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Abstract
Despite the success of quad-based 2D surface parameterization methods, effective parameterization algorithms
for 3D volumes with cubes, i.e. hexahedral elements, are still missing.CUBECOVER is a first approach which
provides both, a consistent theoretical framework for volume parameterization plus a full pipeline for generating
a hexahedral tessellation of a given volume with boundary aligned cubes which are guided by a frame field.

The input ofCUBECOVER is a tetrahedral volume mesh. First, a frame field is designed with manual input from
the designer. It guides the interior and boundary layout of the parameterization. Then, the parameterization and
the hexahedral mesh are computed so as to align with the given frame field.

CUBECOVER has similarities to theQUADCOVER algorithm and extends it from 2D surfaces to 3D volumes. The
paper also provides theoretical results for 3D hexahedral parameterizations and analyses topological properties
of the appropriate function space.

Categories and Subject Descriptors(according to ACM CCS): I.3.5 [Computer Graphics]: Curve, surface, solid, and
object representations—Computational Geometry and Object Modeling

Figure 1: Section through the rockerarm volume. Hexahedral
mesh computed with CUBECOVER.

1. Introduction

The field of surface parameterization was intensively re-
searched during the recent years and various effective pa-
rameterization methods were invented. However, for general
3D volumes, boundary aligned parameterizations which are
suited for hexahedral meshing remained out of reach.

† Supported by DFG Research Center MATHEON “Mathematics
for key technologies”

CUBECOVER is a first approach to unfold a given 3D
volume intoR3 without fixing the boundary surface. Our
approach computes a hexahedral parameterization from
a given tetrahedral representation. Conceptually, CUBE-
COVER extends the surface parameterization algorithm
QUADCOVER [KNP07] from surfaces to 3D volumes.

A clean and non-degenerate volume parameterization de-
fines a hexahedral mesh suitable for PDE solving as well
as a multilevel hierarchy of nested meshes. Such hexahe-
dral meshes often enhance the speed and accuracy of PDE
solvers significantly. Parameterizations can furthermore be
used for volume sampling or 3D texture synthesis.

The presented approach analyzes the problem of vol-
ume parameterization from a theoretical viewpoint. A proper
space of parameterizations with singularities is defined. For
quadrangular parameterizations on surfaces, a singularity
corresponds to an irregular vertex in the quad grid, i.e. with
valence different than 4. In a volumetric hexahedral mesh,
irregularities naturally occur at edges. An edge is consid-
ered as irregular if it is not incident to exactly 4 hexahedra.
As a consequence, singularities in a volume parameteriza-
tion form a network of curves throughout the volume. We
provide a self-contained notion of volume parameterizations
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with singularities and study topological properties of the un-
derlying space.

Our approach is based on a guiding field which is used to
locally steer the metric and the alignment of the parameteri-
zation. The pipeline to turn an input tetrahedral mesh into an
output hexahedral mesh consists of three steps:

1. Design aguiding frame-field
2. Generate aparameterizationwhich aligns to this field
3. Generate ahexahedral meshfrom the parameterization

The first step produces a guiding field which consists of
three vectors in each point of the volume forming a local co-
ordinate frame. It encodes topological and metric properties
and determines the shape of the parameterization. For sur-
faces, there are many different approaches about the design
of vector- and frame-fields for parameterization. To our best
knowledge, no comparable method exists for volumes. De-
signing fields in 3D is far more challenging than in 2D and
it is not straightforward to generalize existing surface meth-
ods to volumes. It is out of the scope of this paper to give a
fully automatic algorithm for field generation in 3D. Instead,
we propose a simple design framework with user interaction.
We expect much work on this topic in the near future.

The second step of our pipeline computes a parameteri-
zation which aligns to a given guiding field. CUBECOVER

finds the optimal solution inL2-sense; the gradients of the
parameterization fit best possible to the input vectors. The
algorithm is a generalization of the QUADCOVER algo-
rithm for surfaces. However, the extension to volumes is not
straightforward, since the space of parameterizations and the
impact of singularities are far more complicated in 3D.

The third step of our pipeline is conceptually straightfor-
ward since extracting all iso-surfaces of a parameterization
yields the faces of the hexahedral mesh. Nevertheless, the
actual implementation is elaborate, but the challenges are
mostly of technical nature (i.e. considering all occurring spe-
cial cases) and are not the topic of this paper. Using a clear
parameterization without any fold-overs guarantees that the
output mesh is a pure hexahedral mesh, containing no other
primitives.

In summary, our contributions are:

1. We settle theoretical foundations for describing volume
parameterizations with singularities and analyze their
properties.

2. We propose a framework for the manual design of volu-
metric guiding fields.

3. We introduce an algorithm which automatically com-
putes a parameterization from a given guiding field.

1.1. Previous Work

Surface Parameterization.The field of 2D surface param-
eterization is extensively explored and already summarized

in excellent surveys [FH05, SPR06]. Early work [HAT∗00,
GY03] studies conformal parameterization. The distortion
of a parameterization can be reduced significantly by allow-
ing cone singularities. Several methods place singularities in
various ways and solve for a corresponding parameteriza-
tion [TACSD06,RLL∗06,KSS06,SSP08].

QUADCOVER [KNP07,KNP10] uses a user-defined input
frame-field as guidance for the parameter lines. The parame-
terization problem is formulated as finding least squares fit-
ting to the given field. The MIQ-algorithm [BZK09] is based
on a similar formulation, but exchanges the rounding strat-
egy of QUADCOVER by using a mixed integer solver. Addi-
tionally, a method for generating input frame-fields from a
sparse set of vectors is proposed.

Volume Parameterization. Only few works exist on
boundary-aligned volume parameterization. A first idea is
to remesh the volume into hexahedra using a regularZ

3 grid
in the interior and adjust only the cubes along the bound-
ary [ZB06, STSZ06]. Conversely, the Whisker-Weaving-
algorithm [TBM95] starts with a quadrilateral mesh on the
boundary and extends it to the inner volume. Another ap-
proach [SERB98] decomposes the volume into small vol-
umetric patches using the embedded Voronoi graph of the
object and then remesh the patches into hexahedra.

Mean value coordinates are used for 2D surface param-
eterization. These coordinates are extended for star-shaped
polyhedral volumes in [FKR05]. [JSW05] proposed mean
value coordinates for volumes bounded by arbitrary closed
triangular meshes and applied it to texture mapping and vol-
ume morphing.

Harmonic functions are used to compute maps between
two given volumes, as in [WGTY04] with applications to
decomposing medical 3D data, and in [LGW∗07,LGW∗09]
for deformation and volume morphing.

A hexahedral parameterization can also be obtained by
mapping the volume to a polycube. There exist several ap-
proaches to compute polycube maps, but most of them only
map the 2D surface onto a polycube surface. [HWFQ09,
XHY∗10] compute volumetric polycube maps which can be
applied to hexahedral meshing. [LLWQ10] proposes the use
of generalized polycube domains which may not have an
embedding inR3. In the context of volume parameterization,
polycube maps have the disadvantage that they may produce
high metric distortion in the vicinity of edges and vertices of
the polycube.

[MCK08] proposes a parameterization method for cylin-
dric volumes applied for tri-variate spline fitting. [MC10]
extends this approach to more general volumes using some
kind of medial surface to decompose the volume into tensor-
product patches. [XHH∗10] uses Green’s functions to map
star-shaped volumes onto the unit sphere.

Most of the mentioned methods are cross-parameteriza-
tion methods, i.e. they map the input volume to another pre-
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defined volume, typically a simpler geometry such as the
unit ball, a cylinder, a given polycube or any other volume.
To our knowledge, there is no method which computes a pa-
rameterization from the input volume intoR3 without pre-
scribing the map at the boundary. Furthermore, most present
methods compute parameterizations without any singulari-
ties. As known from 2D parameterizations, singularities are
essential to reduce the overall distortion.

1.2. Approach and Paper Outline

We explore the natural space for parameterizations intoR
3

with singularities. The setting is used to compute such a pa-
rameterization similarly to QUADCOVER. However, it is also
a canonical setting for other common parameterization ap-
proaches, e.g. using conformal functions. The setting is de-
scribed in detail in Sect.2.

Pipeline.The parameterization step of CUBECOVER takes a
(bounded) 3D tetrahedral volume plus a guiding frame-field
as input. The result is a hexahedral parameterization which
aligns to these input frames and to the volume boundary. It
consists of two main steps:

1. Compute a potential function of the frame-field.
2. Enforce integer conditions to obtain a globally continu-

ous cubical mesh.

These two steps do agree with each other, i.e. they optimize
the same energy. Similar to the pipeline of QUADCOVER, it
does not matter if they are combined into one, looking for
the best aligning globally continuous parameterization, or if
they are solved successively.

Despite the similarities to QUADCOVER, it is not straight-
forward to extend the 2D setting to 3D. In 2D, the aim is
to compute a parameterization which aligns to surface fea-
tures, e.g. the principal curvature directions. Since the Eu-
clidean three-dimensional space is flat, there are no canon-
ical directions coming from the curvature tensor. Instead,
we are given the volume boundary as additional constraint,
where the cubes have to fit. Furthermore, the parameteriza-
tion space is different. The point singularities from 2D ex-
tend to one-dimensional singular curves which meet in node
points. These curves induce special constraints to the param-
eterization function which are not present in the 2D case.

Coverings.Similarly to QUADCOVER, the space of param-
eterizations is strongly related to branched covering spaces.
In the volume case, a parameterization can be interpreted
as a scalar-valued function on a 24-sheeted branched cover-
ing volume. This viewpoint helps to understand topological
properties of parameterizations and frame-fields.

Although branched coverings provide a clear and self-
contained theoretical framework, there is no need to explic-
itly compute the covering inside the algorithm. The topol-
ogy of the covering can be fully described by the so-called
matching matrices(see Sect.2.2). Therefore, we simplify

our presentation and describe CUBECOVER without the no-
tion of covering spaces. The algorithm can be read and un-
derstood without any previous knowledge of QUADCOVER.

Field Design.We propose a method for inducing a frame-
field from a manually designedmeta-mesh. It is a very coarse
hexahedral mesh which encloses the volume and roughly en-
codes desired topological and geometrical properties.

With using a meta-mesh, the designer has explicit control
over the alignment of the hexagons in the inner. If the meta-
mesh e.g. consists of a single hexahedron, then the parame-
terization tries to align everywhere to the edges of this hex-
ahedron. More complex meta-meshes can be used to induce
singularities and reduce overall distortion (see Sect.3.2).

Designing a meta-mesh is much simpler than the tessel-
lation of the volume itself. The meta-mesh may be very
coarse, it may contain T-junctions and does not rely on hav-
ing uniform hexahedra or alignment to the boundary. CUBE-
COVER globally optimizes the sizes of the latter hexahedra
and their alignment to the meta-mesh, while fitting exactly
to the boundary.

Note that using a meta-mesh for parameterization is fun-
damentally different to a polycube parameterization. Meta-
meshes are more general and provide natural parameteriza-
tions for volumes with a different structure than a polycube
(as in Fig.3). Polycubes have no inner singularities. Instead,
they induce boundary singularities at edges of the polycube
which often leads to increasing distortion (as in Fig.16).

The algorithm is described in detail in Sect.3. In Sect.4
we discuss results of parameterized volumes.

2. Setting

We now describe the underlying theoretical background,
introduce data structures for volume geometry and frame-
fields, and discuss singularities of frame-fields in hexahedral
meshes. The concepts are fundamental for volume parame-
terizations in general.

2.1. Parameterization

Given an underlying volumetric geometry as subsetV ⊂R
3,

bounded by a two-dimensional closed surfaceM = ∂V. A
volume parameterizationof V is a map f : V → R

3, p 7→
(u,v,w)T .

A non-degenerate parameterizationf induces a hexahe-
dral tessellation in a natural way byf−1(C), whereC is the
regular cube tessellation ofR3 (Fig. 2):

C := {(x,y,z) ∈ R
3 |x∈ Z∨y∈ Z∨z∈ Z}. (1)

For aligning to the boundary surface, one coordinate has to
be integer in each point on the boundary. This guarantees
that the cubes align tangentially to the surface and induce a
regular quad mesh on it.
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Figure 2: Tetrahedral input- and hexahedral output mesh.

We consider the volume as a 3-dimensional manifold with
an atlas, where each tetrahedron (short:tet) is a single chart.
Two adjacent charts (tets) overlap at their common face. A
parameterizationf is discretized as being linear on each tet,
and is represented by its values at the four vertices. Given
two adjacent tetssandt, the parameter functionf may have
different values in both charts. They are related by thetran-
sition functionbetweens and t which we restrict to those
positively oriented linear functions which leave the standard
cube gridC invariant. Thus, even thoughf may have multi-
ple values on faces of tets, the induced hexahedral grid has
no visible seams (see Fig.3). The transition is given as:

f|t = Πst f|s+gst, (2)

wheregst is a constant vector inZ3 (calledgap between s
and t) and denotes an integer translation of the cube grid.
Πst (calledmatching matrixbetweens andt) is an element
of the chiral cubical symmetry group, i.e. any map inSO(3)
which maps coordinate axes to coordinate axes. This group
contains 24 different transformations.

Figure 3: 3D parameterization of a triangular prism. Left:
Induced hexahedral mesh. Middle: Faces wheref is discon-
tinuous. Right: Image of volume in texture space.

2.2. Frame-Fields and Singularities

The parameterization is guided by a so-calledframe-field.
It is defined by 3 three-dimensional vectors(Ut ,Vt ,Wt) in
each tett which are constant per tet and form a local co-
ordinate system. Each parameterizationf = (u,v,w)T de-
fines a frame-field by its component-wise gradient fields
(∇u,∇v,∇w).

In adjacent chartss and t, the matchingΠst determines
how the frames are combinatorially connected. The frame
(Ut ,Vt ,Wt) in t is combinatorially identified to a rotated
frame in s which can be described by the formal matrix-
vector multiplication:Πst · (Us,Vs,Ws)

T (Fig. 4, left).

An important characteristic of a parameterization is the
location and types of itscritical points (or the singulari-
ties of the gradient frame-field). For classical vector fields,
these are points where the Jacobian is singular. They are
typically characterized by theirindex, which is an integer
number describing the behavior of the field in the vicin-
ity. On 2D manifolds, this notion was generalized to frame-
fields [KNP07,NP09]. When used for quadrangular param-
eterization, the frame-field index at any point is always an
integer multiple of 1/4, typically 1/4 or−1/4.

In three dimensions, singularities of non-degenerate
frame-fields in general form one-dimensional curves
throughout the volume (like the red curve in Fig.3). We de-
note this network of singular curves assingularity graph.
Singularities cannot simply start or end in the interior; they
usually meet innode points, or they hit the bounding surface.

Πst =







1 0 0
0 0 −1
0 1 0







Figure 4: Left: Frame-field with matching between two tets.
(U,V,W) (red, green, blue) is mapped to(U,W,−V). Right:
Frame-field in the vicinity of a singularity.

The classical definition of a vector field index is not suffi-
cient to fully classify 3D frame-field singularities. We there-
fore introduce thetypeof a singularity which provides addi-
tional information in our discrete setting.

Given a volumeV tessellated with tets, lete be an (ori-
ented) edge ofV andγ be a small closed loop (positively ori-
ented) arounde. Starting in an adjacent tett0, the loop passes
through all tets(t0, . . . , tk, t0) in the edge star. The concate-
nation of matchings between all passed charts

type(e, t0) := Πtkt0 ◦Πtk−1tk ◦ · · · ◦Πt1t2 ◦Πt0t1 (3)
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is called the type of the edge with respect tot0 and is also a
cubical symmetry transform. When tracking a frame alongγ,
the type measures how it is transformed when coming back
to the start point. If the type is not the identity map Id, the
edge is calledsingular (Fig. 4, right), otherwise it is aregu-
lar edge. Note that the type is independent of the reference
tet t0, but is just described in its local coordinate system, i.e.
with respect to tett1, the type is

type(e, t1) = Πt0t1 ◦ type(e, t0)◦Π−1
t0t1 (4)

which is just a basis transform of type(e, t0).

Theorem 2.1Let f be a parameterization where no tet is
mapped to a degenerated tet (a tet with vanishing volume).
Then, the type of each edge is either the identity or a rotation
around one of the coordinate axes.

Proof. Given an edgee with the (cyclically ordered) tets
(t0, . . . , tk) in the edge star and a pointp on e. The parame-
terization f respects the transition functions (2), i.e.

f|t1(p) = Πt0t1 f|t0(p)+gt0t1,

f|t2(p) = Πt1t2 f|t1(p)+gt1t2, . . .

and therefore with plugging each equation into its successor
we get:

f|t0(p) = type(e, t0) · f|t0(p)+g

⇔ (Id− type(e, t0)) f|t0(p) = g (5)

for some constant vectorg∈ Z
3 which depends on the gaps

gti ti+1. This equation is true for all pointsp on the edge.
Therefore, if the matrix(Id− type(e, t0)) has full rank, then
the whole edge gets mapped to a single point (the solution
for f|t0(p) in Eqn. (5)) and all tets in the edge star would de-
generate. The only edge types (from the chiral cubical sym-
metry group) where the matrix is not regular are the identity
and rotations around a coordinate axis.

�

The theorem restricts the number of possible singularity
types of a proper parameterization. Even though each indi-
vidual matching can be any of the 24 cubical symmetries,
the resulting edge types must be one of the ten suitable ones:

{Id,Jk
u,J

k
v ,J

k
w | k∈ {1,2,3}}, (6)

whereJu, Jv and Jw are the 90 degree rotations about the
respective coordinate axis.

As a consequence, a singularity of a volume parameteriza-
tion is always similar to a 2D singularity but extruded along
the third coordinate. Let e.g.ebe a singular edge whose type
Jk
w is aw-axis rotation. From Eqn. (5) then follows, that theu

andv coordinates forf are constant oneand uniquely deter-
mined when all gaps are known, whereas thew coordinate is
independent of the gaps and can vary along the edge.

2.3. Singularities in a Hexahedral Mesh

Having introduced singularities of a frame-field in Sect.2.2,
we now describe their effect on the final hexahedral mesh.
This section shows some observations about 3D frame-fields
which we think are worth mentioning. They are not essential
for the implementation of the algorithm, but they help to un-
derstand some topological properties of hexahedral meshes.

Let e be an edge e.g. of typeJk
w, k ∈ {1,2,3}. Comput-

ing the inverse matrix in Eqn. (5), it follows that u and v
are multiples of 1/2 (sinceg ∈ Z

3). In case ofu,v∈ Z, the
singularity is contained in an integer iso-plane foru andv,
and therefore, the singularity is represented by an edge in
the later hexahedral mesh. Otherwise, the singularity would
pass through the interior of a cube, producing other primi-
tives, e.g. a prism over a 5-gon (Fig.5).

Figure 5: Valence 5 singularity. Left: The singularity stays
on hexahedral edges. Right: Unintended situation, turning a
hexahedron into a prism over a 5-gon.

Since we are interested in a pure hexahedral tessellation,
we enforceu,v∈ Z. Singularities then appear as those edges
in the hexahedral mesh with valence different from 4 (num-
ber of adjacent hexahedra). Similar to the 2D case, the va-
lence of an edge in a hexahedral mesh is closely related to
the type of the corresponding singularity.

The following theorem shows that singularities cannot be
chosen arbitrarily. There is a relation between the valences
of all edges incident to a vertex and therefore between sin-
gularities which meet in a node point.

Theorem 2.2Let p be an inner vertex of a non-degenerated
hexahedral mesh andei its adjacent edges. Then,

∑
i
(6−valence(ei)) = 12. (7)

Proof. Consider an infinitesimal small sphere around ver-
tex p. The hexahedral mesh induces a triangulation on
that sphere where each hexahedron corresponds to a trian-
gle, each two-dimensional face to an edge and each one-
dimensional edge to a vertex of that triangulation (see
Fig. 6). The proposition now becomes a formula for the ver-
tex valences which is true for arbitrary triangulations of the
2-sphere and follows from the Euler formula.

�

An interesting observation about Eqn. (7) is that singular-
ities of valence 6 do not contribute to the sum, but edges of
valence 4 (regular edges) do. Fig.7, left and right show an
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Figure 6: Infinitesimal sphere around a vertex of a hexahe-
dral mesh with induced triangulation.

example where several singularities meet in one node point.
The singularities in the right example are exactly the same,
but with an additional valence 6 singularity.

Figure 7: Left: 6 edges of valence 4 and 2 of valence 6 meet
in a node point. Right: 6 edges of valence 4 and 3 of valence
6 meet in a node point.

Nevertheless, there cannot be a node point adjacent to 6
regular edges and only one valence 6 edge, even though it
would fulfill Eqn. (7). A singularity cannot simply end some-
where in the volume. A singular edge adjacent to a vertex
enforces that there is either another edge with the same in-
dex (the singularity passes "through" the vertex) or it splits
up into two or more other singularities.

Given an arbitrary singularity graph, there is yet no suffi-
cient condition on whether there exists a frame-field which
adheres to these singularities. In 2D, satisfying the Poincaré-
Hopf index theorem is enough to find a frame-field to given
singularities. In 3D, more conditions are required to con-
struct a correct singularity layout. The CUBECOVER algo-
rithm does not rely on these conditions and will always find
the best parameterization to the given input field. If the field
is incompatible in the sense that there exists no valid poten-
tial function, then parts of the parameterization will degener-
ate. Our proposed frame-field generation method delivers a
valid frame-field, since it is derived from a valid hexahedral
mesh, the meta-mesh (see Sect.3.2).

Behavior at the Boundary. At the boundary, a regular
edge has valence 2. There may also be edges with valence 1
or ≥ 3 which we callboundary singularitiesof the volume
parameterization. Boundary singularities are curves running

on the boundary surface and should not be confused with
singular points of the induced quad mesh.

A boundary singularity always corresponds to a change
of boundary conditions, i.e. on the left and right side of the
singular curve, a different coordinateu, v or w is snapped to
the boundary.

3. Algorithm

3.1. Parameterization Guided by a Frame-Field

We now describe the CUBECOVER algorithm based on the
setting of hexahedral parameterizations from Sect.2. The
output is a parameter mapf = (u,v,w) whose integer iso-
surfaces form a hexahedral tessellation ofV. The user input
to this parameterization step is a tet meshV together with
a frame-fieldX (matchingsΠi j plus frames(U,V,W)) and
optionally conditions at the boundary. Boundary conditions
enforce that the hexahedra align with one face to the bound-
ary, i.e. one coordinate function is constrained to be constant
along the boundary. The specification of boundary condi-
tions also includes the information about which coordinate
u, v or w is held fix in each triangle of the boundary surface.
See Sect.3.2 for details on our framework for generating
input fields.

The parameterization is optimized for the best possible
alignment of the parameter lines to the given frames, i.e. it
minimizes the energy

E( f ) =
∫

V
‖∇ f −X‖2dvol (8)

The minimization is done in the space of piecewise linear
maps f , i.e. given by its valuef|t(p) at each vertexp of
each tett ∈V. Note that a vertex can have different values in
different tets. All unknowns are collected in the vector

~f = (u0,v0,w0, . . . ,uN,vN,wN)
T ∈ R

12·#tets

Derivation of Eqn. (8) by all unknowns leads to a linear sys-
tem of equationsL~f = b with the Laplace matrixL and a
right sideb containing the discrete divergence of the frame-
field.

Additional linear constraints are given by Eqn. (2) in-
troducing the gapsgi j as additional unknowns. Finding a
global minimum of the energy is challenging since some
variables are constrained to integers: the gapsgi j ∈ Z

3 and
the snapped coordinate at the boundary must be inZ. This
problem of optimizing a quadratic functional under integer
constraints is known as theclosest vector problemwhich is
NP hard, thus we cannot compute the optimal solution in
reasonable computing time. Instead, we use the following
heuristic for a nearly optimal solution: In the first stage, we
ignore the integer constraints. In adjacent tets(s, t) and all
three edges(p,q) of the common face we just enforce a con-
stant gap, i.e.:

f|t(p)− f|t(q) = Πst( f|s(p)− f|s(q)). (9)
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This system of linear constraints, together with given
boundary conditions, can be written asCu = 0, C ∈
Z

#constraints×12·#tets. We optimize the energy using Lagrange
multipliers by solving

(

L Ct

C 0

)(

~f
λ

)

=

(

b
0

)

, (10)

with λ ∈ R
#constraints. The solution defines a parameteriza-

tion f whose gaps can be computed from Eqn. (2).

The following observation helps to reduce the dimension
of the system of equations drastically: The texture coordi-
nates f|t of a single tet can be translated by a constant in-
teger vector without violating any constraints or changing
the energy. Therefore, there are many redundant variables
in the system which can be eliminated by first computing a
spanning treeT on all tets, and second, setting the gaps to 0
between tets which are adjacent inT.

In a second stage, the integer constraints are enforced. For
all vertices on a singularity, there are two coordinate func-
tions (e.g.u andv for a singularity of typeJk

w) which need to
be integers (see Sect.2.3). If boundary constraints are given,
the corresponding coordinate function also has to be integer
at the boundary. If we enforce these constraints, then it fol-
lows that the gaps are also integer since they are connected
to the coordinate functions via Eqn. (2).

Let ui0, . . . ,uin be the integer variables inu. We succes-
sively round them to the nearest integer value and eliminate
them from the system of equations (10) (which deletes the
i j -th row and column and modifies the right vector). Finally
the system gets solved again with fixedui j .

We solved the equations with a conjugate gradient solver.
The solution of the first system is used as an initial start
value for the second step. The final solution is then used for
remeshing the volume into cubes by computing the intersec-
tion of each tet with the unit grid in texture space.

3.2. Frame-Field Construction

Generating good parameterizations requires suitable input
frame-fields. In principle, an arbitrary field (e.g. constant
frames) can always be used. It often makes sense to have
specific control over the frame-field since it fully defines
the location and type of singularities: inner singularities
are given by the matchingsΠst, boundary singularities are
introduced wherever the fixed coordinate at the boundary
changes (see Sect.2.3). Singularities always exist and, if
badly placed, may induce high distortion. The automatic vol-
umetric frame-field design is an unsolved issue as already
mentioned and part of independent research as in the case of
2D surface parameterization.

Meta-Mesh. We propose a simple method for generating a
frame-field from ameta-mesh. It consists of a (coarse) set of
hexahedra with possible T-junctions and fully encloses the
input volumeV.

By mapping each hexahedron onto the unit cube, the stan-
dard orthonormal basis frame induces a trilinear frame-field
in the actual hexahedron. The frame-field is evaluated at the
barycenters of all inner tets providing a frame-field on the
tetrahedral input mesh.

The matchingsΠst and therefore the singularities are also
induced from the meta-mesh: Lets, t be adjacent tets which
lie in the hexahedracs, resp.ct . If cs = ct , thenΠst is set
to identity. Otherwise, it is defined as transformation which
maps the axes ofcs to those ofct (in the image of the unit
cube).

Finally, the boundary conditions are induced from the
frame-field: In each boundary tet, the frame vector that is
best aligned with the surface normal is used to constrain the
corresponding coordinate function.

Relaxing. Since singularities always run along edges of
the tet mesh, they are usually not smooth, but start to zigzag.
In practice, this is no problem and CUBECOVER runs very
stable even when the singularity curves are not smooth.
However, the cubes of the output mesh stick to singularities,
i.e. the edges of the cube mesh which align to singularities
are still not smooth. We handle this issue by relaxing the
mesh afterwards allowing the cubes to become more regu-
lar. Positions of all vertices are iteratively altered by adding
a displacement vector. Each hexahedron defines a displace-
ment vector for all of its vertices which deformes this hexa-
hedron into a perfect cube. Per vertex, the displacement vec-
tors are then averaged. After each iteration step, boundary
vertices are projected back onto the boundary (Fig.8).

Figure 8: Left: Frame-field singularity in the input mesh runs
along tet edges. Middle: Singularity in the cube mesh after
parameterization with CUBECOVER. Right: Relaxed cubes
with smoother singularity.

4. Results

We applied the CUBECOVER algorithm to various synthetic
and general models. In all our experiments, the algorithm
runs very stable and the results are regular and smooth. Skull
and Hand model are provided by the Aim@Shape Reposi-
tory. The bush model is courtesy of the authors of [ZB06].

Fig. 9 shows the parameterization of a torus. The frame-
field was designed manually with two singularities. The red
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Figure 9: Twisted torus.

singularity runs exactly along the axis of the torus. The blue
singularity circulates 5 times around the torus with a slight
twist. The parameterization generates a regular hexahedral
mesh. A slice of this mesh corresponds to a 2D parameteri-
zation of a solid 2-ball with 5 index 1/4 singularities and 1
index−1/4 singularity.

The fandisk (Fig.10) is computed using a constant frame-
field pointing in direction of the coordinate axes. Notice the
exact alignment of the parameterization to sharp features of
the surface since they are exactly represented by boundary
singularities.

Figure 10: Feature alignment at the fandisk.

The rockerarm is shown in Fig.1. The frame-field was
constructed using 26 cubes as meta-mesh (Fig.14, top right).
The parameterization contains 5 singularities which emanate
through the volume from the front side to the backside.

Fig. 11 shows the hexahedral meshes generated for artifi-
cial genus 4 and 5 volumes. For the genus 4 model, an axis
parallel frame-field is used whereas the genus 5 model was
parameterized with a simple meta-mesh containing 15 cubes
(Fig. 14, bottom middle). Fig.12 and13 show further pa-
rameterizations of the Hand and the Skull model. The hand
model shows that it is less important whether the meta-mesh
is an approximation of the volume itself. Even if several fin-
gers are represented by one meta-cube, the correct boundary
singularities are induced on each individual finger.

Designing a Meta-Mesh.Creation of a meta-mesh is much
simpler than producing a hexahedral tessellation of the input

Figure 11: Volumetric parameterization of artificial shapes
of genus 4 and 5.

Figure 12: Digital hand model.

volume. The meta-mesh may be very coarse, may contain
T-junctions and does not have to fulfill any boundary condi-
tions. CUBECOVER then optimizes the hexahedra for equal
cube sizes and alignment to the meta-mesh. E.g. in Fig.15
(top), we re-parameterized the volume of Fig.2 given a sin-

Figure 13: Parameterization of the skull. Left: Coarse cube
meta-mesh used for defining a frame-field in the volume.
Right: Remeshed hexahedral model.
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Figure 14: Meta-meshes for defining a frame-field. Top:
Pretzel from Fig.2, Rockerarm from Fig.1. Bottom: Hand
from Fig. 12, genus 5 model from Fig.11, Bush from
Fig. 17.

gle axis aligned cube as meta-mesh. Notice how the num-
ber of hexahedra between the two red stripes adapt locally
(6 hexahedra in the middle part, 10 hexahedra at the ends)
which is not inherited from the meta-mesh.

Figure 15: Model from Fig.2, parameterized with constant
frames, parallel to axes (top) and slightly twisted (bottom).
Boundary singularities are drawn in black.

The most important task for designing a meta-mesh is to
consider where to put singularities. In our tests, we observe
an increasing distortion near singularities, similar to effects
appearing in 2D quad parameterizations. Thus, singularities
should be used sparsely and put at meaningful locations.

For comparing the influence of different meta-meshes,
we parameterized the same volume with a slightly twisted
constant frames (Fig.15, bottom). Notice that both frame-
fields induce boundary singularities which do not always
fit to highly curved regions of the boundary surface. As a
consequence, hexahedra in the vicinity of such singulari-
ties are distorted. More precisely, if a boundary singular-
ity is placed where the boundary surface is almost planar,
then it may force inner angles to become nearly 180 degrees

(Fig. 16, left). This issue can be resolved by adapting the
meta-mesh: If the boundary is mostly smooth and contains
no sharp edges, all singularities should be offset into the in-
ner of the volume (Fig.16, right). The quality of angles is
then increased much.

Figure 16: Boundary singularities can cause bad inner angles
(left). Offsetting into the inner (right) enhance quality.

Comparison. The following table shows properties of
the hexahedral mesh (number of hexahedra, the aver-
ages/standard deviation of dihedral angles, edge lengths,
cube volumes).

Model |H| Angle Length Volume
Pretzel(Fig. 2) 528 90/17.4 .92/.26 .74/.32
Pretzel(15 top) 1256 90/14.8 .69/.11 .32/.09
Pretzel(15bottom) 1452 90/16.3 .66/.12 .27/.08
Genus 4(11) 11602 90/11.9 1.1/.17 1.4/.2
Genus 5(11) 9459 90/9 1.8/.35 6.1/1.9
Torus(9) 7120 90/6.6 1.9/0.5 6.8/2.3
Fandisk(10) 268 90/9.65 4.2/1.0 76/29
Rockerarm(1) 35502 90/8.4 0.84/0.17 .58/.16
Hand(12) 4904 90/10.3 4.4/1.2 86/45
Skull (13) 40687 90/18.6 1.5/.4 3.0/1.5
Bush(17, [ZB06]) 87885 90/12.2 .49/.09 .12/.03
Bush(17, Ours) 96054 90/5.2 .48/.07 .11/.02

Fig. 17 (left) shows a hexahedral mesh produced with the
method from [ZB06]. The inner hexahedra are axis aligned
and perfect cubes. Notice that the standard deviation of dihe-
dral angles is lower in the mesh from CUBECOVER (right),
since it distributes the distortion evenly in the volume.

For the time complexity, the algorithm has to solve two
sparse linear systems of equations. We implemented CUBE-
COVER in Java and did not optimize it for performance yet.

Figure 17: Bush model with [ZB06] (left) and CUBECOVER

(right). The histograms show dihedral angles ranging from
60 to 120 degrees.
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The time for setting up the matrix takes around 1 or 2 min-
utes. The main time is used for solving the system of equa-
tions the first time. The second system is smaller and uses
the solution of the first one as start value in the conjugate
gradient method. Thus, it is solved much faster. The follow-
ing table shows the number of tets from the input mesh and
the time used for setting up the matrix and solving the sys-
tem (1st and 2nd time). Times were produced on a dual core
processor with 2.8 GHz.

Model |T| Matrix Solve 1 Solve 2
Pretzel(Fig. 2) 82944 54.7 s 57 s 3.7 s
Genus 4(11) 27235 9.3 s 5.1 s 562 ms
Genus 5(11) 36142 20.4 s 10 s 703 ms
Torus(9) 17280 55.2 s 3.3 s 266 ms
Fandisk(10) 23327 5.9 s 2.8 s 656 ms
Rockerarm(1) 55979 43.6 s 46 s 3.6 s
Hand(12) 125131 92.4 s 15:40 min 3.9 s
Skull (13) 156137 99.1 s 2:43 min 6 s
Bush(17) 79936 100 s 3:52 min 4.6 s

5. Conclusion and Future Work

We proposed the CUBECOVER algorithm to compute a 3D
hexahedral mesh of a given volume. The hexahedra are
aligned to a guiding frame-field and to the volume boundary.
We also derived several theoretical conditions on the singu-
larities and the gradient frame-field. Finally, we proposed a
method for designing a frame-field using a manually gener-
ated meta-mesh.

We observed similar limitations known from 2D surface
parameterizations methods: Badly placed singularities can
lead to distortion. Flipped tets may appear if the distortion
is too high. For now one can handle such situations by post-
processing, or try to avoid by preprocessing the frame-field
(e.g. smoothing).

The design of suitable frame-fields on surfaces is focus of
ongoing research. Similarly, we expect intensive research on
3D frame-fields in the near future.
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