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Abstract

We present a robust 2D shape reconstruction and simplification algorithm which takes as input a

defect-laden point set with noise and outliers. We introduce an optimal-transport driven approach

where the input point set, considered as a sum of Dirac measures, is approximated by a simplicial

complex considered as a sum of uniform measures on 0- and 1-simplices. A fine-to-coarse scheme

is devised to construct the resulting simplicial complex through greedy decimation of a Delaunay

triangulation of the input point set. Our method performs well on a variety of examples ranging

from line drawings to grayscale images, with or without noise, features, and boundaries.
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Chapter 1

Introduction

Shape reconstruction from unorganized point sets is a fundamental problem in geometry processing:

despite significant advances, its inherent ill-posedness and the increased heterogeneity of geometric

datasets contribute to make current approaches still far from satisfactory. Even the 2D instance of

this problem, i.e., the reconstruction of shapes in the plane, remains a challenge in various application

areas including computer vision and image processing. Two-dimensional point sets are often acquired

from sensors or extracted from images, and are thus frequently hampered with aliasing, noise, and

outliers. In addition, image-based point sets often exhibit a rich variety of features such as corners,

intersections, bifurcations, and boundaries. This combination of noise, outliers, and presence of

boundaries and features render most well-known strategies (including Poisson, Delaunay, or MLS-

based approaches) deficient.

Shape reconstruction is also intimately linked to shape simplification. While a few authors (in

particular in Computational Geometry) have restricted the issue of reconstruction to finding a con-

nectivity of all the input points, the presence of noise and the sheer size of most datasets require

the final reconstructed shape to be more concise than the input. Reconstruction and simplification

are, however, often performed sequentially rather than in concert.

In this thesis, we jointly address reconstruction and simplification of 2D shapes through a unified

framework rooted in optimal transport of measures. Specific benefits include (i) robustness to large

amounts of noise and outliers; (ii) preservation of sharp features; (iii) preservation of boundaries;

and (iv) guarantee that the output is a (possibly non-manifold) embedded simplicial complex.
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1.1 Previous Work

To motivate our approach and stress how it fills theoretical and practical needs, we first review

previous work in both reconstruction and simplification of 2D point sets.

1.1.1 Reconstruction.

For noise free datasets, existing reconstruction methods vary mostly based on sampling assumptions.

Uniformly sampled datasets can be dealt with using image thinning [31], alpha shapes [17] or r-

regular shapes [4]; for non-uniform sampling, most provably correct methods rely on Delaunay

filtering [3], with improvements on computational efficiency [21], sampling bounds [13, 14], and

handling of corners and open curves [19, 15].

Noisy datasets have been tackled by a variety of methods over the last ten years [26, 9, 33, 30], with

recent successes including the extraction of self-intersecting curves [38]. Most of these approaches

remove noise through clustering, thinning, or averaging before performing reconstruction, which

often leads to a significant blunting of features. Robustness to outliers has also been—to a lesser

extent—investigated, with approaches ranging from data clustering [39] and robust statistics [18],

to k-order alpha shapes [25], spectral methods [24] and `1-minimization [5]—but often at the cost

of a loss of sharp features and/or a significant increase in computational complexity.

1.1.2 Simplification.

Polygonal curve simplification has received attention from many fields, including cartography, com-

puter graphics, computer vision and other medical and scientific imaging applications. A common

approach to simplification is to proceed in a fine-to-coarse fashion through decimation [1, 20], whereas

coarse-to-fine methods—such as the Douglas-Peucker algorithm [22]—proceed through refinement

instead. When topological guarantees are called for, a fine-to-coarse strategy is often preferred; for

example, Dyken et al. [16] used intersection tests at each decimation step to preserve nesting of car-

tographic contours. Topological guarantees are indeed more difficult to obtain in the coarse-to-fine

strategy, especially when sharp angles and singularities are present.

Simplification methods can also be classified according to the metric they use to measure the accuracy

of the simplified curves. Most methods are based on the Hausdorff distance or the Fréchet distance

(see [1] and the references therein). However, these metrics do not handle noise well, and significant

processing is required to filter spurious data.
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A distinct, but related endeavor is to concisely convey semantic aspects of a geometric dataset.

This problem is usually referred to as abstraction [32], and is of interest to applications in shape

recognition and processing. In [10], we investigated the problem of abstracting 3D surfaces as a

network of curves and presented a principled framework that combines structural segmentation and

shape approximation.

While specific data idiosyncrasies such as noise, outliers, features, and boundaries have been success-

fully dealt with individually, little or none of the previous work can handle them all concurrently.

1.2 Contributions

We depart from previous work by leveraging the versatile framework of optimal transport: we view

shape reconstruction and simplification as a transport problem between measures (i.e., mass distri-

butions), where the input points are considered as Dirac measures and the reconstructed simplicial

complex is seen as the support of a piecewise uniform measure. The use of optimal transport

brings forth several benefits, including a unified treatment of noise, outliers, boundaries, and sharp

features. Our reconstruction algorithm derives a simplicial complex by greedily minimizing the sym-

metric Wasserstein transport metric between the Dirac masses that the input points represent and a

piecewise uniform measure on the 0- and 1-simplices of the reconstructed complex. A fine-to-coarse

strategy is proposed for efficiency, starting from the 2D Delaunay triangulation of the input point set

and proceeding through repeated edge collapses and vertex relocation. Features thus emerge from

our optimal transport procedure rather than from an explicit feature detection scheme. The result-

ing reconstruction is extracted from the simplified triangulation through edge filtering, guaranteeing

an intersection-free output.

1.3 Outline

The thesis is organized as follows: Chapter 2 reviews the basics of optimal transport and introduces

a novel formulation for the problem of reconstructing and simplifying 2D point sets; Chapter 3

describes the algorithm and its implementation details; Chapter 4 presents examples of reconstructed

shapes; and Chapter 5 discusses limitations and future work.
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Chapter 2

Foundations

We first review the basics of optimal transport before providing details on how we approach the

problem of reconstructing and simplifying 2D point sets using the optimal transport framework.

2.1 Basics of Optimal Transport

Optimal transport refers to the problem of optimizing the cost of transportation and allocation

of resources [40]. An intuitive example of optimal transport (used initially by Gaspard Monge in

1781) consists in determining the most effective way to move a pile of sand to a hole of the same

volume—“most effective” here meaning that the integral of the distances the sand is moved (one

infinitesimal unit of volume at a time) is minimal. This formulation of the problem is referred to

as Monge’s variational formulation and assumes that the sand is moved through a point-to-point

mapping called the transport plan.

Defining a transport plan as an injective map, however, raises difficulties in the construction of

optimal plans. This issues occurs even in simple examples such as the transportation of mass from

a point to a uniform distribution on a line segment: since the dimensions of the support domains

differ, the transport plan from a point to a segment is ill-defined.

In order to relax this restriction on transport plans, Kantorovich extended the formulation to deal

with transport plans between two probability measures µ and ν. In this formulation, a transport

plan is a probability measure π on support(µ)× support(ν) whose marginals are µ and ν. If µ and

ν have finite support, π(x, y) specifies the amount of mass transferred from x to y.
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For any such transport plan we can associate a notion of cost. A common cost function is the

q-Wasserstein metric wq, defined as

wq(µ, ν) =
(

inf
π

∫
Rd×Rd

‖x− y‖q dπ(x, y)
)1/q

.

To reuse the example mentioned above, if each distribution is viewed as a unit amount of piled-up

sand, this metric is the minimum Lq distance of turning one pile into the other.

So far we have assumed that the measures µ and ν are probability distributions, hence both with unit

total mass. Throughout this work, we adopt a trivial extension of the w2-distance that incorporates

the total amount of mass to be transported. More specifically, for any pair of measures µ and ν with

bounded support in R2 and common total mass M , we define the optimal transport cost as

W2(µ, ν) =
√
M w2(µ/M, ν/M). (2.1)

2.1.1 Applications

Optimal transport is a relevant topic in many fields [40]. Perhaps, its most notorious application

is the problem of facility location in economics and operational research. In computer graphics,

the optimal transport theory has been recently applied to geometry processing tasks such as shape

inference and registration. Chazal et al. [8], for example, exploited the optimal transport theory

to design approximations of unsigned distance functions which are robust to noise and outliers.

Mullen et al. [34] leveraged such distance functions and proposed a robust method to reconstruct

smooth surfaces from raw point sets. Lipman and Daubechies [29], on the other hand, presented

a solution for the transportation problem between conformal mass densities in order to determine

similarities between 3D shapes. In computer vision, optimal transport has also been used as a

means to compare [37], transfer [11] and quantize colors in images [6]. Physical simulations can also

benefit from optimal transportation as shown in [27, 28] for the specific problems of ballistic impact

simulations and fluid dynamics. At last, Mullen et al. [35] used optimal transport to derive tight

bounds on the accuracy of discrete differential operators and then formulated a family of functionals

for meshing optimization.

2.2 Formulation

We address the reconstruction of a point set S by approximating S with the vertices and edges of a

triangulation T . To this end, we regard the point set S and the vertices and edges of T as measures.
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More specifically, each input point pi ∈ S is seen as a Dirac measure µi centered at pi and of mass

mi. The point set is thus considered as a measure µ =
∑
i µi with total mass M =

∑
imi. We then

associate each 0- and 1-simplex of T to a uniform measure supported over the simplex itself; that

is, a vertex v is also seen as a Dirac measure, but an edge e is a uniform 1D measure defined over a

line segment. We further call Mv and Me the mass of a vertex v and an edge e, respectively, such

that: ∑
v∈T

Mv +
∑
e∈T

Me = M. (2.2)

Our general approach to reconstruct and simplify a point set S can thus be phrased as follows:

Considering S as a measure µ consisting of Dirac masses, find a coarse simplicial

complex T such that µ is well approximated in terms of the W2 cost by a linear

combination of uniform measures on the edges and vertices of T .

2.2.1 Benefits

The main advantage of the notion of optimal transport distance in the context of reconstruction and

simplification is its robustness to noise and outliers [8]. Moreover, it captures two complementary

notions of approximation between S and T . First, it measures a symmetric approximation error

between shapes since W2(µ, ν) = W2(ν, µ), avoiding the notorious shortcomings of asymmetric

distances. Second, the optimal transport cost measures the local defect of uniform sampling of the

point set along the reconstructed edges; minimizing such a metric favors edges covering uniformly

dense regions while preserving boundaries and sharp features (Fig 2.1).

Figure 2.1: Boundary and feature preservation. Left: An edge extending beyond (or falling
short of) the point set would incur a large tangential component, enforcing preservation of bound-
aries. Right: When an edge does not fit a sharp corner, the transport cost has both a large tangential
component (due to the non-uniform sampling along the edge) and a large normal error. Minimizing
transport cost will thus induce alignment of edges to features.
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2.3 Transport Plan & Cost from Points to Simplices

In order to compute the approximation error between S and T , we need to define the plan mapping

S to T such that optimizes the W2 cost between their respective measures. Let us assume for now

that we are given a triangulation T , and an point-to-simplex assignment which maps every input

point pi to either an edge e or a vertex v of T—we will explain in Sec. 2.4 how this assignment

is automatically determined. Equipped with this point-to-simplex assignment, we can derive an

optimal transport π from S to vertices and edges of a triangulation T .

In the following, we consider an arbitrary vertex v and an arbitrary edge e along with their respective

assigned points from S: we denote by Sv the set of points assigned to the vertex v and by Se
the set of points assigned to the edge e. Note that we assume these sets to be disjoint, with⋃
v∈T
Sv ∪

⋃
e∈T
Se = S. This way, we hold Eq. (2.2) by setting Mv and Me to the total mass of Sv and

Se, respectively. Finally, we denote by π the optimal plan satisfying the prescribed assignment from

points to simplices, and W2(π) its (optimal) cost.

2.3.1 Points to Vertex

For a vertex v, the optimal plan to transport the measure Sv to the Dirac measure centered on v

with mass Mv is trivial, and its local W2 cost easily computed as

W2(v,Sv) =
√ ∑
pi∈Sv

mi‖pi − v‖2. (2.3)

2.3.2 Points to Edge

For an edge e, the optimal plan (and its associated W2 cost) is less straightforward to express as

it requires transporting a mass Me from Se to a uniform measure of value Me/|e| defined over the

edge e, where |e| denotes the edge length—notice that this edge measure integrates to Me, ensuring

the existence of a transport plan. Because our transport cost is based on the L2 distance, we can

decompose the optimal transport plan into a normal and a tangential component to e. The optimal

normal plan is a simple orthogonal projection, and its transport cost N is expressed as

N(e,Se) =
√∑
pi∈Se

mi‖pi − qi‖2, (2.4)

where qi is the orthogonal projection of pi onto e.
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The tangential plan is slightly more involved to

derive, but its cost can also be done in closed

form. We proceed by first sorting the projected

points {qi} along e and partitioning the edge into cardinality(Se) segment bins, where the i-th bin

length is li = (mi/Me)|e|. Each point qi is then spread tangentially over the i-th bin so as to result

in a uniform measure over e, defining the local optimal transport from Se to e (see inset). Now

consider a point pi of mass mi that projects onto qi on edge e; set a 1D coordinate axis along the

edge with origin at the center of the i-th bin, and call ci the coordinate of qi in this coordinate axis.

The tangential cost ti of pi is then computed as the accumulated distribution resulting from the

order-1 moment of all points on the i-th bin with respect to the projection qi, yielding:

ti =
Me

|e|

∫ li/2

−li/2
(x− ci)2 dx = mi

(
l2i
12

+ c2i

)
.

We can now sum up the cost ti for every point pi in Se to get the tangential component T of the

optimal transport cost for an entire edge:

T (e,Se) =

√√√√∑
pi∈Se

mi

(
l2i
12

+ c2i

)
. (2.5)

Note that Eq. (2.5) is exact; it is thus stable under refinement, in the sense that we obtain the same

cost if we split each point pi of mass mi into several points that sum up to mi and transport them

onto smaller bins whose lengths are function of the new masses.

Optimal Cost. The total W2 cost to transport S to T through the transport plan π is thus

conveniently written by summing the contributions of every edge and vertex of T :

W2(π) =
√∑
e∈T

[N(e,Se)2+T (e,Se)2]+
∑
v∈T

W2(v,Sv)2 . (2.6)

2.4 Point-to-Simplex Assignment

Given a triangulation T , we still need to define an assignment of the input point set S to 0- and

1-simplices of T which minimizes the total cost of the transport plan π described above. Alas,

solving this problem exactly is computationally infeasible since the combinatorial complexity of all

possible assignments becomes intractable as the size of the problem increases. We propose a simple

heuristic that constructs an assignment from S to edges and vertices of T in two steps. Each point

pi is first temporarily assigned to the closest edge of the simplicial complex, resulting in a partition
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of S into a disjoint union of subsets Se, where each Se contains the input points nearer to e than

to any other edge. We then go over each edge e, and consider the two following assignments: either

(i) keep Se assigned to e, or (ii) assign instead each point of Se to its closest endpoint of e. Using

Eqs. (2.3)-(2.5) we choose, out of these two possibilities, the local assignment leading to the smallest

total cost. Once this simple test has been performed for each edge, the vertices v and edges e of T

all have their assigned points (respectively, Se and Sv) from S, and the optimal transport plan (and

cost) for this assignment is thus fully determined as derived in Sec. 2.3.

Note that this assignment provides a natural characterization of the edges of T : an edge e is called

a ghost edge when Se = ∅, i.e., no input points are transported onto it; conversely, e is called a solid

edge if it receives a nonzero amount of mass from the point set. Ghost edges are, in effect, not part

of the reconstruction, and are only useful to define the current simplicial tiling of the domain (see

Fig. 3.1, center-right).
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Chapter 3

Algorithm

With the point-to-simplex assignment and its induced transport plan described in the previous

chapter, we now devise an algorithm to produce a coarse reconstruction T from the input point set.

Figure 3.1: Algorithm Pipeline. From left to right: input point set; Delaunay triangulation of
input; after simplification, with ghost edges in grey, relevant solid edges in green, discarded solid
edges in red; final reconstruction.

3.1 Overview

The algorithm proceeds in a fine-to-coarse manner through greedy simplification of a Delaunay

triangulation initialized from the input points. Simplification is performed through a series of half-

edge collapse operations, ordered so as to minimize the increase of the total transport cost between

the input point set and the triangulation. Vertices are also locally optimized after each edge collapse

in order to further optimize the local assignment. Finally, the reconstruction is derived through edge

filtering of the simplified mesh. We depict the pipeline in Fig. 3.1 and give pseudocode in Fig. 3.2.
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// Transport-based Reconstruction
Input: point set S = {p1, . . . , pn}.

// Initialization (Sec. 3.2)
Construct Delaunay triangulation T0 of S.
Compute initial plan π0 from S to T0
k ← 0
repeat

Pick best half-edge e = (xi, xj) to collapse
Set Ni,m the m-ring of xi
// Simplification (Sec. 3.3)
Create Tk+1 by merging xi onto xj
// Update Transport (Sec. 2.4)
π′k+1 :=πk with local reassignments in Ni,1
// Relocation (Sec. 3.4)
Optimize position of vertices in Ni,1
// Update Transport (Sec. 2.4)
πk+1 :=π′k+1 with local reassignments in Ni,2
k ← k + 1

until (desired vertex count)
// Final Extraction (Sec. 3.5)
Filter edges based on relevance (optional)

Output: vertices and edges of Tn.

Figure 3.2: Pseudocode of the algorithm.

3.2 Initialization

Our algorithm begins by constructing a 2D Delaunay triangulation T0 of the input point set S. The

resulting triangulation is augmented with four vertices placed at the corners of a loose bounding

box of the input points; these vertices are not eligible for simplification as they act as pins ensuring

that the sample points fall within the convex hull of T0. With this triangulation is associated a

trivial optimal plan π0, for which each point is assigned to its corresponding vertex in T0 for a total

transport cost of zero.

3.3 Simplification

Simplification of the initial mesh T0 is performed through half-edge collapses, each one removing one

vertex and three edges from the triangulation (Fig. 3.3). As a collapse turns the current triangulation

Tk into a new triangulation Tk+1, it induces a local change of the transport plan πk between S and

Tk and, consequently, a change of the total cost W2(πk) (denoted δ hereafter, with δk = W2(πk+1)−

W2(πk)).
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Figure 3.3: Edge simplification. Half-edge collapse (arrow) triggers a local reassignment of the
input points (assignments in red for edges, green for vertices).

As our goal is to minimize the increase in total cost, we apply collapses in increasing order of δ.

To this end, we initially simulate all feasible collapses to determine their associated δ and fill up a

dynamic priority queue sorted in increasing order of δ. Decimation is then achieved by repeatedly

popping from the queue the next edge to collapse, performing the collapse, updating the transport

plan and cost according to Sec. 2.4, and updating the priority queue. Since our approximation of

the transport plan partitions the input points based on their respective nearest edge, updating the

transport involves only the edges confined to the one-ring of the removed vertex of the edge collapse

(Fig. 3.4, center). Updating the priority queue, however, is required within a larger stencil around

the removed vertex: edges incident to the modified one-ring and emanating from its flap vertices

have their respective δ impacted by the new point-to-simplex assignment (Fig. 3.4, right).

Figure 3.4: Updates during collapse. Left: collapse operator. Middle: edges with updated cost.
Right: collapse operators pushed to the priority queue.

3.3.1 Systematically Collapsing Edges

A half-edge is said to be collapsible if its collapse creates neither overlaps nor fold-overs in the tri-

angulation. In order to preserve the embedding of the triangulation, we must only target collapsible

edges during simplification. This is achieved by verifying both topological and geometric conditions:

the former corresponds to the so-called link condition [12]; the latter consists of checking whether
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the target vertex of the half-edge is within the kernel [36] of the polygon formed by the one-ring of

the source vertex (Fig. 3.5, left). While simple and commonly used, these validity conditions invali-

date around 30% of the candidate collapse operators during the complete course of a simplification.

This can severely affect the performance of our greedy approach to optimal transport as it relies

on targeting the edge with the least cost first. To overcome this issue and ensure that the greedy

decimation is systematically processed in increasing order of cost, we modify the collapse operator

through a local edge flip procedure that makes every edge collapsible as we now review.

Suppose we want to collapse a half-edge (xi, xj). We denote by Pxi
the (counter-clockwise oriented)

polygon formed by the one-ring of xi, and by Kxi its kernel. We say that an edge (a, b) ∈ Pxi

is blocking xj if the triangle (xj , a, b) has clockwise orientation. We also call an edge flippable if

its endpoints and its two opposite vertices form a convex quadrilateral. The idea of the flipping

procedure is to elongate Kxi
in the direction of (xi, xj) until it includes xj . For every blocking edge

(a, b) ∈ Pxi , we call D as the distance from xj to the intersection point between the supporting lines

of (xi, xj) and (a, b). This distance indicates how much Kxi can be elongated by removing (a, b)

from Pxi
. We then sort the blocking edges in a priority queue in decreasing order of distance D, and

select the top edge to be removed from Pxi
. We remove an edge (a, b) from Pxi

by flipping either the

edge (a, xi) or the edge (b, xi). Note that, since (a, b) has the greatest distance D within Pxi , either

(a, xi) or (b, xi) is flippable, otherwise (a, b) would not have been at the top of the queue. Between

these two choices, we pick the edge with the smallest D when flipped, as it elongates Kxi
the most.

By repeating edge flips, we iteratively move Kxi
towards xj and this procedure is guaranteed to

terminate when the modified Pxi no longer has blocking edges (Fig. 3.5). It is worth pointing out

that xi may not be inside the final Pxi (Fig. 3.5, bottom); however, since the flipping procedure is

always associated to a half-edge collapse, xi is later deleted by the collapse and thus the mesh is

always kept valid.

3.4 Vertex Relocation

The simplification scheme presented so far restricts the successive triangulations {Tk} obtained

through simplification to have vertices on input points. However, noise and missing data usually

preempt having the exact location of sharp corners among the input points, making interpolated

triangulations poorly adapted to recover features. In order to better preserve features, we perform

a vertex relocation (in the same spirit as [20]) after each half-edge collapse (Fig. 3.6).

The vertex relocation is designed to improve the fitting of vertices and edges of the triangulation to

the input data: we move vertices in order to further minimize the normal component of the current
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Figure 3.5: Making edges collapsible. Left: collapsing the edge (in blue) creates fold-overs
because of blocking edges (in black). Middle: the flipping procedure makes the edge collapsible.
Right: after collapse.

W2 distance (defined in Eq. (2.3) and Eq. (2.4)). Remembering that the square of the normal part

of the W2 cost associated with a vertex v of T can be written as

∑
pi∈Sv

mi‖pi − v‖2 +
∑

b∈N1(v)

∑
pi∈S(v,b)

mi‖pi − qi‖2,

we compute the optimal position v∗ of v by equating the gradient of the above expression to zero.

If we denote by λi the barycentric coordinate of the projection qi of the input point pi onto an edge

(v, b), i.e., qi = (1− λi)v + λib, then the optimal position is given by:

v∗ =

∑
pi∈Sv

mipi +
∑

b∈N1(v)

∑
pi∈S(v,b)

mi(1− λi)(pi − λib)

Mv +
∑

b∈N1(v)

∑
pi∈S(v,b)

mi(1− λi)2
.

In practice, we move the vertex v to v∗ only if the resulting triangulation Tk+1 is still an embedding

(i.e., v∗ is inside the kernel of the one-ring of v). Once this relocation is achieved, we proceed as we

did for edge collapses: we collect the input points affected by this relocation, assign them to their

nearest edge, and determine the new transport plan πk+1.
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Figure 3.6: Vertex relocation. Noisy skyline point set, before (left) and after (right) vertex
relocation.

3.5 Edge Filtering

The triangulation resulting from repeated decimation provides a tessellation of the domain that

approximates the inferred shape by a subset of its edges. As described in Sec. 2.4, we already

know whether an edge is relevant to the shape: only solid edges carry mass from the input point

set. However, the presence of noise, outliers, and scale-dependent features may still lead to a few

undesirable solid edges (Fig. 3.1, center-right in red). While the final edge filtering is most likely

quite application-dependent and often unnecessary, we found it satisfactory to offer the option to

eliminate solid edges based on a notion of relevance re, with

re =
(

|e|
w2(e,Se)

)2

=
Me|e|2

N(e,Se)2 + T (e,Se)2
.

Observe that re is inversely proportional to the w2-density cost over the edge e and, therefore,

indicates more importance for long edges with uniform sampling distribution. In our experiments,

a threshold on relevance was only applied to examples with large amount of outliers (Figs. 3.1, 4.3,

and 4.6).

3.6 Implementation details

We now describe a few implementation details which improve the efficiency and flexibility of the

algorithm.
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3.6.1 Initialization

For large datasets, a significant speed-up can be obtained by using only a random subset of the input

points for T0. This trivial efficiency improvement does not lead to visible artifacts as we optimize

the vertices of subsequent triangulations through our relocation procedure.

3.6.2 Multiple-Choice Priority Queue

The reconstruction of large datasets requires the simulation of thousands of collapse operations, and

thus, our algorithm initially spends a significant amount of time performing frequent updates of

the dynamic priority queue. We can speed up the simplification process through a multiple-choice

approach [41] without significant degradation of our results: for each atomic simplification step

we simulate only a random subset of the half-edges (typically 10) and collapse the half-edge from

this subset with the smallest δ. When the mesh has 5 times the targeted number of vertices or

less, we switch back to an exhaustive priority queue as the order of collapse for coarse meshes can

significantly affect the final results. With this simple strategy, a five- to six-time speedup is typically

obtained (see Tab. 4.1).

3.6.3 Postponing Vertex Relocation

Vertex relocation is effective only when a sufficient number of input points are assigned to each edge

of the triangulation. Obviously, this number is very small at the beginning of the algorithm and

increases as the triangulation becomes coarser. For this reason, we turn off the vertex relocation

step during most of the simplification process, activating it only for the last 100 decimations. This

strategy to lower computational cost also has little to no effect on the final results.

3.6.4 Reconstruction Tolerance

It is sometimes desirable to control the maximum error induced by the reconstruction, especially in

the case of outlier-free point sets. We add an option which allows discarding from the priority queue

each collapse operator which would induce a transport with maximum normal and/or tangential

cost above a user-specified tolerance. The algorithm terminates when the priority queue is empty

(Fig. 3.7 is the only figure where this option was activated).

Figure 3.7: Tolerance Control. A maximum normal and tangential tolerance error (tolerance
volume in gray, reconstruction in green) are imposed during simplification on the shark model.
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Chapter 4

Results

Figure 4.1: Leaf. Example with sharp corners, boundaries, and branching points.

We implemented our reconstruction and simplification algorithm using the CGAL library [7]. It

takes as input point sets, possibly with mass attributes, and a desired vertex count of the final

reconstruction. Timings for typical examples computed on 2.4GHz Intel Core 2 Duo with 2GB

RAM are given in the following table.

Data Points EX (s) MC (s)

Shark 440 2.6 0.5
Bird 800 4.6 0.7
Horse 1200 6 0.9
Star 3k 18 3.6
Australia 5k 39 7
Falcon 8k 70 15
Table cloth 20k 248 51

Table 4.1: Timing. From left to right: Data set, number of points, reconstruction time in seconds
using an exhaustive priority queue (EX) vs. a multiple choice (MC) decimation strategy.
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On closed and noise-free curves, our approach performs comparably with state-of-the-art reconstruc-

tion and simplification methods applied in sequence. However, our approach is noticeably better

at dealing with cases where the point set contains noise, outliers, and features. For instance, com-

binatorial methods such as Crust [21] fail to properly reconstruct a point set as soon as noise is

added (Fig. 4.2); Poisson-like implicit approaches [23] have also been reported to fail in this case

unless reliable normals are provided [2]. In contrast, our transport-based method is robust to large

amounts of noise and outliers as illustrated in Fig. 4.3 where more outliers than initial points still

leads to a good reconstruction—and sharp features are still captured (see also Fig. 4.5) without the

typical blunting that most previous work (based on local denoising) would create. Fig. 4.10 and 4.9

depict how the reconstruction gracefully degrades when either the vertex count or the point density

decreases. Our method also handles complex shapes with branching, intersections, and open curves

without additional parameters to tweak (see the leaf example in Fig. 4.1).

Figure 4.2: Bird. Top: For a closed and noise-free point set, combinatorial methods such as
crust [21] finds a connectivity for all input points, while we obtain a simplified reconstruction. Bot-
tom: When the point set is hampered with synthetic noise (0.5% of bounding box), combinatorial
approaches fails to recover the shape. Our method is noise-resilient and returns a result similar to
the noise-free case.

Our approach performs equally well on unprocessed, non-synthetic datasets. Images of line draw-

ing, for instance, are particularly challenging for image processing techniques to approximate with

polygonal curves. Nevertheless, our method is able to robustly extract such shapes by considering

the gray level pixels as points with a mass proportional to the pixel intensity. For instance, Fig. 4.7

depicts the reconstruction of a complex mechanical illustration (a comparison to a commercial image

vectorization product is provided), and Fig. 4.8 shows the vectorization of a scanned artist drawing.

We also show how our method performs on GIS data in Fig. 4.4, comparing our results with the

well known Douglas-Peucker algorithm [22] and a direct implementation of the Garland-Heckbert

simplification approach [20].
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Figure 4.3: Robustness to noise and outliers. The input shape (3K points) has sharp corners
subtending small angles as well as boundaries. Our reconstruction is perfect for a noise-free input
(left); as noise is added (middle, 2% and 2.5% of bounding box), the output degrades gracefully, still
capturing most of the sharp angles; even after adding 4K or 4.5K outliers and 2% of noise (right),
the reconstruction remains of high quality, although artifacts start appearing in this regime.

Fig.5.1(top) also illustrates how our approach infers shape at various scales, from fine to coarse. The

original assignment for T0 implies a vertex discretization of the datasets as all edges are initially

classified as ghost edges; then these vertices are regrouped in 1-simplices, first consolidating the

reconstruction of highly sampled regions. Finally, as the triangulation is simplified, we are getting a

coarse scale approximation of the input data. Note that on inputs that mix anisotropic and isotropic

point densities (Fig. 4.6), we obtain mixed reconstructions composed of line segments and isolated

vertices, which also matches the input well.

Finally, we show the versatility of our approach on a variety of datasets, varying from (kanji)

characters, to scanned drawings, and even to gradient magnitudes obtained via finite-differences

from an image (which provides a noisy sampling of the main contours of the image).

Figure 4.4: Australia Map. We compare our approach (right) with two curve simplification
algorithms: QEM [20] (left-center) and Douglas-Peucker [22] (center-right).
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Figure 4.5: Noisy star. The lines of the inferred shape near the star center are visually indistin-
guishable (see closeup). Nevertheless, our method reliably recovers the lines and intersection point
by interleaving decimation and relocation.

Figure 4.6: Mixed reconstruction. By tuning the edge filtering we can extract a reconstruction
made of either edges or of a mixture of edges and vertices.

Figure 4.7: Mechanical part. Line drawing with complex features (left). Our reconstruction
(middle) preserves intersection, corners, and manages to even remove small wiggles and glitches. In
comparison, Adobe’s Live Tracer fails to handle glitches of this sketch (red arrows).
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Figure 4.8: Woman. Line drawing with variable thickness and outliers due to scanning artifacts
(left). We apply thresholding on the input image (middle top) to reduce the number of input points
before applying our reconstruction (right).

Figure 4.9: Light house. Reconstructions with 20 vertices from input points with decreasing
sampling density (from left to right: 2K, 400, and 200 points respectively).
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Figure 4.10: Kenny. Reconstructions at different levels of simplification (54 and 20 vertices,
respectively) from an input dataset of 364 points – data courtesy of South Parkr.

Figure 4.11: Gallery. Plate of shapes reconstructed through our optimal transport driven approach
with input points originating from noiseless dataset (cartoon face contour, circle with star, dolphin,
monkey, apple), scanned drawings (screwdriver, tablecloth, rocketarm, bone), grey-level images (kanji
characters, flames, Winnie the Pooh – data courtesy of Disneyr), and image gradients computed by
finite difference (all others).
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Chapter 5

Conclusion

We have presented a novel optimal transport formulation and derived a practical algorithm to tackle

the problem of reconstruction and simplification of 2D shapes from unorganized point sets. We view

the point set as a measure that we greedily approximate, in the optimal transport sense, by a sum

of uniform measures on the vertices and edges of a simplicial complex.

Figure 5.1: Sampling Density. Top: the transport cost favors the decimation of areas with
high point density. As we further simplify the triangulation, regions with lower densities are also
recovered. Bottom: areas with missing data are reconstructed as boundaries.
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Strengths

The main value of our approach is the ability to robustly deal with feature preservation, such as

sharp corners, cusps, intersections and boundaries. Another interesting property is the consistency

between the underlying shape representation model (points and line segments) and the transport

distance we considered: as this model inherently approximates features, we do not need any ad-hoc

feature detection to preserve them.

Weaknesses

Despite satisfactory robustness to noise and outlier, our method does not deal gracefully with widely

variable sampling. We see such examples in Fig. 5.1, where the reconstruction performs well on areas

of high density but may fail to complete the undersampled area. This is quite natural given that

our approach makes no assumption that the curve is closed, so undersampling can be interpreted as

small features. As a consequence, our approach is also not resilient to missing data as the transport

formulation seeks to preserve boundaries; however, very coarse reconstructions do recover the global

shape quite well.

Future work

The problem of finding or approximating an optimal transport cost is of interest in many fields.

In this work we have proposed a simple approximation strategy that assigns points to simplices in

a local fashion, but more global alternatives (possibly through multiresolution) may be desirable.

The simplification algorithm could also potentially benefit from a richer set of mesh decimation

operators. For the final edge filtering step, we wish to incorporate application-dependent criteria so

as to favor or enforce, for example, the reconstruction of 1-manifolds. Finally, the extension of this

approach to robust surface reconstruction is probably the most exciting direction for future work.
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[6] Michael Balzer, Thomas Schlömer, and Oliver Deussen. Capacity-constrained point distribu-

tions: a variant of lloyd’s method. ACM Trans. Graph., 28:86:1–86:8, July 2009.

[7] CGAL, Computational Geometry Algorithms Library. http://www.cgal.org.
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