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Abstract

We introduce a new variational formulation for the problem of reconstructing a watertight surface defined by an
implicit equation, from a finite set of oriented points; a problem which has attracted a lot of attention for more
than two decades. As in the Poisson Surface Reconstruction approach, discretizations of the continuous formula-
tion reduce to the solution of sparse linear systems of equations. But rather than forcing the implicit function to
approximate the indicator function of the volume bounded by the implicit surface, in our formulation the implicit
function is forced to be a smooth approximation of the signed distance function to the surface. Since an indicator
function is discontinuous, its gradient does not exist exactly where it needs to be compared with the normal vector
data. The smooth signed distance has approximate unit slope in the neighborhood of the data points. As a result,
the normal vector data can be incorporated directly into the energy function without implicit function smoothing.
In addition, rather than first extending the oriented points to a vector field within the bounding volume, and then
approximating the vector field by a gradient field in the least squares sense, here the vector field is constrained to
be the gradient of the implicit function, and a single variational problem is solved directly in one step. The for-
mulation allows for a number of different efficient discretizations, reduces to a finite least squares problem for all
linearly parameterized families of functions, and does not require boundary conditions. The resulting algorithms
are significantly simpler and easier to implement, and produce results of quality comparable with state-of-the-art
algorithms. An efficient implementation based on a primal-graph octree-based hybrid finite element-finite dif-
ference discretization, and the Dual Marching Cubes isosurface extraction algorithm, is shown to produce high
quality crack-free adaptive manifold polygon meshes.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Curve, surface, solid, and object representations G.1.2 [Numerical Analysis]:
Approximation—Approximation of surfaces and contours

1. Introduction

The problem of reconstructing watertight surfaces from ori-
ented point clouds has received an immense amount of at-
tention since the mid 80’s [BV91]. Oriented point clouds are
nowadays usually obtained using optical measuring devices
such as laser scanners and inexpensive structured lighting
systems, by other computational means such as multi-view
stereo reconstruction, and also result from large scale sim-
ulations. Dense oriented point clouds have become a perva-
sive surface representation in Computer Graphics [KB04].

The main challenges in this problem domain are: how to
extrapolate to areas where the sampling is uneven, how to
handle missing and noisy data, how to fill holes, and how
to develop simple and efficient algorithms which gracefully

scale up to very large data sets. As we show in section 9
the formulation introduced in this paper performs particu-
larly well on unevenly sampled data sets. The primary con-
tribution of this paper is a simple variational formulation
of the problem developed from elementary geometric con-
cepts. Various discretizations are proposed based on popu-
lar surface representations. The particular hybrid FE/FD dis-
cretization described in section 6 results in a simple algo-
rithm which competes in quality and speed with the state-of-
the-art methods.

The prior art in surface reconstruction methods is exten-
sive. We discuss only some of the existing methods, and refer
the reader to [SS05] for a survey on recent developments.
Despite the long history, the area is still very active. One
family of algorithms produces interpolating polygon meshes
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Figure 1: A surface reconstructed by the proposed algo-
rithm on an octree of depth 9, and the input point cloud.

where all or some of the input points become vertices of the
polygons [BMR∗99]. Most of these algorithms are combina-
torial in nature, are based on constructing Voronoi diagrams
and Delaunay triangulations of the data points, and many
come with guaranteed reconstruction quality [Dey07].

It is often more desirable to produce approximating sur-
faces rather than meshes supported on the input points.
Various representations for the reconstructed surface have
been considered. Since the implicit representation guaran-
tees watertight surfaces, most surface reconstruction meth-
ods in this category produce implicit surfaces. Early work
in this group, going back to the late 80’s, include meth-
ods to fit algebraic surfaces to unoriented point clouds
[Pra87, Tau91, MW90, BIW93, JF02], and PDE-based tech-
niques [ZOMK00]. More recent methods include [Kaz05,
KBH06, ACSTD07, MPS08] which reconstruct a binary in-
dicator function; [HDD∗92, CL96, BC02] which estimate a
signed distance function; and [CBC∗01,OBS03,ABCO∗03,
OBA∗03, SOS04, FCOS05, MPS08] based on local function
fitting and blending, or moving least squares. Most of these
methods reduce the surface reconstruction problem to the so-
lution of a large scale numerical optimization problem, and
very often to the solution of a sparse linear system.

Even though the implicit functions produced by some
of these methods have explicit analytic forms [CBC∗01,
OBS03, OBA∗03, MPS08], since polygon meshes are usu-
ally needed for visualization or further computation pur-
poses, the estimated implicit function is in the end evalu-
ated on a regular grid of sufficient resolution, and an iso-
surface is extracted using an algorithm such as Marching
Cubes [LC87], resulting in a polygonal mesh approxima-
tion of the desired level set. To reduce the computational
and storage complexity, as well as the running time of the

isosurface extraction algorithm, many of the proposed meth-
ods use octree-based schemes [KBH06, BKBH07, MPS08,
ZGHG11], and so do we in some of the algorithms resulting
from discretizing our continuous formulation.

Our formulation is most closely related to the Poisson Re-
construction approach [KBH06], which has become a lead-
ing contender in this field lately, among other reasons be-
cause of the high quality implementations made available
by the authors. Streaming [BKBH07], parallel [BKBH09],
and even GPU-based implementations [ZGHG11] are now
available. We devote section 10 of this paper to establish
similarities and differences between the two formulations.
As a proof of concept, in section 7 we present an in-core
CPU-based implementation. Figure 1 shows one example of
surface reconstructed with the proposed method, along with
the input point cloud. Note the good behavior near bound-
aries, holes, and uneven sampling. Efficient out-of core and
GPU-based implementations of our algorithms are out of
scope for this paper, and will be addressed in the near fu-
ture.

2. Continuous Formulation

We are concerned with the problem of reconstructing a sur-
face S defined by an implicit equation S = {x : f (x) =
0}, approximating a finite set of oriented points D =
{(p1,n1), . . . ,(pN ,nN)}, where pi is as surface location
sample, and ni is the corresponding surface normal sam-
ple oriented towards the outside of the object. If the func-
tion is continuous, then this surface is watertight (closed).
Without loss of generality we will assume that f (x) < 0 in-
side and f (x) > 0 outside of the object. As a reference, in
both FFT Surface Reconstruction [Kaz05] and Poisson Re-
construction [KBH06] the implicit function is forced to be
the indicator function of the volume bounded by the surface
S. This function is identically equal to zero outside, to one
inside, and discontinuous exactly on S, as shown in a 2D
example in Figure 2.

Figure 2: A 2D oriented point cloud as a sample of a
2D curve represented as a level set of an indicator func-
tion(gray=1,white=0). The graph of the smooth signed dis-
tance function estimated by our algorithm from the same
point cloud.
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Usually we are only interested in reconstructing the sur-
face S within a bounded volume V , such as a cube contain-
ing all the data points, which may result in an open surface at
the boundaries of the volume V , particularly when the points
only sample one side of the object, there are holes in the data,
or more generally if the points are not uniformly distributed
along the surface of the solid object. Point clouds produced
by 3D scanning systems are viewpoint dependent, and to
cover the whole surface of the object several scans need to
be registered and merged. We are not covering these topics
here. Instead, we assume that point multiple scans have al-
ready been registered, and we seek a method that works well
on regularly sampled as well as unevenly sampled data.

The gradient∇f (x) of a function f (x) with first order con-
tinuous derivatives is a vector field normal to the level sets of
the function, and in particular to the surface S. If the gradient
∇f (x) does not vanish on the surface S, then S is a manifold
surface with no singular points. Without loss of generality,
we will further assume that the gradient field on the surface
S is unit length, which allows us to directly compare the gra-
dient of the function with the point cloud normal vectors.

Since the points pi are regarded as samples of the surface
S, and the normal vectors as samples of the surface normal
at the corresponding points, for an interpolatory scheme the
implicit function should satisfy f (pi) = 0 and ∇f (pi) = ni
for all the points i = 1, . . . ,N in the data set. Interpolating
schemes, which require parameterized families of functions
with very large numbers of degrees of freedom, are not de-
sirable in the presence of measurement noise. For an approx-
imating scheme, which is what we are after, we require that
these two interpolating conditions be satisfied in the least-
squares sense. As a result, we consider the problem of mini-
mizing the following data energy

ED( f ) = λ0 ED0( f )+λ1 ED1( f ) (1)

where

ED0( f ) =
1
N

N

∑
i=1

f (pi)
2 ED1( f ) =

1
N

N

∑
i=1

‖∇f (pi)−ni‖2

and λ0 and λ1 are positive constants used to give more or less
weight to each one of the two energy terms. The normaliza-
tion by the number of points is introduced to make these two
parameters independent of the total number of points. At this
point this normalization has no effect, but plays a role after
we add a third regularization term.

Depending on which family F of functions f (x) is con-
sidered as the space of admissible solutions, the problem of
minimizing the energy function ED( f ) of equation (1) may
or may not be well conditioned. In particular, this energy
function does not specify how the function should behave
away from the data points. Many parameterized families of
functions have parameters highly localized in space, and the
energy function of equation (1) may not constrain all the pa-
rameters. If the unconstrained parameters are arbitrarily set

to zero, the estimated surface S may end up containing spu-
rious components located far away from the data points, as
we can observe in figures 5, 6, and 8. To address this prob-
lem we add the following regularization term to the energy
function

ER( f ) =
1
|V |

Z
V
‖Hf (x)‖2 dx (2)

where Hf (x) is the Hessian matrix of f , the 3× 3 matrix
of second order partial derivatives of f (x), and the norm of
the matrix is the Frobenius matrix norm, i.e., the sum of the
squares of the nine elements of the matrix. The integral is
over the volume V where we are interested in reconstructing
the surface, |V |=

R
V dx is the measure of this volume.

The total energy function in the proposed formulation is a
weighted average of the data and regularization terms

E( f ) = λ0 ED0( f )+λ1 ED1( f )+λ2 ER( f ) , (3)

and λ2 is another positive parameter. Increasing λ2 with
respect to λ0 and λ1 produces a smoother result. Recom-
mended values for these parameters are discussed in section
9. Note that the three columns of the Hessian matrix Hf (x)
are the partial derivatives of the gradient ∇f (x) with respect
to the three cartesian variables:

Hf (x) =
[

∂∇f (x)
∂x1

∂∇f (x)
∂x2

∂∇f (x)
∂x3

]
As a result, by forcing the square norm of the Hessian ma-
trix to be close to zero, the regularization term makes the
gradient of the function almost constant away from the data
points. In the vicinity of the data points the data energy terms
dominate the total energy, and make the function to approxi-
mate the signed distance function. Away from the data points
the regularization energy term dominates the total energy
and tends to make the gradient vector field ∇f (x) constant.

Section 6 describes the actual discretization that we pro-
pose. Sections 3, 4, and 5 are included primarily to motivate
the approach.

3. Linearly Parameterized Families

In this section we are concerned with the existence and
uniqueness of solution for the variational problem defined
by the energy function E( f ) of equation 3

λ0
N

N

∑
i=1

f (pi)
2 +

λ1
N

N

∑
i=1

‖∇f (pi)−ni‖2 +
λ2
|V |

Z
V
‖Hf (x)‖2 dx

We restrict the analysis here to families of functions linearly
parameterized by a finite number of parameters, because in
most of these cases the problem has a unique solution, which
can be computed by solving a system of linear equations.

By a linearly parameterized family of functions F we
mean a finite dimensional vector space of functions. Explic-
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itly, a member of this family can be written as a linear com-
bination of certain basis functions

f (x) = ∑
α∈Λ

fα φα(x) (4)

where α denotes an index which belongs to a finite set Λ,
say with K elements, φα(x) is a basis function, and fα is the
corresponding coefficient. The K basis functions are chosen
in advance, and are not regarded as variables in the prob-
lem. After selecting a particular order for the K indices, the
function can also be written as an inner product of two K-
dimensional column vectors

f (x) = Φ(x)t F (5)

where F = ( fα : α ∈ Λ) and Φ(x) = (φα(x) : α ∈ Λ) are K-
dimensional column vectors.

4. Smooth Basis Functions

Even though this is not what we advocate in this pa-
per, for the sake of developing the ideas, let’s first con-
sider the case of basis functions with continuous deriva-
tives up to second order, so that the gradient exists
and the second order derivatives are integrable in V .
Radial basis functions [CBC∗01], compactly supported
basis functions [OBS03, OBA∗03], polynomials [Pra87,
Tau91, KTFC01, JF02] trigonometric polynomials [Kaz05],
wavelets [MPS08], B-splines [KBH06], and many other
popular families of functions are included in this category.

Restricting the energy function E( f ) of equation 3 to
one of these families results in a positive-semidefinite, non-
homogeneous, quadratic function FtAF − 2btF + c in the
K-dimensional parameter vector F . Except for very singu-
lar configurations, the matrix A is usually symmetric and
positive definite, and the resulting finite dimensional mini-
mization problem has a unique minimum. The global mini-
mum is determined by solving the system of linear equations
AF = b. To complete the process we need to compute the co-
efficients Aαβ and bα of the matrix A and vector b, and then
select an appropriate algorithm to solve the linear equations.

Note that the three terms of the energy function E( f ) con-
tribute to the matrix A, but since the first data term and regu-
larization terms are homogeneous quadratic functions of F ,
only the second data term contributes to the vector b.

Keeping in mind the parameterization described by equa-
tion (5), the contribution of the first data term ED0( f ) to the
matrix A is

A0
αβ =

1
N

N

∑
i=1

φα(pi)φβ(pi) (6)

Since

‖∇f (pi)−ni‖2 = ‖∇f (pi)‖2−2nt
i∇f (pi)+‖ni‖2

the contribution of the second data term ED1( f ) to the matrix

A is

A1
αβ =

1
N

N

∑
i=1

∇φα(pi)
t∇φβ(pi) (7)

and to the vector b is

b1
α =

1
N

N

∑
i=1

nt
i∇φα(pi) (8)

The contribution of the second data term to the constant c is
equal to λ1, because the normal vectors are assumed to be
unit length, but this is irrelevant since an additive constant in
the energy function does not play any role in the optimiza-
tion.

The contribution of the regularization term ER( f ) to the
matrix A is

A2
αβ =

1
|V |

Z
V
〈Hφα(x),Hφβ(x)〉dx (9)

where 〈., .〉 is the inner product associated with the Frobe-
nius norm

〈Hφα(x),Hφβ(x)〉=
3

∑
i=1

3

∑
j=1

∂
2
φα(x)

∂xi∂x j

∂
2
φβ(x)

∂xi∂x j

Finally, we have A = λ0 A0 + λ1 A1 + λ2 A2 and b = λ1 b1.
While accumulating the contributions A0, A1 and b1 of the
two data terms requires the evaluation of the basis functions
and their derivatives on all the data points, for fixed basis
functions which are known in analytic form, the contribution
A2 of the regularization term can be precomputed and saved
in a static table, which can be hardcoded in the implementa-
tion. If the basis functions are constructed as functions of the
data set, then the integrals (9) have to be evaluated during the
program execution. Numerical approximations of these inte-
grals are usually acceptable, although for many of the linear
families mentioned above, these integrals can be evaluated
analytically in closed form.

5. Sparsity

If the number of parameters K is small, as in the case of poly-
nomial basis functions, solving the linear system AF = b is
straightforward. One of many direct linear solvers for ma-
trices represented as arrays can be used, including the QR
method. However, in most surface reconstruction problems,
a large number of degrees of freedom, typically O(N), is re-
quired for acceptable quality results. For example, the radial
basis functions used in [CBC∗01] and trigonometric poly-
nomials [Kaz05] are non-zero almost everywhere, and result
in a dense matrix A. This is not only a problem in terms of
storage, but also in terms of speed, since out-of-core storage
of matrix and vector may be required along with simple and
slow iterative schemes. On the other hand, the matrix A is
sparse when the basis functions are compactly supported, so
that the support of only a small number of basis functions
overlaps at any given point in the volume V . This property
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also results in many of the integrals shown in equation (9) as-
sociated with the regularization term being zero: if the sup-
ports of φα and φβ do not intersect, then the integral A2

αβ
is

equal to zero.

For example, the linear families used in the following
methods [OBS03, OBA∗03, MPS08, KBH06], which all use
compactly supported basis functions, would be appropriate
for this approach. However, since computing the integrals
associated with the regularization term can result in signifi-
cant implementation complexity, we are not advocating for
any of these families. Instead, we propose a hybrid FE/FD
discretization with discontinuous gradient, which results in
a much simpler regularization term.

6. Discretization with Discontinuous Gradient

The approach described in the previous section can be ex-
tended to the case of basis functions with derivatives con-
tinuous only up to first order, and with second order deriva-
tives which are integrable in V in the sense of generalized
functions. As long as the discretized function f (x), gradient
∇f (x), the Hessian Hf (x) can be written as homogeneous
linear functions of the same parameters F , the problem still
reduces to the solution of linear equations AF = b. In fact,
even independent discretizations for f (x), ∇f (x) and Hf (x)
can be used, again, as long as all these expressions are homo-
geneous linear functions of the same parameters F . We pro-
pose in this section one such hybrid discretization, where a
finite element discretization is used for the function f (x), but
finite differences discretizations are used for gradient ∇f (x)
and the Hessian Hf (x). The results presented in section 9,
show that this discretization turns out to be particularly sim-
ple to implement, is is applicable to adaptive grids, and pro-
duces results of high quality at high speed.

To simplify the notation, we first consider a regular hexa-
hedral grid partition of space. We assume that the volume V
is a unit cube V = [0,1]× [0,1]× [0,1], and that each of the
three axes is split into M equally long segments, resulting
in M3 hexahedral cells and (M + 1)3 vertices. In the gen-
eral case a bounding box for the data points has to be com-
puted first, perhaps expanded by a certain amount to prevent
boundary-related artifacts, and all the coordinates need to be
scaled. If the scaling is anisotropic in the three coordinates,
then the normal vector coordinates need to be scaled as well
and then renormalized to unit length.

In this discretization, the indices α ∈ Λ are the grid ver-
tex multi-indices α = (i, j,k), for 0 ≤ i, j,k ≤ M. The co-
efficients fα are then the values of the function f (x) at the
grid vertices pα = (i/M, j/M,k/M). Since the result of this
computation is a scalar field defined on the vertices of a
regular hexahedral grid, the construction of an output iso-
surface using Marching Cubes [LC87] does not require any
further function evaluations. The grid cells Cα are also in-
dexed by multi-indices α = (i, j,k), except that in this case

0 ≤ i, j,k < M. The indices of the eight vertices of a cell Cα

are depicted in Figure 3. and a similar relation can be found
to identify the (up to eight) cells which contain a given ver-
tex as a corner.

Figure 3: Vertices of an hexahedral cell

We use finite differences discretizations for the gradient
and Hessian. Within each cell Cα we use trilinear interpola-
tion as the discretization of the function f (x). This is a fi-
nite element discretization. Determining which cell Cα each
point pi belongs to reduces to quantization. If pi ∈Cα then

f (pi)≈
7

∑
h=0

wh fαh (10)

where w0, . . . ,w7 are the trilinear coordinates of pi.

Within each cell Cα we use a constant average of finite dif-
ferences discretization, denoted ∇α f , for the gradient ∇f (x)

1
4∆α

 fα4− fα0 + fα5− fα1 + fα6− fα2 + fα7− fα3

fα2− fα0 + fα3− fα1 + fα6− fα4 + fα7− fα5

fα1− fα0 + fα3− fα2 + fα5− fα4 + fα7− fα6

 (11)

where ∆α is the side length of cell Cα. If the dimensions of
the bounding box are different along each of the three coor-
dinate axes, then different lengths must be used to normalize
each of the three coordinates of ∇α f . If pi ∈Cα then

∇f (pi)≈∇α f (12)

The piecewise constant gradient leads to zero second
derivatives within each cell. In this case the square norm
of the Hessian matrix H f (x) is a generalized function sup-
ported on the square faces shared by neighboring voxels (as
Dirac’s δ “function”), and the integral over the volume V re-
duces to a finite sum over the faces. Hence, we only need an
approximation to ‖Hf (x)‖2 at the faces shared by cells. If
Cα and Cβ are two such cells that share a face, then we use
finite differences of discrete gradients

Hαβ f =
1

∆αβ

(
∇α f −∇β f

)
(13)

where ∆αβ is the Euclidean distance between the centers of
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the cells. As a result, the integral in the regularization term
becomes a sum over all the neighboring cell pairs

ER( f )≈ 1
|V | ∑

(α,β)
|V |αβ ‖Hαβ f ‖2 (14)

where |V |αβ is the area of the face shared by cells Cα and
Cβ, and |V |= ∑(α,β) |V |αβ .

7. Octree-Based Implementation

As in many of the prior works cited above, a regular grid
formulation results in high storage requirements and slow
algorithms. Also, as in many of the cited works, we adap-
tively construct an octree based on the location of the data
points. In the recursive subdivision algorithm, a cell is split
if the number of points contained is larger than a prespeci-
fied value, and the cell depth does not exceed another pre-
specified value. The data set is recursively partitioned into
subsets of points Dα associated with cells Cα. For octrees
the multi-indices α = (L, i, j,k) must be augmented with a
level (or depth) value L, both for cells and vertices, where
0 ≤ L ≤ LMAX. The correspondence between indices α

and cells is 1-1, but not for vertices, since (L, i, j,k) and
(L + 1,2i,2 j,2k) refer to the same vertex. However we use
these relations in our implementation, along with hashing al-
gorithms, to efficiently traverse the primal and dual graphs
of an octree. Figure 4(a) shows an oriented point cloud and
the primal graph of an octree constructed in this manner.

(a) (b)

Figure 4: (a) The primal graph of an octree, and (b) an
illustration of dual edges.

The finite-differences discretization presented in the pre-
vious section for regular hexahedral grids extends in a nat-
ural way to octree grids, without any changes. There is one
function value fα associated with each primal vertex of the
octree. As a result, within each hexahedral cell we use tri-
linear interpolation to discretize the function f (x), and the
constant gradient ∇α f of equation 11. Finally, we use the
discretization of the Hessian H f (x) of equation 13, where
the dual edge weight |V |αβ is now the area of the common
face. Figure 4(b) illustrates this concept.

The formulation described above reduces to the solution

of a linear system AF = b. The data set is partitioned during
the recursive subdivision process used to construct the oc-
tree. The elements of the matrix A and vector b are accumu-
lated by traversing the list of octree leaf cells. For each point
in an non-empty cell Cα new terms are added to Aαiα j and to
bαi , where αi and α j are indices of the eight vertices of the
cell Cα. To accumulate the contribution of the regularization
term the octree dual graph is traversed. For each dual edge
connecting cells Cα and Cβ, terms are added to the elements
Aαiβ j

of the matrix A, where αi is an index of a vertex of cell
Cα, and β j is an index of a vertex of cell Cβ. After all the
coefficients are accumulated, for reasonably sized problems
one can use a direct solver. Instead, since octrees inherently
have multiresolution structure, we follow an iterative cascad-
ing multigrid approach. We start by solving the problem on
a much coarser level than desired using a simple conjugate
gradient solver. Then use it to initialize the solution at the
next level, which is then refined with the conjugate gradient
solver.

8. Primal and Dual Marching Cubes

Once the coefficients fα are determined, we are faced with
the final problem of constructing a polygonal approxima-
tion of the isolevel zero of the discretized implicit function.
Marching Cubes [LC87] can be implemented in such a way
that it can be applied to any volumetric grid composed of
hexahedral cells, and in particular, to regular voxel grids and
to octree grids. When it is applied to a scalar field defined
on the primal vertices of an octree, a mesh with so-called
“cracks” typically result. Since the dual grid of an octree
hexahedral grid is composed of cells which can be regarded
as hexahedral cells with collapsed edges, we use the same
general implementation of Marching Cubes to instantiate the
Dual Marching Cubes algorithm [SW05]. Dual Marching
Cubes requires values of the implicit function at the ver-
tices of the dual graph, i.e., at the centroids of the primal
octree hexahedral cells. The results of the optimization al-
gorithm for the proposed finite differences discretization is
defined on the vertices of the primal graph. An implicit func-
tion value is computed for the centroid of each primal cell by
averaging the values associated with the eight cell corners.

9. Results

We compare the proposed Smooth Signed Distance (SSD)
surface reconstruction method with Multi-Level Partition of
Unity Implicits (MPU) [OBA∗03], Poisson Surface Recon-
struction (Poisson) [KBH06], and Streaming Surface Re-
construction Using Wavelets (D4 Wavelets) [MPS08]. We
present the reconstruction results in terms of speed, memory,
efficiency, and accuracy. We show that, in terms of the qual-
ity of reconstruction, our method outperforms these other
methods even on data sets associated with extreme compli-
cations: non-uniform sampling, sensor noise, and missing
data. In addition, we observe that its performance is still
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comparable to in-core CPU implementations of the alter-
native methods. We consider efficient streaming and GPU
based implementations out-of-scope for this paper, but we
plan to address these issues in near future.

We apply our algorithm to point clouds retrieved either
from a single partial scan, or from multiple scans that have
been aligned with respect to a common reference frame. We
assume that each point is associated with a surface normal
vector. In the absence of this information, we efficiently es-
timate the normals from partially triangulated scans, and de-
termine their orientations from the viewpoint direction to the
scanner. If this process introduces significant errors, one can
alternatively estimate a point sample’s normal vector from
the positions of the local neighbors using local fitting. Our
initial test case is the head of Michalengelo’s David raw
dataset of 1 million samples. This dataset is assembled from
many range images acquired by a laser scanner. Since the
points are almost uniformly sampled, we ignore the noisy
triangles provided by the scanner, and use local surface fit-
ting to estimate a sample’s normal. As a result, we have
uniformly distributed points with accurate normals. Figure 5
compares different reconstructions. All methods operate on
the same data set at a maximal octree depth of 8, and pro-
duce surfaces of comparable quality. Table 1 summarizes the
performance characteristics of each algorithm. Our second
test case is the left eye of Michalengelo’s David raw dataset
with 187,526 samples. This dataset is cropped from the head
of Michalengelo’s David raw dataset. We estimated normals
from the noisy triangles provided by the scanner. The re-
sulting oriented point set has uniformly distributed points
with many inaccurate normals. Figure 6 compares differ-
ent reconstructions at a maximal octree depth of 10. Since
the data is noisy, MPU results in reconstruction with spuri-
ous surface sheets. Poisson, D4 Wavelets, and our SSD Re-
construction all accurately reconstruct the surface, although
the one reconstructed with Poisson is a bit smoother. Our
third test case is composed of 100,000 oriented point sam-
ples obtained by sampling a virtual horse model with a
sampling density proportional to curvature, giving a set of
non-uniformly distributed points with accurate normals. Fig-
ure 7 compares different reconstructions at a maximal octree
depth of 9. The D4 Wavelets Reconstruction fails to recon-
struct the surface accurately. MPU, Poisson, and our SSD
Reconstruction all accurately reconstruct the surface with

Method Time (Sec) Memory (MB) Polygons
MPU 27 148 378925

Poisson 43 283 319989
D4 17 63 365974

SSD 72 264 346652

Table 1: The running time, the peak memory usage, and
the number of triangles in the reconstructed surface of the
David’s head generated with different methods.

subtle differences. Our final test case is the Chiquita model
raw dataset comprising 705,375 samples. This dataset was
acquired by scanning the real world object with an inexpen-
sive 3D structured lighting system [CLS∗06]. It is an ex-
ample of non-uniformly distributed points with inaccurate
normals. Figure 8 compares different reconstructions at a
maximal octree depth of 9. MPU produces spurious surface
sheets. Although D4 Wavelets performs much better, it can
not fill in gaps reasonably. Poisson, and our SSD Recon-
struction both result in pleasing surfaces with subtle differ-
ences.

To evaluate the numerical accuracy of the reconstruc-
tion results we follow the same strategy as in [MPS08]. We
first sample points from a known model, then reconstruct
surfaces using each method with this point set. We then
compute the Hausdorff distance between each reconstructed
model and the known model using Metro tool [CRS96]. Ta-
ble 2 summarizes the result. Note that, in all cases, our SSD
reconstruction recovers the surfaces with higher degree of
accuracy than the Poisson reconstruction. And in two cases
(Horse, and Igea) it also outperforms D4 Wavelets.

Model MPU Poisson D4 SSD
Armadillo 1.0000 0.4617 0.2383 0.3514

Dragon 0.8779 1.0000 0.5301 0.6810
Horse 0.0752 0.0827 1.0000 0.0551
Igea 1.0000 0.7761 0.5701 0.4018

Table 2: Hausdorff distance between real surfaces and re-
constructed surfaces. Each row is normalized by the maxi-
mum error to provide relative comparison (lower is better).

10. Relation to Poisson Surface Reconstruction

As in our formulation, the Poisson Surface Reconstruction
approach [KBH06] looks for an implicit function which
should be zero at the data points, and such that its gradient
evaluated at the data points equals the corresponding normal
vectors. The set of oriented data points D is regarded as a
sparse sampling of a continuous vector field defined on the
bounding volume V . As a result, the vector field samples are
first extended to a continuous three dimensional vector field
v(x) defined on the volume V . The implicit function f (x) is
subsequently recovered integrating the vector field. i.e, solv-
ing the functional equation ∇f = v. But since not every vec-
tor field is the gradient of a function the problem may or may
not have solution. The necessary and sufficient condition for
a smooth vector field to be the gradient of a function is that
its curl be identically zero, or equivalently, that the integral
of the vector field along any closed curve be equal to zero.
Since these conditions are difficult to impose as constraints,
an alternative least-squares solution is proposed, where the
functional equation is approximately solved by minimizing
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Figure 5: Input point cloud (leftmost) of David’s head, and reconstructions using (from second-left to right) MPU, Poisson,
D4 Wavelets, and our SSD reconstruction.

Figure 6: Input point cloud (leftmost) of David’s eye, and reconstructions using (from second-left to right) MPU, Poisson, D4
Wavelets, and our SSD reconstruction.

the integral equationZ
V
‖∇f (x)− v(x)‖2 dx (15)

with respect to the function f (x), while keeping the vector
field constant. Solving this variational problem is equivalent
to solving the classical Poisson equation ∆ f = ∇· v in V .
From the linear algebra point of view, the solution of this
problem is the orthogonal projection of the vector field v
onto the subspace of gradient vector fields, with the solu-
tion represented in parametric form. The solution is usually
unique modulo an additive constant f0, which is then de-
termined by minimizing the fitting error ∑

N
i=1( f (pi)− f0)2

with f (x) being a minimizer of the integral equation (15).
The solution to this last problem is the average of the func-
tion on the data points f0 = 1

N ∑
N
i=1 f (pi). Note the the whole

process involves three minimization problems rather than
one, performed in a squential manner.

If we introduce the vector field v as an additional variable
in our formulation, and we remove the first data term from
the total energy of equation (3) we obtain a vector field en-
ergy

λ1
N

N

∑
i=1

‖v(pi)−ni‖2 +
λ2
|V |

Z
V
‖Dv(x)‖2 dx (16)

which can be minimized independently. In this equation Dv
denotes the Jacobian matrix of the vector field v. Note that
if ∇f = v, then Hf = Dv. The result is a vector field de-
fined on the volume V which extends the oriented points,

as in the Poisson Surface Reconstruction approach. Then
the same other two steps, of solving the Poisson equation,
and estimating the optimal isolevel by minimizing the data
term originally removed from the total energy of equation (3)
can be performed. In fact, this approach was shown to work
in [ST05] to solve the surface reconstruction problem, for
the function and vector field discretized on a regular voxel
grid, and with the integral term of the energy discretized by
finite differences.

The most important difference is that in both the
FFT [Kaz05] and Poisson [KBH06] surface reconstruction
approaches the problem is formulated for an indicator im-
plicit function. The choice of an indicator function for the
implicit function creates complications, since the gradient
of the implicit function does not exist in the traditional sense
at the sample points, where the function is discontinuous.
As a result the two methods estimate a low-pass filtered ver-
sion of the indicator function. It is noted in [KBH06] that in
practice, care should be taken in choosing the smoothing fil-
ter, and that for non-uniformly distributed point samples the
smoothing kernel width needs to be adapted. The adaptation
process is only explained within the concept of the octree-
based implementation. It is also reported in a recent sur-
face reconstruction benchmark study [BLN∗11] that these
two methods tend to oversmooth the data, as we can also
observe in some of the results presented herein. In the FFT
approach, a truncated Fourier expansion automatically pro-
vides an ideal low-pass filtered version of the indicator func-
tion, but the restriction to a regular voxel grid discretization
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Figure 7: Input point cloud (leftmost) of the Horse model, and reconstructions using (from second-left to right) MPU, Poisson,
D4 Wavelets, and our SSD reconstruction.

Figure 8: Input point cloud (leftmost) of the Chiquita model, and reconstructions using (from second-left to right) MPU,
Poisson, D4 Wavelets, and our SSD reconstruction.

limits its apeal, as in the case of [ST05]. In the Poisson Sur-
face Reconstruction approach implemented on an octree, the
vector field is constructed as a linear combination of com-
pactly supported smooth basis functions associated with the
octree cells. As a result, the function obtained by solving the
Poisson equation is equally smooth. Since the vector field
should approximate the low-pass filtered gradient of the in-
dicator function, it is forced to be zero away from the data
points.

In the end, the proposed approach provides an interest-
ing alternative to Poisson Reconstruction and other state-of-
the-art methods, which is much simpler to implement and
performs particularly well on unevenly sampled data sets, at
comparable computational cost.

11. Conclusion

In this paper we have introduced a new variational formu-
lation for the problem of reconstructing a watertight surface
defined by an implicit equation from a finite set of oriented
points. As in other surface reconstruction approaches disc-
tretizations of this continuous formulation reduce to the so-
lution of sparse least-squares problems. Rather than forcing
the implicit function to approximate the indicator function
of the volume bounded by the surface, in our formulation
the implicit function is a smooth approximation of the signed

distance function to the surface. We introduced a very simple
hybrid FE/FD discretization, which together with an octree
partitioning of space, and the Dual Marching Cubes algo-
rithm produces accurate and adaptive meshes. Preliminary
results produced with a proof of concept implementation are
shown. The software implementation and data sets used to
create the figures shown in this paper are available for down-
load from [CT11].
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