the fitting of generalized helicoids to hair
data we use a discrete variant of this distance, which is re-
ferred to as the Fréchet coupling [EM94]. Returning to the
previous analogy, this measure represents the minimum to-
tal length of leashes needed for men walking their dogs –
one on each point of each curve – such that leashes do not
cross over. For two polylines of p and q points, the simplest
algorithm for computing the Fréchet coupling has a com-
putational complexity of O(pq). The more familiar discrete
Hausdorff distance has the same computational complexity
but the Fréchet coupling has the added benefit of being sym-
metric and considers point ordering [EM94].

5.2. Fitting Single Generalized Helicoids

In the simplest case we fit a single generalized helicoid to
a target hair strand. A parameter vector k = (kT ,kN ,kB,α)
that generates the trace of a hair is optimized iteratively. The
objective function is the minimization of the Fréchet cou-
pling – represented here by the function C – between a target
hair h with estimated Frenet frame Q [Ros03] and the trace
generated by the helicoid H(k,Q,p0,L):

k0 = argmin
k

C (h,H(k,Q,p0,L)) + λ ||k|| (5)

where λ is a constant to regularize the fit by preventing ex-
cessively large curvature parameter vectors. L is set as the
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length of h. Since the objective function is not analytical, we
use the Nelder-Mead (NM) algorithm [NM65] to minimize
numerical errors. This is a gradient-free method that opti-
mizes a function in a multidimensional space and performs
well with arbitrary seed points.

5.3. Piecewise Helicoid Fitting

In practice, a single generalized helicoid is usually adequate
to fit a hair that contains up to one cusp or inflection point.
Clearly it is desirable to extend the fitting process so as to
be able to cope with longer hairs with more complex geom-
etry. To this end, we devise a process to fit p-helicoids. Each
individual helicoid piece is fit to different pieces of the tar-
get strand, following the methods described in Section 5.2.
The locations where the target hair is to be fragmented need
to be determined and for this purpose, we use the following
recursive procedure.

The fitting process is initially carried out on the complete
target strand. If the Fréchet coupling measure from the fit to
the target strand is small enough, it is accepted. Otherwise,
the target strand is split into two pieces. The efficiency of the
piecewise fitting depends largely on this distribution of target
fragments. The fragmentation locations are determined by
a combination of Fréchet and differential heuristics. First, a
thresholding is used on the Fréchet coupling between the tar-
get and candidate fragments, i.e., a threshold of 100% fits the
entire fragment at once. It was determined that 60% provides
a suitable trade off between overfitting and avoiding large bi-
ases. The objective of the Fréchet thresholding is to provide
an upper limit on the fragmentation location. In some cases,
a premature acceptance yields inconsistencies in the orien-
tation of a fragment with respect to its fit. In order to ensure
that fragments share similar differential characteristics with
their fit, a curvature profile is computed on the fragment and
the fit, starting from the upper limit from the Fréchet thresh-
old and backtracking to the origin of the fragment. A new
fragmentation location is determined such that it minimizes
a difference in curvature between the fragment and the fit. In
order to prevent excessive backtracking, a threshold is also
used on the minimal length that a fragment can have.

Fragment fits are automatically aligned with the Frenet
frame of their predecessor, computed using equation 2, and
thus preserve C1 continuity between them. Piecewise he-
licoid fits for different hairs extracted randomly from un-
parameterized data in [PCK∗08] are shown in Figure 13.
Whereas at a fine scale each fit is not exact, they nicely cap-
ture the qualitative geometry of the hairstyle, and their rep-
resentation requires far less information than storing all the
points on each target hair strand. This property allows the
qualitative reconstruction of a hairstyle from sparse samples
of real hair data, as described next.

Because fitting hairs to p-helicoids involves optimization,
it is much slower than interpolation. However, for model-
ing and reconstruction purposes, we generally start with few

Figure 13: P-helicoid fitting (in color) of unparameter-
ized data (in white) selected randomly from Paris et al.
[PCK∗08].

hair samples and it is ultimately the interpolation of large
numbers of hairs which is more costly. With our unopti-
mized implementation we can fit the data provided by Paris
et al. [PCK∗08] at approximately 5 hairs per second using
a single 2.4GHz processor. The hairs in this dataset have an
average of 30 vertices each. The fitting process can be sped
up considerably by computing the fits in parallel using mul-
tiple processors.

5.4. Application to the Reconstruction of Real Hair

Figure 14 illustrates the use of the methods in this paper to
fit and interpolate real hair data from a selected example in
the hair photobooth database [PCK∗08]. Fig. 14 (top left)
shows a sparse sampling of the “straight” hairstyle, along
with the individual p-helicoid fits to each hair strand sample
(top right). Observe that the fit closely resembles the sam-
pled hair strands. The remaining rows focus on the process
of reconstructing a selected tuft at the resolution of the origi-
nal data (Fig. 14 (c)) by means of subsampling and interpola-
tion. Observe that salient geometrical features of the original
hairstyle can be recovered from as little as 10% of the fit to
the guide hairs.

6. Conclusion

The generalized helicoid and its piecewise instantiation, the
p-helicoid, complement models presently in use for hair ge-
ometry by equipping a hair strand with a differential geomet-
ric characterization of the curvature of strands in its vicin-
ity. We have described methods by which p-helicoids can
synthesize hair patterns with rich and diverse geometry, in-
cluding wisps with waviness offsets. We have also devel-
oped methods to efficiently interpolate between guide hair
strands, each parametrized by a p-helicoid, while ensuring
a smooth variation in curvature between them. Complete
hairstyles can be modeled and existing ones can be reused
by applying parameter variations.

Contrasting with other streamline methods, where the hair
volume consists of a global fluid flow [HMT01, Yu01], we
construct a local fluid flow representation. In a purely static
modeling environment this property allows the modeling of
messy hairstyles more precisely than with global flow tech-
niques.
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(a) Original hairstyle (b) Fitting each strand in a)

(c) A tuft at full resolution (d) Fitting each strand in c)

(e) Sampling 50% of d) (f) Interpolating from e) to 100%

(g) Sampling 10% of d) (h) Interpolating from g) to
100%

Figure 14: The reconstruction of the “straight” hairstyle
from [PCK∗08] by fitting and interpolation of p-helicoids.

Although hair interpolated using generalized helicoids is
very coherent locally, there is nothing that prevents clumps
generated by distinct generalized helicoids from getting en-
tangled. This can make the modeling more realistic for wavy
or fuzzy hairstyles. In applications where hair intersection is
undesirable additional constraints would have to be incorpo-
rated.

Motivated by progress in reconstruction methods for ac-
quiring real hair data [PBS04, PCK∗08, JMM09], where in-
dividual hairs are described by the vertices of a polyline,
we have developed a procedure for fitting a p-helicoid to a
hair strand using a measure of similarity based on Fréchet
distance. The fitting process can be carried out for a set
of sampled hair strands, following which their p-helicoid
parametrization can be interpolated densely to fill in the
hairstyle. Our results indicate that both the fits and the in-
terpolated strands preserve the qualitative geometry of the
hairstyle. In fact, we are able to reconstruct a complex tuft

of hair from as little as 10% of the original unparametrized
hair data. Thus, the p-helicoid representation may be used
to parametrize and then compress a hairstyle, an application
that will likely grow in interest as databases containing de-
tailed hair capture data become available.

Whereas the examples in this article focused on human
hair, the methods developed are readily applicable to the
modeling of other hair-like patterns including, for example,
fur, grass and feathers. Individual strands in fur typically
have a simpler geometry than human hair and a higher de-
gree of geometric coherency. Similarly, the geometry of the
barbs of a feather emerging from its main shaft closely re-
sembles that of a generalized helicoid.

Given the success of the piecewise helical super-helix rep-
resentation for modeling hair dynamics [BAC∗06, Ber09],
a second area of research that could prove fruitful is the
coupling of these ideas with the p-helicoid representation.
Since the p-helicoid captures the geometry of the flow of
hair strands in a volumetric neighborhood of a guide hair, it
allows for sparsity and hence efficiency. It would be inter-
esting to determine whether the physics of hair, such as the
modeling of external forces including wind and contact, or
internal properties such as torsion, bending and stretching,
can be embedded directly into the p-helicoid parameteriza-
tion.

A final area of application could be the use of generalized
helicoids for hair detail transfer, as developed in [WYZG09],
or hairstyle editing. P-helicoids can serve as the skeleton
for a variety of hairstyles, where the details are obtained by
adding waviness, noise, and possibly other kinds of effects,
such as those obtained by varying the curvature parameters
to straighten or curl hair, for example.
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