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Abstract 

Th e unalysis ol large graphs plays a I',vminenl role in vurioltsjields ofreseurch und is relevant ill nWIlY imporWnt 
application areas. Effective visual analysis of graphs requires appropriate visual presentations in combination wilh 
respective user interactionfacilities and algorithmic graph analysis methods. How to design appropriate graph 
analysis systems depends on many factors, including the type of graph describing the data, the analyticaltask at 
hand and the applicability of graph analysis methods. The most recent surveys of graph visualization (md navigation 
techniques cover techniques that had been introduced until 2000 or concentrate only on graph layouts published 
until2002. Recently, new techniques have been developed covering a broader range of graph types, such as time­
varying graphs. Also, in accordance with ever growing amounts of graph-structured data becoming available, 
the inclusion of algorithmic graph analysis and interaction techniques becomes increasingly important. In this 
StClte-olthe-Art Report, we survey available techniques for the visual analysis of large graphs. Our review first 
considers graph visualization techniques according to the type of graphs supported. The visualization techniques 
form the basisfor the presentation of interaetion approaches suilable for visual graph exploration. As an important 
component ofvisual graph analysis, we discuss various graph algorilhmic aspects usefulfor the different stages 
(Ir the visual graph analysis pmress. We also preselltmaill open research challellges in Ihis fi eld. 

Keywords: visual graph analysis, graph visualization, graph interaction, visual analytics 
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1. Introduction 

The analysis of graphs is important in many application ar­
eas including finan ce, biology. sociology, transportation and 
software engineering. It includes a variety of different tasks. 
The main aspects re late to the understanding of global and 
local structure of the graph, the connections between entities, 
the clusters of highly connected entities, etc. Such high-level 
tasks often consist of aseries of low-Ievel tasks [LPS*06], in 
paIticular when dealing with large and complex graphs. 

The analysis of graphs is often supported by their vi­
sual presentations. In this respect, graph visualization re­
search concentrates on the development of effective graph 
layouts and vi sual mappings. The visualization of large 
graphs is accompanied by effective interaction techniques, in 
palticular, in cases when the whole graph is too complex or 
large to be visualized in one static view. The interaction alone 
may not be su ffi cient 10 accomplish cerlain analyt ica l tasks. 
Therefore, algorithmic support-such as machine learning, 
or graph analysis algorithms-needs to be suppOIted in 
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Figure 1: The main components of visual graph analysis 
considered in this report. 

interactive visualization systems. Such integrated visual anal­
ysis of large data sets is the main ("ocus of the research field 
called Visual Analytics, which evolved from Information Vi­
sllalization und Scientific VislIalization [KMS*OR). It has ef­
fectively started to grow after the publication of the seminal 
book by Thomas and Cook in 2005 [TCOS) . Therein, Visual 
Analytics is defined as the science of analytical reasoning 
faciUtated by interactive visual interfaces. Recently, Visual 
Analytics has been a major driving force for the research and 
development of interactive visualization techniques for large 
amounts of data including graphs. 

Our motivation for this report is twofold. First, we rec­
ognize that by now most recent graph visualization survey 
[HMMOO, DPS02) date back several years. Therefore, we 
aim to provide an update by adding more recent publications 
to the body of work presented in these surveys. Secondly, 
we aim to take a VislIal Analytics perspective on the field of 
vislIal graph analysis by exp li citly cons idering in a unified 
way the aspects of visual representation, user interaction, 
and algorithmic analysis (Figure I) . These three elements 
form the basis for effective visual graph analysis systems 
and are c10sely interrelated. For example, algorithmic graph 
analysis may be applied as a pre-processing step before a 
specifi c g raph layout is deterillined for visllal representation . 
Interactive direct object manipulation approaches are often 
useful for exploring large and complex graphs visually. Also, 
by means of user interaction, fUlther graph analytic process­
ing steps, or updates to the presented views, can be requested . 
The algorithmic analysis thereby hel ps to reveal interesting 
aspects of the data. The user involvement in this analytic 
process can vary from an automatic analysis, where the cal ­
culation is done without user involvement, over a user-driven 
analysis, where the user triggers the algorithmic processing 
of the data , up to a user-steered process where the user has 

Information millillg 

Fl'cdba~k loop 

Figure 2: The Visual Analytics process by Keim et al. 
[KAF*08 J with the four key steps: (1) data pre-processing, 
(2) mapping/layout. (3) visual user interaction and (4) model­
based analysis. 1;: 2008 Springer- Verlag. BerUn, Heidelberg. 

full control over the analytical process including setting the 
algorithm parameters. 

In this state-of-the-art report, we provide a systematic 
overview ofthe main approaches in each ofthe three aspects 
of visual analysis of graphs. We therefore develop a c1as­
sification of techniques according to these aspects. Within 
each category, we refer to exemplary papers, while focus­
ing on new developments in the visual graph analysis area. 
We discuss the respective techniques to offer the reader the 
possibility to concentrate on methodological aspects of vi ­
sual analysis of graphs applicable across various domains. 
Owing to the broad scope of the paper, we present the main 
features (strengths and weaknesses) of the techniques as far 
as they were discussed by the authors of the papers or were 
mentioned in evaluations. 

The strllcture of the report ref1ects the steps of the vi­
sual analytics process introduced by Keim et al. [KAF*08) 
(Figure 2) . Section 2 detail s on definitions and a classifica­
tion of graphs by types and introduces main pre-processing 
methods for visual graph analysis. This section is the basis 
for a discussion of visual graph representations given in Sec­
ti on 3. Sections 4 and 5 survey key approaches for interaction 
with and algorithmic analysis of graphs in visualization, re­
spectively. Finally, Section 6 concludes and outlines future 
challenges in this research domain. 

2. Basic Graph Definition and Pre-processing 
Techniques 

[n this sl:l:tion , wc rl:call 1"1Indallll:n tal graph ddinitions as 
weil as approaches for graph pre-processing useful for sub­
sequent graph visualization. 



2.1. Definitions 

Graphs are a prominentdata structure within Visual Analytics 
and re lated research fields. Orten, graphs are applied for 
describing relationships between entities. A graph refers to 
a set of vertices (nodes) and a set of edges (i.e. links) that 
connect pairs of vertices. It is a pair G = (V, E); E <; [V 2

), 

where elements of V are vertices and elements of E are edges 
[Die05). Furthermore, attributes can be attached to vertices 
and edges, for example to denote the ir type, size or some 
other application-related information. 

Graphs are often c lass ifi ed into undirectecl and directed 
[HMMOO) . For a directed graph (resp. undirected) , the edge 
vertices e = (VI, V2) are ordered (resp. unordered). A graph 
containing both directed and undirected edges is ca lied 
mixed. 

A path of length s in G is a sequence of connected vertices 
pathG(vl, vs ) = VI, V2 , .. . , Vs where Vi E V and (Vi, Vi+l) E 

E . A cycle is a closed path with a I = aso A tree is a connected 
undirected graph without cycles [Die05). A connected graph 
can be transformed to a tree by removing edges causing 
cycles while keeping the graph connected. A Tree T is called 
rooted when one vertex r is distinguished as a so-called 
root node: T = (V, E, r) . Such trees are often treated as 
hierarchies, where the length of the path to the root denotes 
the level of a vertex in the hierarchy. We note that, formally, a 
hierarchy is a directed acyclic graph so, there can be several 
paths from a vertex to the root node. In this survey, we use 
the term hierarchy as synonym to ' rooted tree'. 

In graph theory literature, a directed graph with weighted 
edges is also called a network. In information visualization, 
the term network is often used in a broader sense denoting a 
graph with attributes associated with vertices and edges. 

An additional graph category are so-called compound 
graphs. A compound graph C = (G, T) is defin ed as a graph 
G = (V, EG ) and a rooted tree T = (V, E-r , r) that share the 
same set of vertices, such as 

Relationships between vertices are expressed by T : vertices 
sharing a common parent in T belong to the same 'group'. 
When two vertices sharing a common parent are connected 
in G, they share a generic relationship. Many other kinds of 
relationships can be expressed including hierarchic and cross 
group. 

Compound graphs can be created by successive aggre­
gation (or c1ustering) of graph vertices in a bottom-up ap­
proach. This operation usually involves creating new nodes 
as group/cluster parents. In this case, vertices (and implic itly, 
also edges) of the original graph are aggregated (i.e. added 
as children of the group parent), thereby creating constructed 
meta-nodes or super-nodes. The attributes of the meta-nodes 
can be calculated from the attributes of the merged nodes. 
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Figure 3: Classificalion oi graphs acco rding 10 their time 
dependence and graph slructure. 

Similarly, edges between meta-nodes are aggregated into 
meta-edges and their attributes can be calculated from the 
original edges. Compound graphs which are constructed in 
this way are also referred to as aggregated graphs. The list of 
operations that can be performed on such graphs is dependent 
on the particular application and graph type. 

Graphs may aiso evolve over time, thereby forming dy­
namic graphs (i.e. time-dependent graphs) in contrast to 
static graphs. Time-dependent changes may affect the at­
tributes of nodes and edges, the graph structure or both. 
Figure 3 summari zes the graph classification presented 
earlier. 

Furthermore, graphs may be distinguished according to 
their topological properties. There exists a variety of litera­
ture on graph theory (e.g. [Die05)) which focuses on graph 
terminology, class ifi cati on and al gorithmic graph analysis. In 
the following, we mention only the most relevant terminology 
used later in this report. Basic graph properties include the 
number of nodes, graph densi ty and connectivity. Properties 
are often taken into account (or are apre-requi site) for cer­
tain visualization techniques. These properties influence the 
choice and effectiveness of the applied visualization meth­
ods. For example, the increasing number of nodes, higher 
graph density or both pose a scalability problem in visual­
ization owing to Iimited display space and human perception 
capabilities. 

The number oi nodes (i.e. graph order) is often referred 
to as graph size (I V I) . Graph density is the number of 
edges relative to the maximum potential number of edges 
D = ~ Sparse graphs have around O(IVD < lEI « iVl(iV l- I) ' 
O(IV 12 ) edges, whereas dense graphs show density values 
c10se to one. Graphs with the maximum number of edges are 
called complete graphs. A clique is a subset of a graph that 
is fully connected. 

According to the graph size, graphs are often referred 
to, for exa mple as small or large. The definition of large 
graphs is however not standardized . Often graphs with thou­
sands, hundreds of thousands or millions of nodes are called 
large. However, not only the number of nodes determines the 
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notion of a 'large' graph. Graph density and connectivity 
also play an important role for the notion of a ' Iarge' graph . 
From the visualization point of view, ' Iarge' graphs usually 
lead to c1uttered displays. In algorithmic analysis , ' Iarge' 
graphs refer to long computational times or memory foot­
print larger than the available RAM size. A discussion about 
the influence o r graph size and density on visualization and 
construction of graphs for testing visualizations according to 
these parameters is provided in [MeI06] . 

Several special graph struetures appear often in real-world 
cases, and dedicated visualization methods have been devel ­
oped for these [ACJM03, vHW08, JHGH08, MJW*09] . For 
example, social networks usually exhibit a structure called 
small world network: the typical distance between two nodes 
grows proportionally to log IV I. Seale-free networks, for 
example protein networks or certain types of social net­
works have a degree distribution that follow approximately 
the power law. Bipartite graphs are graphs whose nodes form 
two disjoint sets: VI , V 2 with VI U V 2 = V and VI n V 2 = 
0, such that: Ve = (VI> V2) E E, VI E V land V2 E V 2• 

2.2. Algorithmic graph pre-processing 

In graph visualization, algorithmic graph pre-processing of­
ten incilides graph silllplifi eat ion to redllee the size. whil e 
maintaining the main graph strueture. Also pre-processing of 
graph properties can be used for graph visualization (in algo­
rithms for positioning of nodes and edges) or highlighting of 
interes tin g parts orthe graph . The modi fied graph is used then 
for an easier visual inspection as large and complex graphs 
are di fficult to lInderstand even using advaneed node and edge 
positioning algorithms (layouts). Such pre-processing steps 
ean lIsually be performed automatically without user inter­
action. There are two main approaehes to graph reduction: 
graph l"illl!ring anu graph aggrl!galion. 

2.3. Graph filtering 

Thl!rl! arl! lwo tYPl!S 01' liltcring: stochastic and dl!tl!rlllinis­
tie. Stoehastie filtering is mainly based on random selection 
of nodes and edges from the original graph. These meth­
ods arc comparcd in [LF()(jl . Dctcrlllini stic filtcrin g uscs, as 
its name suggests, a deterministic algorithm for the selee­
ti on of the nodes/edges to be rellloved. This filtering can be 
based on node/edge attributes, on topologie val lies such as 
betweenness centrality or other graph properties. For exam­
pi e, filtering based on edge-betweenness-eentrality ean be 
used for removal of less important edges while keeping the 
underlying structure (connectedness and other features such 
as c1iques) of the graph [JHGH08] (Figure 4). 

2.4. Graph aggregation 

In this approach, nodes and edges are merged to single nodes 
and edges, thereby redlleing the size of the graph and re­
vealing relationships between groups of nodes. Graph ag-

(a) Original graph (b) Slochaslic edge sampling 

.11 

..... ,. 
(c) Geodesie c1uslering (dl Slruclure-based fill ering 

Figure 4: Example oJ various graph reduetion teehniques. 
The graphs are visuaUzed using the GEM layout [JHGH08]. 
© 2008 IEEE. 

gregation can be repeated multiple times, creating a hierar­
chical graph, whieh is a special kind of eompound graph. 
There are various ways of aggregating a graph, including 
using predefined node hierarchies, or aggregation accord­
ing to node attributes, or according to the node clusters 
[EDG*08, BDL* LO] , to name a few. Figure 5 (top) shows an 
example aggregation schema with several aggregation levels. 

~ 1111·\ ~I I I 1 [I, rl 111\ 1.1 
~ 

.. 

"" 
.'1 

• -
.S: 

Figure 5: Graph aggregation Jor multiseale graph visual­
ization [EDG *08]. © 2008 IEEE. Top: Graph aggregation 
schema showing severallevels oJ aggregation. Darker reet­
angles show the eorresponding data areas in the aggregation. 
Botlom: Example oJ graph aggregation using a matrix visu­
aUZa/ion. 



The highlighted rectangle shows the corresponding data in 
each aggregation level. Figure 5 (bottom) shows the original 
and aggregated data in a matrix visualization. 

3. Visual Representations of Graphs 

Visualization is one of the main means of exploratory graph 
analysis. 1t ineludes the development of appropriate types of 
visual representations (e.g. matrix or node-link diagrams) , 
effieien t placement of graph elemen ts on the screen and effi­
eient visual attribute mappings (design of graph elements for 
improved readability of the drawing). 

In eomputer-ereated graph visual ization, several so-ealled 
aesthetic criteria are taken into consideration. They are usu­
ally implemented as objective functions to optimize in lay­
out algorithms. The standard eriteria include minimizing 
the number of erossings, minimizing the total drawing area, 
maximizing symmetries and many more related to partieular 
types of graphs and edge drawing styles [Pur97, DBETT99, 
BBD09] . Reeently, Beek et ai. [BRSG07] extended previous 
works to foeus on both statie and dynamie graphs irrespee­
tive of their graphic representations (ineluding also matrix 
representations in addition to node-link diagrams). They eon­
sider three groups of eriteria: general, dynamic and aesthetic 
scalability . 

• The general criteria include reduetion of visual clutter, 
reduetion of spatial misunderstanding resulting from spa­
tial eloseness, maximization of spatialmatehing of items 
for following paths and max i mi zation of spaee efficiency. 

• For dynamic graphs, the following eriteria are desired: 
maximization of display stability between time points, 
reduetion of cognitive load when analysing time dyn am­
ics, minimization of temporal aliases mainly owing to 
positioning of different nodes in the same plaee in two 
time periods. 

• Aesthetic scalability criteria refer to graph readability for 
larger graphs, that is, sealability in number of vertiees 
(i.e. increasing graph order), sealability in number of 
edges (i .e. inereasing graph density), and sealability in 
number of graphs, in partieular with increasing number 
of time steps for whieh graph data is given. 

All these eriteria are important but they cannot be simul­
taneously optimized and are not suflicient to design a good 
layout wh ich is usually data and task dependent. Therefore, 
exploratory graph visualization requires more than one layout 
algorithm to reveal the several perspeetives on relationships 
between nodes. 

In this seetion, we deseribe the main graph visualization 
teeh niques following the graph elassifieation from Section 2 . 
We introduee teehniques for statie and time-varying graphs. 
In eaeh part, teehniques for hierarchies, generic directed and 
undireeted graphs and eompound graphs are presented. We 
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diseuss different ways of visual graph representations and 
designs of graph drawings. 

3.1. Visual representations of static graphs 

The visualization of statie graphs has reeeived much attention 
in the Information Visualization eommunity. The section start 
with trees that are simpler than general graphs. 

3.1.1. Trees 

Teehniques for displaying trees ean be divided into three 
main groups: Space jilling, node-link based and hybrid 
(Figure 6). There have been several studies eomparing the dif­
ferent ways ofvisualizing trees [SCGMOO, BNOI, vHvW02, 
Kob04, AK07] . A very useful visual overview oftree visual­
izatilln has been provided in the poster IJSIOI . It is dirlicult 
to unify these results as they diFFer signifi cantly. Reeentl y, 
Ziemkiewicz and Kosara have shown that the effectiveness 
of the visualization teehnique depends not only on the task 
to be solved, but also on the formulation of the task assign­
melll, that is iF it reflects a containment 01' a level metaphor 
[ZK08]. 

Node-Iink techniques: These approaches use links be­
tween items to depict their relationship. Layout algorithms 
eontrolled by optimization eriteria or the node positions. 
Many layout algorithms have been proposed to date in the 
Graph Drawing eommunity. They include layered, radial or 
balloon layouts in two-dimensional (2D) [HMMOOJ, Cone 
trees [RMC91] in 3D, point-based trees [SSH09] , nature in­
spired Phyllotrees [NCA06] or hyperbolic layouts [LRP95, 

(a) Node- link diagra lll (b) Space- lilling diagralll 

(c) Combincd rcpresentatio n 

Figure 6: Three types ofhierarchy visuaUzation techniques. 
(a) Node- Link, (h) space-Jilling and (c) hyhrid. {ZMC05 j, © 

2005 IEEE. 
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(a) Phyl! otrees (b) Point-based tree 

Figure 7: Exc/fI'lples of node-link tree visualizations. (a) 
Phyllotrees (NCA06j, © 2006 IEEE. (b) Point-basecl tree 
[SSH09j, if: 2009 IEEE. 

Mun97, AH98) (Figure 7) . Most of these c1ass ic tree lay­
out algorithms have a linear complexity in time and memory 
so the layout computation is scalable. However, the node­
link representation hy design leaves signifi cant hackground 
space empty and thereby may encounter scalability problems 
when applied to larger graphs. For the visualization of node 
attributes, specialized techniques for multidimensional data 
visualization such as glyphs, radial or parallel plots have been 
used. 

Space filling techniques: These techniques try to use the 
full area of the display to present the hierarchy. Instead of 
employing links for representing node relationships, the spa­
ti al positions of nodes are employed, using either c10seness 
or enclosure. They are mainly applied to visualization of hi­
erarchic partitions of sets of data items, for instance fil es in 
a fi le system. Area size can be used to encode quantitative 
attribllles o r nudes, such as fil e size. In addition, coluur and 
height can represent additional data attributes. In case more 
complex additional information needs to be displayed, spe­
ciali zed data presentations can be placed in the child nodes 
such as icons. parallel coordinate diagrallls , etc. Space-filling 
techniques can be categorized by the placement strategy em­
ployed into enclosure, adjacency and crossing (Figure 8). 

• Enclosures: These techniques recursively layout chi ld 
nodes within the area of their parent nodes. The most 
prominent examples are Treemaps-rectangular shapes 
recursively subdividing rectangular display space ac­
cording to the underlying hierarchy, introduced by Shnei­
derman[Shn92) (so-called slice-and-dice algorithm). 
Variants include Voronoi tessellations [BDLOS) or bubble 
layouts [BedO I). Other types, such as elliptic [OCNF09) 
or circular shapes have been proposed, but they do not 
lead to fully space fi lli ng visuali zations . 
The main advantage of enclosures is the very good us­
age of the avai lable space, as the child nodes do not 
need extra space owi ng to the overlap with the parent 
nodes. The disadvantage is that the overlapping of the 

(a) Treemap (b) leieIe plot 

(c) Beall1Trec 

Figure 8: Three types of space.!illillg hierarchy visualizatiol1 
techniques. (a) Enclosure: Cushion Treemap [vWvdW99j, © 

/ 999 IEEE. (b) Adjacency: leicle plot {TS08j, © 2008 IEEE. 
(c) Crossing: BeamTrees [vHvW02j, (C) 2002 IEEE. 

parenl nodes may aiso lead to a more difficult di slinc­
ti on of the hierarchy structure by the user, as it is rather 
implicitly encoded. For Treemaps, several advanced lay­
out techniques have been developed including ordered 
(i.e. pivot-based) lBSW02.1 , squarified lBH vWYYJ and 
spiral [TS07] Treelllap layouts . For exalllple, squarifi ed 
Treemaps aim at generating subrectangles of square-Iike 
aspect ratios, supporting easier comparison of sizes and 
presentation of additional diagrams or other elements 
within the rectangles. According to Tu and Shen [TS07], 
the slice-and-dice algorithm leads to high aspect ratios 
with good readability. Strip, pivot-based and spiral tech­
niques have medium aspect ratios with medium read­
ability. Squarified Treemaps have very good (Iow) aspec t 
ratios but low readability. To better distinguish the hier­
archical structure, cushion Treemaps [vWvdW99) apply 
shading of the shapes. Treemaps that refl ec t the geo­
graphic distribution of the hierarchical data were pre­
sen ted in [WD08) . 

• Adjacency: In contrast to Treemaps, adjacency-based 
techniques do not overlap the parent nodes by chi ld 
nodes, but represent the node relat ionships by placing 
the child nodes next to their parent nodes. The pl ace­
ment can be in circular layers, such as in the SunBurst 
method [SZOO], or on linear layers, yie lding so-called ici­
cle plots. The advantage of this visualization is that the 
parent nodes are not overlapped by their chi ld nodes and 
therefore, the ir attributes can be more easi ly displayed 
and analysed. However, this visualization is not as dense 
as squarilkd Treemaps. 



• Crossings: The cross ing method places child nodes across 
the parent node, thereby only paItially overlapping the 
parent. The Beamtree method [vHvW02] improves over 
the classic Treemaps when the hierarchical structure may 
be difficull to vi sually assess , whil e still being more space 
efncient than the adjacency techniql1es. The main draw­
back of thi s technique is that users are unfamiliar with 
this approach and that it is often less readable than other 
methods. 

Hybrid approaches: These approaches combine node­
link diagrams with Treemaps: a part of the hie rarchy is dis­
played in a Treemap and the rest as anode-link diagram (Fig­
ure 6c). They present the data in a fl ex ible space-effi c ient way 
while still clearly presenting the data structure and empha­
sizing the content. The most prominent representative are 
'elastic hierarchies' [ZMC05] . In connection to interactive 
determination of the type of visual metaphor used for each 
parI of the hierarchy, this technique all ows fo r fl exibl e anal­
ysis of the data lIsing advantages of both representations. 

3.1.2. Directed alld 11lldirected graphs 

Techniqlles for displ aying general graphs can be divided into 
three main groups: node-link based, matrix-basal and hybrid 
(Figllre 9). We discuss these in more detaillater. In addition, 
there are specialized graph drawing techniques, which l1se 
new graph visualization techniqlles. Two main examples are: 
graph splatting and graph maps. The nrst one forms graphs as 
20 sca lar neids [vLdL03]. The second one visuali zes graphs 
as maps [GHK I 0], where the relationships between no des 
are represented as adjacency between neighbouring areas 
(nodes) . 80th approaches create an approximate representa­
tion of a graph . 

A comparison of node-link and matrix techniques is pre­
sented by Ghoniem et al. [GFC04]. According to the study, 
the advantages of node-link diagrams are their intuitiveness, 
compactness and better suitability for path following tasks. 
They are more effective for smaller and sparse graphs. The 

• :Ia'· •.•••••• · . . • ••••••• • · .. '. .. . 
: : e.... . 
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• · · • S' f I: : ~ . .. w • fr ~ .... .. ,. 
. ; .. ".,.' · ..... ...... :. 

(a) Nock - lin k (b) Adjaccncy (c) COl11bi nut ion 
di agram matri x 

di ag ram 

Figure 9: Three types of general graph visualization teeh­
niques: a) Node-link diag ram, b) adjaeelley matrix, e) hybrid. 
From [HFM07], ~ 2007 IEEE. 
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(a) M ulti- leve l graph layouts 
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(b) D ig-Cula layuu t 

Figure 10: Graph layout examples. (a) A eomparisoll 
of multi-level graph layouts GRI?, FM3 alld Topolayout 
[AAM07] . © 2007 IEEE. (b) Layered layout of eyclie di­
reeted graph [DK05] . © 2005 IEEE. 

Matri x representation inherently does not have edge cross­
ings and node overlapping problems, and is thereby sl1itable 
also for dense graphs. When l1sing appropriate node order­
ing, they can easi ly reveal dense substructures in the graph. 
However, they also suffer from scalability in limited display 
spaces, especially for very large graphs. In visual graph anal ­
ysis, graph layout and matrix orde ring intluence the effec­
tiveness of these representations. These issues are therefore 
in the core of graph visualization research. 

Node-Iink representations: The main challenge is the 
layout (Le. the placement of the nodes) so that graph read­
ability and certain not ions of graph aesthetics are supported 
(Figllre 10). Typical reqllirements include that the nodes do 
not overlap, the number of edge crossings is minimized, edge 
length is homogeneous and in general, graph substructures 
are easily recognizable. Thi s problem is intensively studied in 
the Graph Orawing community. Given these aesthetic goals 
and co nstraints, the aim is to nnd algorithms that efficientl y 
provide good solutions . 

Note thaI a specinc group of graphs are graphs wilh ge­
ographie ref erellee, such as transpoltation graphs. In thi s 
case, the nodes and possibly also edges of the graph have an 
inherent geographic location, which needs to be taken into 
consideration in the ir graphic presentation. Therefore, a spe­
ein e graph layout algorithm is nOlneeded for determining the 
position of each node on the screen. However, the nxed node 
position may exacerbate graph readability problems, such as 
crossings and long edges. Visualization of geographic data 
is a special research ne id, whi ch we do not add ress here in 
detail. 
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When no position is inherently associated with vertices, a 
graph layout algorithm is required. The graph layout research 
field is very large, anel an extensive survey of proposed tech­
niques is beyond the scope of this report. The latest survey 
from Herman et al. dates from 2000 [HMMOO) and sev­
eral new algorithms have appeared since then. The related 
work part in [AAM07, MM08) as weil as the comparison in 
[HJ07) nicely summarize many current techniques. In our re­
port, we classify the techniques according to the type of node 
placement. 

• Force-based layouts: These techniques are based on a 
simulation of mechanical laws by assigning repulsive 
forces between nodes and attraction fOl'ces between end­
points of edges. Several forces have been described in 
the literature to achieve different properties of the lay­
out. The seminal work of Eades [Ead84) uses an electric 
force between charged particles to model node repulsion 
and spring forces between the link endpoints to model 
edge attraction. Fruchterman and Reingold [FR9I) have 
then improved the distribution of nodes by adaptation of 
the force models and Noack has further improved it with 
a more f1 exible set of force functions to achi eve either a 
good space density or a good clusteringofnodes [Noa03) . 
Kamada and Kawai [KK89) try to layout nodes such as 
the Euclidean distance between the nodes is proportional 
to the graph-theoretical distance. This family of layouts, 
however, does not scale weil to graphs of thousands of 
nodes or more, due to their complexity. Therefore, im­
provements have been proposed. For instance, faster ca 1-
culation of forces using an emcienl GPU implementation 
[GHGH09J, or using heuristics [FLM95). 

• Constraint-based layouts: This family of layouts extends 
the force-directed approach with constraints on node po­
sition. These constraints include horizontal and vertical 
alignment of nodes, nonoverlapping nodes, edge direc­
tion, or closeness of grouped nodes [DMW09). An ex­
ample are orthogonal layouts, where the edges are only 
composed of straight vertical and horizontalIines. These 
layouts can be supported also by user interaction (see also 
Section 4). Example works from this category include 
[DMS *08 , DMW09, DMW09). This family of layouts 
greatly improves the power of expression at the cost of 
slightly longer execution time. 

• Multiscale approaches: These techniques rely on a hier­
archical decomposition of a graph into simpler nested 
sub-g raphs . They firsl layout the coarser graph anu 
then include more nodes level by level. Exemplary 
works include [GKOI , KCH02, HJ05 , FT07, MM08) 
(Figure 10a). These methods are typically much faster 
than traditional force-directed methods. They can be dif­
ferentiated according to the technique used for creating 
the node hierarchy, and the layout of the resulting lay­
ers. For example, [MM08) employs node clustering and 

subsequent positioning of the nodes along space fillin g 
curves. 

• Layered layouts: These approaches, also called ' hierar­
chic layouts' , place nodes of the graph on parallel hor­
izontallayers [GKNV93) . They are mainly used for di­
rected graphs and are based on the Sugiyama approach 
[STT8I) . It works in four phases : (I) cycle removal, 
(2) assignment of nodes to layers, (3) reduction of edge 
crossings and (4) assignment of coordinates to nodes. 
[mprovelllents to these layouts , specifi cally for cycl ic 
graphs, position all nodes of a cycle within one leve l; ex­
amples include the Dig-Cola layout [DK05) and Cyclic 
Leveling [BBBL09) (Figure lOb). This algorithm and its 
variants are quite fast in practice and standard imple­
mentations such as [GKNV93) can easily layout several 
thousands of nodes in seconds. 

• Non-standard layouts: Other approaches exist that com­
bine the previous techniques or use completely alterna­
tive approaches to graph layouts. Projection of anode 
layout from high-dimensional to 2D space has been pro­
posed in [HK02J; although it is very fast in practice, the 
quality of the layout is very sensitive to the structure of 
the graph. For example, it is very effective for meshes 
and not effective at all for lrees. LGL [ADWM04) first 
simplitics the graph hy cOlllputing a spanning-trcc ; it 
then computes the layout iteratively in depth order us­
ing a force-directed layout. LGL is able to scale to very 
large graphs (billions of vertices) thanks to the initial de­
composition. It is very effective for quasi -trees but has 
not been thoroughly studied for other kinds of graphs; 
its results are very sensitive to the spanning-tree com­
putation: choosing different spanning trees will results 
in quite different layouts for the same graph. The ISOM 
method [Mey98) applies the Self-Organizing Map algo­
rithlll [KohO I) for finding a suitable graph layout. As 
an alternative to costly layout computation, a graph lay­
out visualization based on the semantics of the graph 
(on node labels) was presented in [SA06) . Semantically 
identical nodes (e.g. with the same labels) can be placed 
in boxes using standard layout algorithms (e.g. force­
directed) (Figure I I) or in layers using their importance 
for assigning the position within layers [GOB * 10). Fur­
thermore, attributes or properties associated with graph 
vertices can be used directly to specify the position of 
these vertices, as with scatterplots [SA06, BCD* I 0) : the 
layout computation is then straightforward and very fast. 

Comparison or graph layouts: Arecent comparison of 
the readability of graph layouts using eye-tracking [Hua07, 
PSD09) has shown that force directed layouts outperform 
orthogonal and layered layouts on various user tasks. An­
other comparison of advantages and disadvantages of nu­
merous current layouts was published by Hachul and Jünger 
[HJ07). They compare the graph drawing outputs according 
to vari ous criteria finding that the HDE layout [HK02) is 



Figure 11: Graph visualization using data semantics 
[SA06j. © 2006 IEEE. 

very fast but frequently produces layouts with many over­
lapping edges. In contrast, FM3 [HJ05] creates pleasing 
layouts in reasonable time. Both algorithms together with 
GRIP [GKO I] scale weil with graph size. A comparison 
of user-produced versus automatically generated layouts 
[vHR08, DLF*09] found also that the results of physics­
based algorithms, such as force-directed layouts, were pre­
ferred by the users. 

Design of graph drawing: The above-mentioned tech­
niques cover graph layou t. In additi on to specific layouts, 
occlusion and readability of the display can be improved by 
edge-bundling [HoI06, CZQ*08, TE 10, LBAIO] (Figure 12) 
and the removal of node overlap [GH09, IAG*09] . Draw­
ing of node-link diagrams also includes a suitable design 
of edge and node drawi ng primitives. For directed graphs, 
the representation of edge directions is of importance. There 
are multiple design possibilities including usage of arrows, 
colour transitions (from colour A to colour B), thickness 

(a) Original graph (h) Edgc bundling 

Figure 12: The use of edge bundling for improving graph 
readability. (a) Ariginal graph and (b) graph with edge 
bundling. r HoL061. (E' 2006 IEEE. 

9 

transi tions (from thick to narrow), curves and animated tex­
tures [TK08, HvW09, BBG*09j. These options mayaiso be 
combined. A comparison of graph drawing different ways 
to represent edges was presented in [HvW09] . It shows that 
arrows, although popular and widely used, do not perform 
as weil as colour and thickness transitions. Graph nodes and 
edges often have associated attributes that are included in the 
analys is. This study did not concentrate on attributed edges. 
For such edge attributes, in particular edge weight, colouring 
of edges or edge thickness can be employed. For the visu­
alization of node attributes, a visualization of multivariate 
data items (e.g. glyphs or radial plots) is employed. Various 
possibilities of graph designs can be found in [Kre09]. 

Visualization of multiple graph connected components: 
For the visuali 7.ati on of multipl e com ponents, first a layout 
for each individual connected component is calculated and 
then a specific placement of these components on the screen 
is performed. The most widely used placement method is 
called packing. It lays out the components so that they do not 
ovcrlap and are spacc erticicnl. Dogrusoz lDog02 1 compares 
several2D packing algorithms for graphs which use represen­
tation of graphs by their bounding rectangles. They incJude 
strip packing, tiling and alternate-bisection. The polyomino 
algorithm ofFreivalds et al. [FDK02] uses a special represen­
tation of the graph objects, which substantially reduces the 
unused display space in comparison to rectangular shapes. 
Goehlsdorf et al. [GKS07] introduce new quality measures to 
evaluate a 2D placement which yields more compact layouts 
than the previously mentioned approaches. 

Matrix representation: These techniques visualize the 
adjacency matrix of a given graph, where edge attributes are 
encoded in the matrix cells. They can display both directed 
and undi rected graphs, where the latter leads to a symmetric 
matrix. The advantage of this representation with respect to 
the node-l ink representation is the non-overlapping display 
of graph edges, and the readability of the graph especially for 
larger and denser graphs. The disadvantage is an increased 
difficu lty fo r users to fo ll ow paths, anel a possible unfami l­
iarity of matrices to the users. In a matrix visualization, the 
ordering of rows/columns plays an important role: similar to 
layout for the node- link representation. Different strategies 
to order the matrix can be employed (Figure 13). Prespicu­
ous reordering can reveal clusters in the graph and other pat­
terns. For a discussion ofthese, we refer to [MML07, DPS02, 
HF06, EDG*08] . Although matrices are suitable for larger 
graphs, they also suffer from scalability issues as they use 
linear order of nodes along the matrix rows/columns. There­
fore, interaction techniques and aggregated displays have 
been proposed [vH03, AvH04, HF06, EDG*08, vHSD09] 
(see also Sections 4 and 5). 

Combination of matrix and node-Iink approach: Tech­
niques using a combination of the two previous approaches 
aim at overcoming their limitations by focusing on their 
strengths. Three main approaches exist (Figure 14) . 
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(a) HDE l11atrix OI"dering (b) NNTSP matrix ordering 

Figure 13: Examples ofmatrix reordering on graph presen­
tation. (a) Using HDE algorithm. (b) Using NNTSP reorder­
ing. From [EDG*08], © 2008 IEEE. 

• Multiple synchronized views: These techniques link the 
matrix and node-link representation [HF06] . Both views 
show the same data and are synchronized during explo­
ration. Thereby, the user can concentrate on whatever 
view is more suitable for the current task. 

• Matrix with link overlay: The Matlink [HF07] approach 
enhances matrix visualization with links at the border 
of the matrix (connecting the nodes) . Using link high­
lighting, the paths can be easily spotted in the Matlink 
view and at the same time, the advantages of the matrix 
representation are retained. 

• Partial matrix and node-link representation: There are 
two main approaches. First, Nodetrix [HFM07] co m­
bines both representations in one view, where node­
link diagrams display the overall graph structure of the 
network, and adjacency matrices show communities. 
The work also discusses three ways of link display for 
this setting: aggregated links, underlying links, and un­
derlying links with full size (Figure 15). These forms 
can be also used for attributed links. Secondly, layered 
graphs (directed acyclic graphs) can be represented by 
so-ca lied 'quilts '. They arrange nodes in a matrix-Iike 
form and connect them with orthogonal edges. In this 
way, a clear view of the graph is created [WBS*08, 
BDF*10]. 

3.1.3. Compound graphs 

Literature on visualization of graphs with hierarchie 
structure is relatively rare. We identify three main 
approaches. 

Node-Iink graph visualization techniques: These use 
node- link diagrams for the 10west hierarchy level and then use 
' bubbles ' (enclosures) for various hierarchy levels . Examples 
include TugGraph [AMA09] and GrouseFlocks [AMA08]. 
The advantage of thi s method is its intuitiveness. However, 
for large graphs with many links, this view gets easily over-

(a) Multiple linked vicws showing thc same da ta using different rep­

rl!senlatiollS 

(b) Links collilec ied to Ihe matri x v iclV highlighting paths bctween 

nodes 
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(e ) Node- link amlmalr ix combi lled sholV ing dCll se areas as matri"cs 
(avoidi ng cdge cross ill gs) 

Figure 14: Examples of combined matrix and node link 
graph visualization techniques. (a) Multiple linked views 
[HF06]. © 2006 IEEE. (b) Links connected to the matrix 
view {HF07]. © 2007 Springer- Verlag Berlin Heidelberg. (c) 
Node-link and matrix combined - part (md part [HFM07]. Ce, 

2007 IEEE. 

crowded (Figure 16a). The edge over-plotting problem can 
be partially solved by edge bundling [HoI06] (Figure 12). AI­
ternatively, only links between merged nodes can be drawn 
(Figure 16c). 



(a) Aggregated 
links 

(b) Unclerlying 
lin ks 

(c ) Unclerlying 
links with tü ll 
size 

Figure 15: Three ways oJ link visualization in a combined 
n.ode-link and matrix data representation using the NodeTrix 
approach {HFM07]. © 2007 IEEE. 

(a) 

Figure 16: Visualization techniques Jor compound graphs 
{HoL06], © 2006 IEEE. (a) Node-link visualization with 
groupecl nodes in 'bubbles'. (b) Links overlaying a treemap 
visualization. (c) Compound drawing using enclosures and 
links between merged nodes. (d) ArcTrees - links overlaying 
a I D treemap (BDJ05]. (e) A matrix view Jor showing rela­
tions between entities linked with tree view oJ the nodes as in. 
MatLink approach {HF071. 

Treemap-based: A treemap vi sualization of the node 
hierarchy uses overlaid links between nodes [FWD*03] 
(Figure 16b). This approach may suffer from strong over­
plotting in case of many links between nodes of the hier­
archy. Therefore, edge bundling is advised to improve the 
readability ofthe display [HoI06] (Figure 12). Similarly, also 
I D treemaps with links between nodes, so called ArcTrees 
[BDJ05] can be employed (Figure 16d), but these do not 
scale weil for large hierarchies. 

1I 

Matrix view with links: These visualizations combine 
the generic node relationship visuali zation with a tree-based 
visllalization of the hierarchie node relationships. This is an 
analogy to MatLink [HF07] . This view is very clear, however, 
il may be dinieult lo undersland lhe eompound relali onships 
between nodes (Figllre 16e). 

3.2. Visual representation of dynamic graphs 

In this seetion, we di scuss two categories of viSllal display 
of the time changes on graph elements: using animation and 
using statie displays. Animated displays llsually employ or 
enhance static visualization teehniques such as presented in 
Seetion 3. 1. Animation is a natural way of conveying the 
change of the data over time. However, its effectiveness is 
limited by human perception capabilities. Usually, users are 
only able to recognize and remember larger ehanges in the 
data. Therefore, highlighting of graph changes is used. It 
allows for more effective spotting of differences between two 
successive time points [APP I 0]. The static view is preferred 
for more detailed analysis of data ehanges. Static views that 
also incorporate the time-dimension of the data are more 
complex. In the following, we categorize the visualization 
teehniques according to the type of data changes captured 
into those that affeet only data attributes, and those that 
affect also data relationships. Please note that visual analysis 
of changes in dynamic graphs is related to comparing graphs. 
Graph comparison is discussed in Section 5.2. 

3.2.1. Trees 

For the visualization of dynamic trees with only data at­
tribute changes, either treemaps with time series in the leaf 
nodes [DHKS05, SKM06] or the so-called Timeline Trees 
[BBD08] can be used (Figure 17a and b) . Timeline trees 
show the hierarchy on one side and the time sequences on 
the other side of the view. The treemap representation di­
rectly shows the hierarchie structure and time-variation in 
one combined view. Thi s allows for an easy comparison of 
the time-developments across the hierarehy. However, the 
eompari son is affeeted hy different node sizes and di fficult 
for small nodes. Therefore, a speci fic treemap layout preserv­
ing the aspect ratio has been developed [DHKS05 , SKM06] . 
Timeline Trees ass ign the same space to all nodes. The verti ­
cal positioning oftime Iines all ows for very good comparison 
of the values at the same time points. The separation of the 
time dimension from the hi erarchie strueillre, however, com­
plicates the comparison of tree branches. 

For visualization of dynamic data with structural changes, 
an imated views are used. Card et al. [CSP*06] have used 
and extension of DOI Trees [CN02], [HC04] to visualize 
the changes of an administration over time; a time-slider is 
used to control the visualized time-span. Animated graphs 
(Section 6. I) can be employed in general. In particular, the 
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Figure 17: VisuaUzation of time-dependenttrees. (a) Time 
Une tree {BBD08J. :g 2008 ACM. (b) Time se ries in the 
treemap nodes {DHKS05J. © 2005 IEEE. (c) Animated hier­
archie cirelular plots (TS08J. © 2008 IEEE. 

layouts based on the Sugiyama approach [GBPD04) are suit­
able. Alternatively, animated treemaps [GFO I, TS07) or ici­
cle/circular plots [TS08) can be used (Figure 17c). When 
choosing the graph layout, the layout stability needs to be 
taken into consideration . For example in the treemap repre­
sentations, the spiral layout [TS07) achieves a high continuity 
with high stability of the layout. Strip and pivot-by-middle 
layouts have also been shown to have higher layout suitabil­
ity [BSW02). All these layouts are preferable in spite of their 
hi gher aspecl rati os in comparison [0 the squarifi ed lreemap. 
Furthermore, dynamic Voronoi treemaps [SFL I 0) offer both 
good aspect ratios and stable layouts for displaying dynamic 

data. Alternatively, Tu and Shen [TS07) propose also static 
comparison of two time points in a treemap visualization 
(called contrast treemap). 

3.2.2. Directed alld 11lldirected graphs 

For attribute changes only, techniques for visualization of 
static graphs can be combined with visualizations of individ­
ual time-dependent data items (e.g. colour charts [SLN05» 
are used (Figure 18a). The advantage of this approach is the 
large number of the avai lable graph layouts. 

In case of structural changes, time-dependent graph lay­
outs (animated graphs) need to be employed [CBTT95, 
Nor96, DGKOI, EHK*03, KG06). In animated graph vi­
sualization (in analogy to animated tree visualization), a sta­
ble graph layout, which changes minimally, is of essence. 
A stable graph layout preserves the mental map of the 
user. It enables the user to fo llow changes on the screen 
[ELMS91 , DGKO I) and thereby it faci litates the analysis of 
graph changes. In laying out dynamic graphs, there is a large 

(a) Noue- link diagral1l wirh rim~ series in 

noc\cs 

---.,: 

.. 
(b) i\nil1lated nocle- l ink di agram 

Figure 18: Visualization oftime dependent graphs. (a) Time 
se ries in nodes {SLN05J. :g 2005 IEEE. (b) Animated graphs 
{FT08J. ~ 2008 IEEE. 



difference between strategies for drawing graphs with known 
histories and those that need to be adjusted in real-time de­
pending on new data streams. A paper of Frishman and Tal 
[Fr08] addresses this particular issue by proposing an on­
line algorithm for dynamic layout implemented on the GPU, 
thereby accelerating the layout computation (Figure 18b). 

Instead of animation , Brandes and Corman [BC03]use the 
third dimension to show the evolution on time. GraphDice 
[BCD* 10] uses interaction to switch between projections 
where time can be mapped to one dimension. 

3.2.3. Compoll1ld graphs 

There are only few techniques that visualize time-varying 
compound graphs. They employ either animation or static 
data representations. 

Kumar et al. rKG061 prcscnt a spccifi c layout for anima­
tion of anode-link diagram with transparent 'bubbles' for 
the hierarchic grouping of nodes (Figure 19a). Frishman and 
Tal [Fr04] present a layout which focuses on maintaining 
the c1ustered structure during the animation. The groups of 
nodes are displayed using bounding boxes around the groups. 
Reitz et al. [RPD09]use dynamic graph layouts for showing 
areas of interest in dynamic compound graphs. 

A static approach to visualization of dynamic compound 
digraphs using TimeArcTrees was presented by Greilich et al. 
[GBD09] (Figure 19b). They show a sequence of node-link 
diagrams with horizontal node alignment in a single view, 
thereby supporting their direct comparison. TimeRadcuTrees 
[BD08] use radial tree layouts for the hierarchy and a se­
quence of circle segments for representation of the temporal 
change of the structure (edges) of the Digraph (Fi gure 19c). 
Thi s view easily gets complex for larger graphs. 

4. User Interaction in Graph Visualization 

Interaction hel ps users solving tasks connected to explo­
ration of graphs. These tasks can be of different nature such 
as topology-based or attribute-based [LPS*06j. Topology­
based tasks inc lude findin g adjacent nodes, or determining 
connections between nodes. Attribute-based tasks include, 
fo r exa mpl e searching for nodes with specifi c va lues, and 
finding edges of certain types. For each task. one or more in­
teraction techniques can be employed. Standard interaction 
techniques such as zooming, panning or brushing and linking 
[CMS99, WarOO] are commonly used in graph visuali zation . 
In addition , specialized techniques have been developed for 
interactive visual graph navigation and exploration . 

Interaction and exploration are deeply inter-related. Some 
graph analysis systems such as Paj ek [dMBOS] claim to sup­
port exploratory graph analysis by chaining complex op­
erations on graphs without showing the intermediary re­
sults. However, Ahlberg et al. describe interactions and more 
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Figure 19: Visualization of time varying compound graphs. 
(a) Animated graphs by Kumar et al. {KG06}, © 2006 IEEE. 
(b) TimeArcTrees {GBD09J, © 2009 held by the authors. (c) 
TimeRadarTrees {BD08], © 2008 held by the authors. 

specifi cally dynami c queri es [AWS92] as required to trul y 
achieve exploration. The main reason is cognitive: exploring 
requires several hypothes is to be maintained in short-term 
memory which is very limited in capacity. Planning complex 
operations without feedback or using a textual syntax con­
sumes all the short-term memory and exploration becomes 
impossible from short-term memory alone. Therefore, pro­
viding interactions with immediate feedback for the most 
frequent operations supports exploration. Other less frequent 
operation could still be done using more complex mecha­
nisms, as explained in the next section on graph analysis. 
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The categorization of interaction techniques can be based 
on various criteria such as task, user intention [YKSJ07] 
or user action [EF09] . These criteria are interrelated . For 
example, one task may inelude performing several actions, or 
one task may correspond to several user intentions . Moreover, 
one user intention can be achieved by several user actions or, 
vi ce versa, an action can suit several intentions. 

We categorize interaction techniques according to stages 
in the Information Visualization reference model of Card 
et al. [CR98] , [CMS99] and user actions. The reference 
model has three stages: data, visual form (a.k.a visual ab­
straction) and vicw. Thc cl ass ification critcrion is whcthcr 
the user action affects the data (the selection of the displayed 
data or the data values), the visual display of the data (vi­
sual parameters or visual representation), or the view. Data, 
vi sualization and view manipulation can be used for inter­
active data exploration and navigation . This categorization 
follows the idea of Elmqvist and Fekete [EF09] and Bertini 
and Lalanne [BL09] . Please note that these three types of in­
teraction are sometimes closely connected. For example, data 
manipulation may automatically lead to changes of visual pa­
rameters (e.g . data filte ring can influence lhe graph layout. 01' 
zoom ing can hc cOlllhincd with data fi llcring forilling a typc 
of semantic zooming). 

4.1. View interaction 

4.1.1. Panning and zooming 

Panning and zoollling allow to navigate in any direction and 
change the zoom-level in the view. For node-link diagrams, 
a spL!ci lic lypL! 01' panning (guided panning) has been pro­
posed. It allows to navigate along edges of a selected node 
and thereby to explore the structure of the graph. It can be 
cOlllbined with automatic zooming on the edge and distor­
ti on of end-node position e10ser to the currently selected node 
[MCH*09] . 

4.1.2. Magie lenses 

Owing to the limited display space, showing the whole data 
set may lead to strong over-plotting or very small (up to, 
unreadable) data items. Magic Lenses [BSP*93J, including 
distortion techniques, change the representation or allocate 
more space to items in focused areas and thereby, improve 
the readability of the data of interest. They are used both for 
node- link and space filling graph visuali za tion techniques. 
The changes can concentrate either on one area 01' on mul­
tiple areas of the screen. For geometric changes, the tech­
nique is calledjisheye views. Interactive selection of the fo­
cus area hel ps to explore differenl parts of the data in more 
detail. 

• Single foeus: Grarhical tishcYL! vicws WL!rc introduccd in 
[SB92] . So-called a lge lenses resolve strong overlaps of 

(a) Original vicw (b) Eclgc Icns 

Figure 20: Example of edge lens interaetion. (a) Original 
view without lens. (b) Using edge lens From [WCG03J. 'C ' 

2003 IEEE. 

(a) Original vicw (b) Local eclge lens 

..-

(c) Bring ncighbors lens (cl) Composile lens 

Figure 21: Examples of different types of edge lens interae­
tions. (a) Original view without lens. (b) Using loeal edge 
lens. (e) Using bring neighbors lens. (d) Using eomposite lens 
whieh combines (b). (e) and Fisheye lens. From [TAvHS06J. 
© 2006 IEEE. 

edges in the view. They displace the edges to a larger 
area [WCG03] (Figure 20) . This approach is especially 
useful for geographic-based graphs, where node reposi­
tioning is not desired and therefore, cannot help to solve 
cdgc ovcrlar . Anothcl' arrroach uscs fill cring ofinlcl'csl­
ing edges in a specified area, 01' Illov ing neighbour nodes 
closer to a selected node relying on the graph struc­
ture [MCH*09]. This type of node position change can 
be combined with geometric view di stortion [TAvHS06] 
(Figure 21). In node-link visualization of hierarchies, 
a degree-of-interest function can be used for allocating 
more area to more interesting parts of the tree, for exam­
pie in DOITrees [CN02, HC04]. 
None-geometric magic lenses include Exeentrie Labels 
and Colour Lenses. Exeentrie Labels [FP99, BRL09] 
show labels or other statistics for items contained in dense 
focus regions (nodes or matrix cell s). The information 



(u ) Original vicw 

(b) Ra lloon foc lIs 

Figure 22: Multiple f oci in a treemap. (a) Original view. (b) 
Using balloonfocus. Front [TS081. © 2008 IEEE. 

is displayed outside the focus region with connectors 
linking the nodes/cell s to their related label. Colour 
lenses [EDF IO] dynamically adapt the colour range of 
items inside the focus region to better use the screen 
co lour range when mapping values with a very large dy­
namic to the colour of nodes or matrix cell s. 

• Multiple f oci: Multiple foci distort several view areas 
at the same time. It is useful for comparing various 
pmts of the display or focusing on several items that 
are spread across the view. In node-link diagrams either 
magni fication of the areas of interest [SZG*96, TS99] 
or space folding (shrinki ng of area out of focus) can 
be used [MGT*03, ERHF09] (Figure 28, bottom right). 
For treemaps, the so-called balloon focus can be used 
for enlarg ing multiple items in a treemap [TS08]. This 
approach keeps the form of other areas keeping relative 
position of items unchanged (Figure 22). 
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4.2. Visual abstraction interaction 

In these approaches, the change of the visual presentation of 
the data concerns adjusting the type of visual presentation 
and its parameters. 

Most of the graph visualization systems provide standard 
dialog boxes and widgets to change the visual abstraction 
parameters, including the layout technique and its various 
parameters. Currently, very few systems allow the interactive 
manipulation of layout parameters, except using indi rect ma­
nipulation such as sliders, list boxes, radio buttons and check 
boxes. Rich visualization systems provide a large number of 
these indirect manipulation widgets which use an important 
amount of the screen real-estate and fo rce users to search for 
the right widget by reading their labels and trying to make 
sense of them, wh ich can be quite long and tedious. This 
is why several research work is devoted to providing more 
direct mechanism to change the parameters. 

4.2.1. Challges of visual parameters 

These techniques affect the parameters of the visual pre­
sentation. They include highlighting of items and other 
techniques. 

Highlighting: The emphasis of interesting items is a stan­
dard interaction technique. Recently, new techniques for 
highlighting anode and its neighbourhood using hotbox and 
lasso selections were presented in [MJ09]. 

Brushing and Iinking: Multiple coordinated views are 
used to show the data from different perspectives. In these 
views, changes in one visualization (e.g. highlighting) are 
automatically transferred to the other views. For example, a 
matri x view coupled to a hierarchical view of the data can be 
used to reveal important informati on in the data [AvH04] . 

Semantic zooming: Semantic zooming combines zoom­
ing with an increasing level of detail. In particular, graph 
aggregation can be used for gaining a coarser view on a large 
graph. The semantic zooming increases the level of detail by 
drilling down to lower levels of aggregation of the original 
data [EDG*08, AvH04]. 

4.2.2. Challges ofvisllal scheme 

Changes of the vi sual scheme cover changing of the type 
of data visualization either by changing the layout 01' by 
changing the visual mapping. 

Layout cha nge: In node-Iink di agrams, layout change 
(adjustment) affec ts the positions of the data items on the 
screen (Section 3) . It can be performed by changing of the 
layout type with automatic recalculation of the new layout, 
by manual movement of nodes 01' by adjusting the layout 
parameters including automatic readjustment of the layout. 
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Figure 23: Transformation of visual representation of a 
graphjivm /lude-li/lk tu l1l({[rix view. Tlte pieture shuwsjive 
stages ofthis process [HFM07], © 2007 IEEE. 

When concentrating on user-defined changes to graph lay­
outs, an approach to easy selection and layout change of 
nodes and subgraphs was presented in [MJ09]. Further­
more, interactive adjustment of the layout constraints was 
presented in [DMW09). For matrix visualizations, user­
driven reordering of matrix representation was described in 
[HF06) . 

Change of visual representation: The change of the type 
of data presentation, for example from a matrix to anode-link 
diagram was presented in [ZMC05, HFM07) . This change 
can affect the whole data view [HFM07) (Figure 23) or only 
a palt of it [ZMC05, HFM07). By changing the visual rep­
resentation, new insights into the data can be reached. To be 
able to follow the changes, smooth animations across transi­
tions should be used. 

4.3. Data interaction 

Data-Ievel interaction affects the selection of the data to be 
displayed, or may change the data values and structure. 

Some operations can be done interactively but general 
graph analysis system provide more sophisticated mecha­
nisms including scripting languages or powerful macro fa­
cilities to perform more complex operations. 

4.3.1. Data filtering 

Thcsc intcraclion tcchniqllcs inflllcncc which rarts of thc 
da ta set are displayed. The data filtering may foll ow three 
paths. 

A top down approach: This approach starts from the 
whole graph and then constrains the part of the data set to 

be visualized by filtering according to criteria or by manual 
data selection. The disadvantage of this approach is the need 
to show the whole graph at the beginning, which may require 
higher computational time for the layout and may lead to 
occlusions owing to the limited screen size. The advantage 
is gaining an overview of the graph structure first and lhen 
concentrating on interesting parts. 

A bottom up approach: This approach starts from one se­
lected node [Fur86, AF07, vHP09) and successively shows 
more nodes/connections on demand. There are two main 
methods of choosing the additional nodes/edges to be dis­
played: based on graph structure or based on a degree-of­
interest function. The advantage of this approach is that only 
the most interesting part ofthe data set is visualized, however 
it is dirticult to detcrmine the starting point ror the exploration 
and to define the degree-o f-inlerest function. Therefore, we 
consider these methods in more detail. 

• Navigation based on graph structure: These techniques 
reveal/hide that part of the graph that is determined by 
the connections between nodes. In graphs, neighbour­
hooel traversal shows neighbour nodes of a focus node 
up to a certain level [HB05). For hierarchies, several 
traversal methods for have been described in [EF09]. The 
hierarchy traversal methods include: (I) above traver­
sai, where nodes up to a certain level are shown; (2) 
below traversal , where nodes starting from a selected 
level are displayed; (3) level traversal , where nodes at 
a certain level are displayed; (4) range traversal , where 
no des in a range of levels are shown and (5) unbalanced 
traversal, where certain branches of a tree are visible 
(Figure 24). 

• Navigation based on a degree of interestfunction: These 
methods start from a selected node, and next the edges 
and nodes of highest interest are shown [Fur86, vHP09). 
For the determination of the interesting nodes, a spe­
ci fie degree 01' interest (DOl) lünction is lIsed . Depend­
ing on the specificalion of the 001 function , various 
graph exploration paths can be followed. These DOI 
f"unctions wcrc lIsed f"m hui lding spceilie vicws on trces 
(DOITrees,SpaceTree) [CN02, HC04, PGB02) . In the 
work of Furnas [Fur86J, the DOI of anode depends on 
the distance to the node in focus and the apriori inter­
est in this node (e.g. according to node importance in 
the network, or node properties). Van Ham and Perer 
[vHP09) extended this function with user interest (UI), 
which reflects the current spec ific ex ploratory focu s of 
the user. 

A middle-out approach: This method combines both 
bottom-up and top-down approaches. It starts with a coars­
ened graph (middle) and then interactively either reduces or 
increases the graph coarsening level by hiding visible nodes 
or showing additional nodes [WMC*09) . For determining 
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Figure 24: Hierarchy traversal strategies [EF09j, © 2009 
IEEE. (a) Above traversal, (b) below traversal, (c) level 
traversal, (d) range traversal and (e) unbalanced traversal. 

the middle coarsening level and the next interactive steps, 
graph algorithms are used (Section 5). 

4.3.2. Challges 0/ data va/lies 

In these approaches, the change of the displayed data set 
resu lt from direct data value manipul ation. Specifically, the 
user can change the data va lues on one level 01' create/change 
graph aggregations. 

Graph editing: The user can interactively de lete 0 1' add 
no des 0 1' edges directly in the visual interface. These graph 
editing actions trigger adjustment of the layout, while sti ll 
maintaining the layout style and, where reasonable, the cur­
rent layout topology. Graph editing affects the structural 
properties of the graph. In particular, the changes can af­
fec t speci fi c types of subgraphs (so-called moti fs). Automatic 
idenli ficat ion and hi ghlighti ng of such struetural ehanges was 
presented in [vLGRS09]. 

Interactive graph aggregation: For simplifi cati on of 
graphs, graph aggregation is often used. The graph aggre­
ga ti on ean be pre-defi ned , 01' de term ined interac ti vely by the 
user [HF06, AMA08, AMA09]. For example, GrouseFlocks 
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(al Creating new aggregation noc!e 

(b) Deletillg an agg regation Il ode 

Figure 25: Interactive editing of a graph hierarchy. (a) Cre­
ating a new aggregation node by merging of nodes. (b) Delet­
ing an aggregation node, thereby revealing the underlying 
merged nodes. From [AMA08j, © 2008 IEEE. 

[AMA08] allows the user to add and remove aggregated 
nodes on demand (Figure 25). This allows for variab le views 
on the graph and its structure. 

5. Graph Analysis 

Algorithmic graph analys is is henefi cial during all stages of 
the vi sual graph analysis process. Relevant teehniques allow, 
fo r example to reduce a large graph to a smalleI' graph prior 
to visualization, to search fo r specific graph struetures of 
interest 01' to find simi lariti es and di ssimilarities for generat­
ing comparative graph views. In this section, we describe a 
number of graph analytical approaches. 

5.1. Analysis of graph structure 

In most user tasks, the analysis of the re lationships between 
entities in the graph and the assessment of the global graph 
strueture plays the key role. These tasks may be effectively 
supported by a combination of algorithmic graph analys is 
and interactive visualization. The algorithmic methods allow, 
for example to caleul ate node/edge properties, identify clus­
ters in the graphs, etc., the results of which are vi sualized 
interactively. In the fo llowing, we summarize the methods 
according to user tasks starting from more simple to more 
eomplex tasks. 

5.1.1. Identificatioll of importallt 1I0des 

In networks, some nocles playa specific ro le owi ng to the ir 
position within the network. For example, so-called hubs and 
authoriti es ean be identi fied and visualized in the network, 
enabling faster analys is of the graph [OPPROG09]. The im­
portance of nodes and edges is measured by derived quanti ­
ties (i .e. network metrics) such as eentrality-based measures 
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Figure 26: Interaetive graph motif seareh and visualization. 
FlVm [vLGRS09}, © 2009 held by the au/hors. 

[Fre79] and ranking-measures [WS03] . Network metries can 
he lp the analysts to explore networks. Color coding of nodes 
or edges by metric values, or displaying metries and net­
works in multiple Iinked views (as li sts, scatterplots or paral­
lel coordinates) are used in thi s respect. They offer the pos­
sibility to interactively chose the metries of interest and to 
filter/highlighting nodes according to these metrics [CJM04, 
PS06, BCD*IO, VMCJlO] . 

5.1.2. Analysis of conllectiolls between two nodes 

Besides focusing on single nodes, relations between two 
nodes can be analysed, typically by calculation and high­
Iighting of shortest paths between the entities. Usually, 
such analysis is combined with interactive selection of 
two entities of interest [HB05, HF07, TK08, GBD09] 
(Figure 14b). 

5.1.3. Analysis of graph substrllctures 

In many applieatiuns , speei l"ic types ur sllbstruetures (i.e. 
motifs) play an important role. For example, in soc ial net­
works, c1iques identi fy highly connected communities, 01' 

feed-forward motifs (sllbstructures in form of a tri angle 
where directed edges exist from nodes A-B, A- C and 
B-C) in biologie networks indicate the functional prop­
erties of the network [Sch08] . To support the substruc­
ture analysis, these moti fs can be calculated and visual­
ized in the network [MM005, SS05, KSS06, vLGRS09, 
MJW*09] (Figure 26). The type of structure can be interac­
tively chosen by the user in order to support various analytical 
tasks . 

5.1.4. Analysis of graph structllre 011 several aggregatioll 
levels 

User-defined 01' data-driven graph aggregation can reveal re­
lationships between groups of entities in a graph. The group­
ing may be based on categoric node attributes [Wat06] , or 
on a pre-defined node hi erarchy [AMA09]. It can also be 

user-speei Iku I AMA08 i, on elustering results bascd on node 
properties [PS06], or depend on structural properties of the 
graph [vLGRS09] (Figures 5 and 25). 

5.1.5. Identificatioll of the impact of graph changes 011 

the strllctllral properties 

In time-dependent graphs, the role of the nodes can change 
over time, therefore analysis and visualization of topologie 
properties (e.g. betweenness centrality) of selected nodes has 
been proposed [PD08, PRB08]. In addition, when analysing 
user-defi ned changes (in what-if-scenarios) the impact of 
node or edge deletion/addition on local substructure can be 
analysed and highlighted [vLGRS09]. 

5.2. Graph comparison 

One speeiti cally important analytieal task is the examination 
of the similarities and differences between multiple graphs, 
especially focusing on structural aspects. Usually, structural 
ui Iferenees are in the roells. Sueh ui Iferenee may be identi tieu 
by the identical node labels in both graphs, or by graph 
matching algorithms. After the matching, visualization is 
employed to explore the differences [AWW09] . There are 
various types of analysis which we describe next. 

5.2.1. One-to-olle node comparison of two graphs 

Probably the most common task in graph comparison is 
the matching of individual nodes from one graph to indi­
vidual nodes of the second graph. The VisLink visualiza­
tion approach [CC07] was developed to support this task. 
It shows both graphs on separate planes in 3D, and draws 
matching links between corresponding nodes (Figure 27a). 
For comparison of hierarchies, a similar approach, based on 
drawing the two hierarchies in opposite parts of the di splay 
and linking of their leaf nodes was proposed in [HvW08] 
(Figure 27b). In both cases, the visibility of matching links 
can be increased by edge bundling. 

5.2.2. One-to-maIlY Ilodes comparison of two graphs 

One-to-many nodes compari son concerns correspondence of 
one node in one graph to many nodes in another graph. Di 
Giacomo e/ al. [GDLP09] developed a system that visualizes 
these one-to-many connections with low overlapping of links 
(Figure 27c). 

5.2.3. Strllctural differellces between two graphs 

When analysi ng structural differences between two graphs, 
analysts are often interested in identi fy ing wh ich links 01' 

PaIts of the graphs correspond to or differ from the other 
one. For the analysis of trees, the TreeJuxtaposer system 
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Figure 27: Visuatization 01 graph comparison. (a) One-to­
one graph l11atching [CC07J. © 2007 IEEE. (b) One-to-one 
hierarchy l11atching [Hv WOB J. © 2009 held by the autflOrs. (c) 
One-to-l11any graph l11atching [GDLP09J. © 2009 Springer­
Verlag Bertin Heidelberg. 

supports to analyse and highlight structural differences be­
tween two trees [MGT*03] (Figure 28). For general graphs, 
Fung et al. [FHK*09] use both multi level graph views fol ­
lowing the VisLink approach [CC07J, and overlapping of 
two networks with highlighting of common structural parts 
(Figure 29a). Archambault [Arc09] uses graph aggregation 
and graph lilll:ring lo rl:vl:a l Slrll(;[ural dilkrl:ncl:s bdwl:l:n 
two graphs (Figure 29b). 

5.2.4. Structural similarity amOllg multiple graphs 

Strllctural comparison of multiple graphs is often based on 
their description by several graph properties such as graph 
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Figure 28: Tree comparison. (a) Schema 01 the tree com­
parison. (b) Example 01 tree comparison using hightighting 
01 tree differences. The left view shows the traditional view, 
the right view is distorted to emphasize important parts 01 
the tree [MGT*03J. © 2003 ACM. 

size, density, connectedness, etc. (see also Section 2. 1). These 
properties can be used for exploration of large sets of graphs 
[FPSG I 0], or for the determination of structural similarity 
between graphs. Graph similarity may serve as an input 
for clustering of graphs (grouping similar graphs). Clus­
tering helps gaining overview of types of graphs in large 
graph databases. Interactive combination of graph clustering 
and visualizat ion of clustering results has been proposed in 
[vLGS09] (Figure 30). 

6. ConcIuding Remarks and Future Challenges 

Research on visual graph analysis deals with the inter­
re iated issues of graph drawing, graph presentation, 
human-computer interaction and analytics. This state-of-the­
art report represents an encompassing overview and system­
alizalion or rl:cl: nl dl:vl:lopml:nlS in lhis [kid. Many advancl,;s 
have been made on individual parts of visual graph analysis. 
On the other hand, the surveyed literature discusses many 
impOltant open challenges, that researchers see in need of 
work. In the following, we summarize key research chal­
lenges. The discussion of the relevant topics is divided into 
three broad areas: graph visualization and interaction, visual 
analysis systems and conceptual issues. 
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Figure 29: Visualization oJ structural differences between 
two graphs. (a) A schematic illustration oJ graph d(fference. 
(b) Visualization oJ graph d(fferences using network over­
lapping {FHK*09], © 2009/EEE. (c) Visualization oJgraph 
differences using difference hierarchies {Arc09], f: 2009 held 
by the author. 

6.1. Graph visualization and interaction 

6.1.1. Scalability isslles in graph drawing 

There has been much interest in the development of faster 
layout algorithms that produce more readable layouts for 
large graphs, also using parallel computing, as provided, for 
example by current CPUs and GPUs. It is recognized that 
using a combination of automatic graph layout generation 
and user-oriented, interactive layout steering, better layouts 
can be obtained . As graphs gel larger, graph Illtering and 
aggregation have been the main means of graph simplillca­
tion allowing to draw them. Alternatively, the limited screen 
space leadi ng to strong over-plotting in large graph vi sual­
ization can be avoided by drawing graphs on large screens, 
where specialized layouts can be applied [MGL06]. It can 
be foreseen that work on more sophi sticated graph layouts 
revealing the main structures in the whole graphs, 01' parts 
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Figure 30: SOM-based graph clustering Jor analysis oJ 
types oJ graph data space and similarities between graphs 
{vLGS09], © 2009/EEE. 

thereof, will continue. In particular, user involvement in the 
graph layout process involving analytical expertise ofthe user 
is a promising approach and may lead to easier interpretation 
of the drawings. 

From an analytical perspective, also the understanding 
of the meaning of the nodes and edges, besides their 
global structure, is necessary. In particular, the readable/non­
overlapping drawing of nodes, edges and their labels is an 
important issue. When displaying graphs with labels, even 
smaller graphs can easi ly lead to overcrowded displays. This 
topic is gaining more interest in visual analytics research. 

6.1.2. Graph types in graph drawing 

In recent years, the variety of considered graph types has 
increased substantially. In particular, there has been a large 
amount of work on drawing dynamic and compound graphs. 
When drawing dynamic graphs, layout stability and on-line 
graph drawing are the main points of interest for the future 
research. In visual analysis , the understanding of the graph 
changes needs to be supported by stable layouts that pre­
serve the mental map of the analyst thereby allowing them 
to follow changes on the screen [DGKO I] . These layouts 
should be very stable fo r minor graph changes and, at the 
same time, be able to effectively show large graph changes . 
Although a non-trivial challenge, if successfully supported it 
may lead to easier spotting of structural changes in the graph 
and thereby, more e rri cienl and e lTective ana lys is. On-line 
graph drawing, where the data stream is unpredictable, poses 
major challenges in this respect. 



Compound graphs as a combined graph type, including 
aggregated graphs, represent a complex data type. The main 
analytical problem there is the understanding of both types 
of connections in a graph, as weil as the understanding of 
the graph structures on multiple abstraction levels. This is 
a very cumbersome task, which can be supported by graph 
visualization systems. However, the drawing of such complex 
graphs is still in its infancy. 

In the future, also further graph types such as hypergraphs 
[KKS09], or graphs with overlapping sets of nodes [HD 10] 
may become more prominent in visual graph analysis re­
search. 

6.1.3. Graph ullcertaillty 

Graph visualization by now mainly deals with drawing 
graphs with given data, largely disregarding graph uncer­
tainty. Visualization of uncertain data is a general challenge 
in visual analytics. As has been shown in [GS05], the de­
gree of data certainty affects analytical decisions. Therefore, 
it is an important issue in visual graph analysis. In graph 
visualization, various types of uncertainty can be regarded. 
The uncertainty can relate to the graph structure (the ex­
istence of nodes and edges between them) and/or on graph 
attributes (edge and node attributes). For displaying node and 
edge attribute uncertainty, various methods from multivariate 
data visualization with uncertainty (see, e.g. overviews given 
in [PWL97, THM*05, GS06]) could be applied. However, 
their applicability to graph visualization needs to be stud­
ied. When dealing with structural uncertainty, there are few 
dedicated techniques. For example, CandidTree [LRCP07] 
uses transparency and colour for conveying uncertainty in 
merged graphs. Therefore, it is expected that more methods 
will be developed in the future to address graph uncertainty 
issues. 

6.1.4. Perceptioll issues ill graph visualizatioll 

The understanding of graph structures in visualization 
strongly depends on human perception capabilities. Studies 
of human perception for graph drawing have recently focused 
on comparison of graph understanding using varying graph 
layouts. In graph design, studies on edge visualization have 
shown that the edge design has an inlluence un the graph 
reading. These various studies have given rise to new prob­
lems in graph visualization, which need to be studied in the 
future . 

6.1.5. Graph interactioll teclmiques 

In graph exploration, recently new interaction techniques for 
various graph types have been developed. These techniques 
increasingly make use ofthe structural properties ofthe graph 
to interactively navigate in the graph (e.g. [TS08, vHP09, 
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TAS09]) . This tendency supports the analytical purpose of 
graph visualization, as analysts can more easily examine the 
structural relationship between entities in the graph. In the 
future, this direction can be extended. 

6.2. Visual analysis systems 

6.2.1. Visllal analysis systems 

In line with Keim 's visual analytics process [KAF*08], mod­
ern visual graph analysis systems should interactively inte­
grate data pre-processing, interactive data visualization and 
building and visualizing of data models for gaining knowl ­
edge from the data. Many visual analysis techniques al­
ready include parts of this process. However, many of them 
rely on black box computations (e.g. automatic graph pre­
processing, automatic calculation of graph similarities or 
cliques) . To support the variable hypothesis-insight-driven 
analytical process, more user involvement in the process 
should be aimed at. The user should have full control of 
the type of the analysis and its parameters. As this process 
includes multiple loops, interactive feedback possibilities 
are necessary. Therefore, integrated visual analysis systems 
should include such features . 

6.2.2. Integration 0/ variolls data types in visual analysis 

Graphs as data structures capturing relationships between en­
tities are part of a larger set of data types examined in various 
applications. Usually, the analysis of graphs is undertaken in 
combination with analysis of related data sets, or other data 
sets are transformed into graphs for their analysis [CGK*07, 
BMGK08] . For analysis of the various data sets as a whole, 
the sole focus on visual graph analysis (in particular graph 
exploration) without taking other relevant data into account, 
is not suitable. In the future, larger integrated visual analyt­
ics systems combining research results from several areas are 
needed. 

6.2.3. Addressing new aflalytical tasks 

With the increasing data set sizes and their complexity, new 
analytical tasks arise. For example, one such task is the ex­
amination ofthe similarities and differences between graphs . 
This task builds on the examination of the structure of one 
graph as discussed above. Lately, several papers about vi­
sual graph comparison for both trees and general graphs 
have been published (Section 5) . The comparison can con­
cern only two graphs, trying to match nodes and edges be­
tween thern . It can foeus on finding silllilar graphs for one 
partieular graph from a large set of graphs. It ean concern 
gaining an overview of the types of struetures in a large set 
of graphs. It can concentrate on analysing the silllilarities 
of whole graphs or on Illatehing of parts of one graph to 
other graphs. Owing to its complexity, and the variety of the 
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problems, it is foreseeab le that the research in this area will 
need to continue. 

6.2.4. Collaborative visual graph a1lalysis 

For solving complex analytical tasks concerning multiple 
large related data sets, a collaboration of several experts is 
necessary. Recently, the development of collaborative visual 
analysis systems has received attention [BMZ*06, Kee06, 
ITC08]. However, collaborative visual graph analysis is not 
represented prominently. Therefore, the study of collabora­
tive systems including graph data sets would be of advantage. 
Thc spccifics 01' graph cxploration, in part icular, nccd to bL: 
studied. 

6.2.5. I11sight prove1la1lce for visual graph a1lalysis 

In Visual Analytics applications, the analytical processes are 
often long-running and/or distributed . To support the repro­
ducibility, reversibility and automation of these processes, 
user tracking of the graph interaction steps is necessary. As 
a basis for tracking, a taxonomy of graph interaction tech­
niques is necessary. The theory of interaction is a general 
Visual Analytics challenge [TC06]. Although several inter­
action taxonomies also for insight provenance have been re­
cently introduced [GZ08, HMSA08], their applicability and 
the need for their adaptation to graph analysis needs to be 
studied. rn return, specifi c classifications of graph interaction 
techniques could be developed. In this report, we have aimed 
to c1assify them for gaining a concise overview ofthe current 
state 01' the research . This classification, however, may not 
be directly applicable to user tracking applications. 

6.2.6. Applicatio1ls 

For analytical purposes, standard graph visualization and 
analysis methods need to be adapted to the specific needs of 
the paIticular application domain. For example, there are spe­
cialized systems for visualization of bio-chemical structures, 
shareholding structures and many more. Designing graph 
visualization systems with fast adaptability to various data 
types, analytical tasks and application-dependent analytical 
processes is still achallenge. Even within one application, 
often, the network to be analysed needs to be constructed 
from heterogeneous data sources, and the focus of interest 
(attributes of nodes and edges) varies dynamically. Designing 
such systems is obviously not trivial. 

6.3. Conceptual issues 

6.3.1. Evaluatio1l 

Evaluation of usability and user acceptability of the tech­
niques including development of the evaluation methodolo­
gies is an important future challenge for the Visual Analyt­
ics research area [KMS*08, TCOS , TC06, LK07] . Currently, 
there is a broad discussion in the Visual Analytics com-

munity on the appropriate methodology for the evaluation 
of Visual Analytics and information visualization systems. 
This discussion applies also to the visual analysis of graphs. 
This challenge is expressed in the words of Plaisant et al. in 
the introduction to the special issue of Computer Graphics 
and Applications [PGS09] 'Assessing VA [Visual Analyt­
ics] technology's effectiveness is challenging because VA 
tools combine several disparate components, both low and 
high level , integrated in complex interactive systems used by 
analysts, emergency responders, and others .. . . Traditional 
evaluation metrics such as task completion time, number of 
errors, or recall and preci sion are insufficient to quantify the 
utility of VA tools , and new research is needed to improve 
our VA evaluation methodology '. When concentrating on 
the evaluation of graph visualization techniques, several ap­
proaches have been proposed, ranging from quantitative to 
qualitative studies. Controlled experiments measuring accu­
racy and duration of user tasks have been used, for exam­
pie, to compare tree visualization techniques [Kob04, AK07, 
ZK08] . An extension of these two main measures, the so­
called cognitive load measure was used for evaluating gen­
eral graph visualizations [HEH09]. Moreover, eye tracking 
can be employed for quantitative evaluation, for example for 
comparing graph layouts [Hua07, PSD09] . These controlled 
studies offer a quantitative comparison across techniques, 
however often suffer from the focus on ly on selected low level 
tasks. Note lhat lhe fonnu lali on of these tasks can innuence 
the comparison result [ZK08]. A combination of quantita­
tive and qualitative study has been performed for comparing 
graph layouts produced by both in a manual and in an algo­
rithmic way [DLF*09] . The subjective user view has been 
used for ranking of best layouts. A qualitative view on the 
effectiveness of visual analytics techniques can be gained by 
use case studies conducted by domain experts (e.g. in [PS08, 
MGT*03]) . This method offers insights into the usability of 
the systems in real world scenarios, however does not allow 
for standardized quantitative comparison of the techniques. 
The choice of appropriate evaluation method and its design 
is still discussed in the community. 

6.3.2. Taxo1lomies a1ld benchmarks 

The fie ld of visual graph analysis would profit from more 
elaborate taxonomies for tasks, interaction , visualization 
techniques, measures for quality, and benchmarks for com­
paring the new techniques. They would support both the 
design and development of visual analytic systems and their 
evaluation. Although several taxonomies and sampie data 
sets exist, a more broader scope of theory and data aspects 
is needed owing to the large set of problems/tasks in visual 
analysis of graphs. 
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