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Abstract

We present a system for interactively acquiring and rendering light fields using a
hand-held commodity camera. The main challenge we address is assisting a user in
achieving good coverage of the 4D domain despite the challenges of hand-held acqui-
sition. We define coverage by bounding reprojection error between viewpoints, which
accounts for all 4 dimensions of the light field. We use this criterion together with
a recent Simultaneous Localization and Mapping technique to compute a coverage
map on the space of viewpoints. We provide users with real-time feedback and di-
rect them toward under-sampled parts of the light field. Our system is lightweight
and has allowed us to capture hundreds of light fields. We further present a new
rendering algorithm that is tailored to the unstructured yet dense data we capture.
Our method can achieve piecewise-bicubic reconstruction using a triangulation of the
captured viewpoints and subdivision rules applied to reconstruction weights.
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Title: Professor
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Chapter 1

Introduction

Light fields and lumigraphs provide a faithful reproduction of 3D scenes by densely

sampling the plenoptic function, but their acquisition often requires camera arrays

or robotic arms, e.g. [16, 10, 32, 2]. We present an interactive system for capturing

dense light fields with a hand-held consumer camera and a laptop computer. First,

the user points the camera at the scene and selects a subject to capture. The system

then records new images whenever it determines that the camera is viewing an under-

sampled region of the light field. We guide the user with a viewpoint coverage map

to help them achieve dense coverage. To render our light fields we use a piecewise-

bicubic reconstruction across viewpoints that leverages the specific attributes of our

captured data. The resulting system is cheap, portable, and robust.

We derive a geometric criterion for when to record new images using a bound on

the reprojection error between captured views. For each new image, we first compute

pose using a real-time Simultaneous Localization And Mapping (SLAM) library [14].

We check if this view can be reconstructed without violating our reprojection error

bound. If it can, we discard it; if it cannot, we add this view to the set of captured

views. During acquisition, we display a coverage map that shows the views captured

so far to help the user achieve dense coverage.

We describe two implementations of our system: one that uses a laptop with a

webcam and relies on feature-based pose-estimation; and a reduced prototype that

runs on a ind-range cell phone (the Nokia N95) using the device camera, but requires
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Kitchen Babrook Face Break

Armchair Snowman Cue Girl Face Sentokun

Figure 1-1: A subset of the light fields captured using a simple hand-held camera and
our system. Left: Visualization of the pose of the images in the armchair light field.
Right: Some of the light fields captured with our system.

a fiducial marker to estimate pose.

Our system is fast, easy to use, and portable. A typical capture session takes

between 1 and 11 minutes. We have tested it by acquiring hundreds of light fields of

indoor and outdoor scenes at a variety of scales.

1.1 Related work

A number of approaches have addressed light field capture, including robotic arms

(e.g. [16]) and camera arrays (e.g. [32]). A single-camera light field capture can be

achieved with a microlens array [1, 20, 8] but the extent of the light field is restricted

to the camera's aperture. Similar systems use additional lenses [9], masks [29], or

mirror arrays [28].

The capture approach most similar to ours is Gortler et al.'s Lumigraph system

[10], which uses a hand held camera with a specially-designed stage for pose estima-

tion. Like us, they provide a visualization of the set of viewpoints acquired so far,

but the user must gauge the density required for good coverage. We derive a formal

criterion for viewpoint coverage and provide a visualization that displays from which

viewpoints the subject can be reconstructed.

Buehler et al. [4] also sought to alleviate the requirement of dense uniform light

9



field sampling, but focused on the rendering algorithm, whereas we focus on acqui-

sition. They briefly discuss different strategies they used for acquisition, including

robotic arms, heuristics, and structure from motion. They note, however, that with-

out available scene geometry their hand-held input results in reconstructions that

exhibit parallax only along the one-dimensional trajectory defined by a camera's

path. Good coverage is difficult to achieve for the hand-held capture of light fields

and lumigraphs. This is the main problem our system addresses.

Koch et al. [15] and Heigl et al. [11] perform camera calibration as a batch process

after hand-held light field capture, which rules out interactive capture. We use a real-

time alternative: the PTAM library developed for augmented reality applications

[14].

The rendering algorithm used for unstructured lumigraphs [4] selects views based

on a variety of criteria, such as angular distance, and then uses a k-nearest-neighbor

reconstruction. They ensure that their interpolation weights fall off smoothly to zero

for the k-th nearest neighbor.This approach comes with some limitations. The first

problem is scalability. For each sample on the image plane the penalties for every

input image must be evaluated and sorted in order to find the k nearest neighbors.

The second problem is that the k nearest neighbors might exhibit a poor angular

distribution around a given location. For example, the nearest neighbors may not

surround the reconstructed view; they may all be on one side, and may suddenly

switch to the other side as the virtual camera is moved (Fig. 5-1(a)). Furthermore,

the blending field (Fig. 5-1(b)) may have discontinuities and is not always monotonic

as a function of the distance to a viewpoint projection because of the normalization

term. Despite these limitations, we have found unstructured lumigraph rendering to

be robust for sparse datasets and use it when our number of viewpoints is low.

For rendering, [17] use a triangulation of the input cameras similar to ours. How-

ever, they use simple bilinear interpolation over the entire output image, restricting

the sampling of reconstructed views to linear combinations of just a few input views.

This is analogous to restricting the virtual camera to move along the manifold of

input views in our method and using bilinear interpolation over the blending field
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instead of bicubic.

Plenoptic sampling [5] and light field reparameterization [12] also address the issue

of sampling rate in light field acquisition using analysis in the Fourier domain. In

contrast, our technique handles unstructured inputs, and uses a geometric bound in

the primal domain to drive sampling.

Snavely et al. [26, 25] combine large photo collections and provide a broad but

sparse coverage of the plenoptic function. The strength of their approach is the ability

to leverage photos that have already been taken. They can, for example, acquire a

miniature object by rotating it in front of a camera [25]. However, their approach

does not assist the user during the capture process. Our work is complementary and

seeks to achieve a dense capture by guiding the user.

View planning has also been recognized as an important problem for 3D scan-

ning, but it seeks to plan a small number of discrete views, e.g. [19, 21]. However,

Rusinkiewicz and Hall-Holt demonstrated that real-time feedback can dramatically

help a user achieve good coverage for interactive 3D scanning [23]. We similarly

found that feedback is critical, but focus on light fields and avoid the use of custom

hardware.
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Chapter 2

System Design

Our system's design was motivated by the following goals:

Inexpensive commodity hardware The method should work with a single com-

modity camera and no specialized hardware. This means that camera movement must

be performed by the user. This also means that camera orientation and location must

be computed from image features.

Horizontal and vertical parallax We want dense light fields that enable both

horizontal and vertical parallax. While one-dimensional parallax is easy to achieve

by recording a video while the camera is moving, it is much harder for users to move

the camera in a way that captures parallax in both directions.

Conservative coverage for complex geometry We should record enough images

to bound the reprojection error within some volume of interest even if we have no

explicit geometric proxy. Doing so ensures that even difficult subjects like transparent

objects or objects with complex occlusions can be reconstructed faithfully.

Speed and real-time feedback Given the coverage requirement, the system must

provide real-time feedback to tell the user how to move their camera. To keep capture

sessions short, our bound on reconstruction error should be set so that the user

achieves good coverage without requiring a prohibitive number of images.
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2.1 Representation

Our light field is stored as a collection of photographs with associated camera poses.

We also store information about the subject extent (a rough bounding sphere), which

we use to compute our coverage criterion during capture and to assist with focus and

navigation during rendering.

We separate the computation of a camera blending field from the representation

of scene geometry, making it easy to use an arbitrary geometric proxy when it is avail-

able. We have tested several types of proxies including a screenspace triangulation

of SLAM feature points as in the Unstructured Lumigraph [4], multiview stereo [6]

paired with Poisson surface reconstruction as in [7], and different variations on planar

proxies including those used in [26, 25] and [16]. We discuss this more in Chapter 5.

2.2 Navigation challenges

Capturing a light field with a hand held camera is difficult primarily because it is

hard to tell where previously captured images are and how much of the light field

they cover. The user must control all six degrees of freedom of the camera's pose to

provide good coverage.

Rotation Rotation of the camera mostly serves to keep the subject centered in the

frame. This is not a hard task for users. We assist by alerting them when the subject

has left the camera's field of view.

Translation Translation is the main challenge addressed by our approach. In or-

der to reproduce parallax in multiple dimensions, the user must cover a 2D set of

views around their subject. One dimension, typically horizontal, corresponds to the

trajectory of the camera, and is easy to cover. This is why some existing systems

only provide horizontal parallax. The second direction, typically vertical, is the one

that is hard to cover and is usually achieved with a back-and-forth scanning motion.

This is where the user needs most guidance to make sure that the camera stays at
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the correct offset from the previous "scanline" to ensure good coverage.

Subject Distance Ideally the subject should be recorded at the same scale across

the different input images. That is, the camera should stay roughly the same distance

from the subject as it moves. We assist by providing visual feedback to show the user

how much their distance to the subject varies. Our coverage criterion also considers

distance to the subject, automatically adapting for images that see the subject at

different scales.
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Chapter 3

The capture process

Our main implementation relies on a camera connected to a laptop. Feedback to

the user is provided via the laptop's screen and superimposed on the current view

coming from the camera. We have also implemented a reduced prototype that runs a

mobile phone but requires a fiducial marker to enable camera pose estimation. The

user needs to first initialize pose estimation, then select a subject of interest before

capture begins. The full capture process typically takes between 1 and 11 minutes

depending on the size of the subject, the desired density of views, and the expertise

of the user.

Pose estimation initialization The user first initializes pose estimation by mov-

ing the camera around the scene. This step is required by PTAM [14] and takes

between ten seconds for small scenes and two minutes when the user needs to walk

farther around a large scene.

Subject specification (bounding sphere) The user then selects their subject

by placing a virtual bounding sphere around it, which we visualize with a wireframe

mesh. For each input view, the sphere represents a range in two of the four dimensions

of the light field. The set of painted views on the coverage map represents a range

in the remaining two dimensions of the light field. The intersection of these ranges

defines the part of the light field with bounded reprojection error. The sphere does
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Figure 3-1: Screen capture of our visualization. The virtual meshed sphere serves
both as a bound on the scene to be captured and as a coverage map showing the
range of viewpoints already covered. At the beginning (left), only a limited range is
covered, and the user moves the camera to "paint" the sphere (right).

not need to precisely bound the subject, but our bound on reprojection error does

not necessarily hold outside of the sphere.

To specify the sphere, the user centers the subject in the view and the system

initializes its distance with the average depth of feature points used in SLAM. This

distance estimate can be refined through a keyboard or mouse interaction, enabled

by two feedback visualizations.

First, the user can move the camera and view the scene augmented with the

sphere mesh. Second, we offer a new augmented aperture mode where we augment

the current live view of the camera with a synthetic aperture computed from the

current sparse unstructured light field. This creates a live view with shallow depth of

field focused on the center of the sphere. The view is refreshed as the user moves the

camera. This makes it easy to find a good depth for the object by refocusing until the

object's silhouette becomes sharp in the augmented aperture view. It is particularly

useful for large scenes where the user would need to walk far before getting enough

parallax to assess the position of the sphere.

Capture The user then starts the actual light field acquisition. We display a cov-

erage map on top of the bounding sphere overlaid on the current view of the camera.

The current location of the camera is projected onto the surface of the sphere as a
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small red dot. Every previously recorded image of the scene is also projected onto the

coverage map; it occupies a circle corresponding to the range of views that it covers

under our sampling criterion (Fig. 3-1). The user's goal is to control the movement

of the red dot with the camera and to "paint" the surface of the sphere. When the

sphere is well painted, the user has captured enough data to generate a high quality

rendering of their subject.

To keep the camera oriented towards the subject we display a safety rectangle in

white (Fig. 3-1) within which the user should keep the sphere. If the sphere is not

kept inside the rectangle then the rectangle turns red and the system stops capturing

images. Only views that see the subject are recorded.

To hell) the user capture images at a consistent scale we use a color code to

represent the distance to the subject in the stored views relative to the current view:

green means that the recorded view is the same distance as the current view. Red

means that it is further from the subject, and blue means that it is closer. Ideally,

the map should always be green, but deviations are tolerable as long as distance does

not vary too discontinuously.

Review At any point during capture, the user can review the light field by con-

trolling the movement of a virtual camera. This can be done using a keyboard and

mouse interface, or by using the current pose of the capture camera to control the

virtual one. In this case, the system renders the scene from the current pose of the

real camera. If coverage is good, this visualization becomes difficult to distinguish

from the camera's live view. This pre-visualization of the final light field is useful to

assess the coverage of the scene and decide if a wider set of viewpoints is needed.

Mobile phone prototype Our mobile phone prototype relies on fiducial markers

rather than scene features for two reasons. First, it is computationally cheaper.

Second, the current version of PTAM does not handle well the limited optical quality

and field of view of most cell phones. Instead, we rely on fiducial markers and the

AR Toolkit [13]. The capture interface is also significantly reduced. The user can
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review their light field, using the marker as a 3D mouse. Rendering is simplified and

only uses nearest neighbor reconstruction for increased speed.
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Chapter 4

Coverage criterion

Traditional approaches to light field sampling [5, 12] rely on Fourier analysis and

require uniform sampling of a two-plane parameterization. In contrast, our acqui-

sition results in scattered viewpoints, often arranged on a sphere, and a two-plane

parameterization of the domain is not appropriate. We seek to determine if a new

image would provide significant improvement over an acquired light field. For this,

we characterize the reprojection error that is incurred when using already acquired

views to render the new view. If the error is above a given threshold, we store the new

view. Our analysis is related to error analysis for stereo and other computer vision

tasks, e.g. [3, 22, 30], but to our knowledge, it is the first time it is used to derive a

sampling criterion for light fields.

Consider a captured view, s, and a new view, n, being tested. We want to derive a

bound on reprojection error from the geometric bounds given by our subject sphere.

We will compare the bound we compute against our threshold to determine whether

n is covered by s.

To compute the worst case reprojection error we consider a cone of ambiguity

associated with a pixel V, of s (Fig. 4-1). This cone represents points in our scene

that might contribute to V,. We represent the cone as the projection of a circle

centered at V, into our scene. We assume that the input images were taken with a

small aperture and use a circle with radius equal to the distance between adjacent

pixels. The intersection of this cone with our subject sphere contains all subject

19
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Figure 4-1: Our coverage criterion computes a bound on the reprojection error from
view s to view n associated with pixel V. This bound is sensitive to both parallax
error and the ambiguity resulting from differences in resolution, covering all 4 degrees
of freedom of the light field.

points that might contribute to V,. The image of this intersection in n represents

the range of possible reprojections for these points. Our bound on reprojection error

is then the longest distance between two points inside the imaged intersection. This

distance is the projection of AB in Fig. 4-1 where AB lies on the epipolar plane

defined by s, n, and the center of our subject sphere.

Our bound on reprojection error is sensitive to both parallax error and changes in

resolution, accounting for all 4 dimensions of the light field. Another way to interpret

this coverage threshold is as an effective resolution at which the reconstructed image

will not have ghosting or magnification artifacts.

The computation of this criterion is straightforward. For a derivation of the precise

formula please refer to the supplementary material.
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Chapter 5

Viewpoint-Subdivision Rendering

IBR techniques differ primarily in how they compute the camera blending field, or

the weights used to blend each input image at each pixel of rendered output. In this

section we describe how our rendering method computes a blending field.

While the strength of unstructured lumigraph rendering [4] for sparse datasets

is that it does not seek to extract a structure over the captured views, this limits

its ability to achieve a smooth reconstruction and to scale to larger datasets. At a

given output pixel, the algorithm only knows the relative penalties of different views

and it is hard to design a blending field that has higher-order smoothness and takes

into account the relative locations of the neighboring viewpoints (Fig. 5-1(a)). In

contrast, we extract structure from our set of viewpoints by building their Delaunay

triangulation. This allows us to design blending weights that smoothly conform to the

nearby captured views. In particular, we apply subdivision rules over the triangulated

viewpoints to compute smooth reconstruction weights.

We start by describing simple piecewise-linear reconstruction which forms the

basis of our slightly more costly but smoother subdivision approach.

5.1 Piecewise-linear reconstruction

Consider the reconstruction of a pixel P from a viewpoint V (Fig. 5-2(a)). We

can reconstruct the appropriate ray color using linear interpolation across the image
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Figure 5-1: (a) With k-nearest-neighbor interpolation, all neighbors can suddenly
switch when moving from V to V'. (b) Unstructured lumigraph rendering blending
weights. Each image is assigned a random color for visualization. (c) blending weights
with our technique.

and viewpoint dimensions. We focus on the viewpoint dimensions and use standard

projective texture mapping with a geometric proxy for the image ones. We can

perform piecewise-linear reconstruction on the camera blending field by intersecting

the ray with a triangulation of the set of stored viewpoints (Fig. 5-2(a)). The weight

of each of the corresponding three images is given by the barycentric coordinates of

the intersection.

For efficiency, we do not reconstruct each ray independently and instead project

the vertices of a viewpoint triangle onto the image plane (Fig. 5-2(a)). At the pro-

jected vertex corresponding to a stored view W, its weight is 1 while the weight of

the other two images is zero. This means that, for a given stored image W, its impact

on the rendered view corresponds to the projection of a triangle fan: its 1-ring in a

viewpoint triangulation (Fig. 5-2(b)). The weight of W is 1 in the center of the ring

and 0 at the boundary, leading to a classical piecewise-linear tent.

We render the fans efficiently using texture mapping and alpha blending, where

alpha is one at the center vertex and zero at the boundary of the 1-ring. This means

that each triangle is rendered three times, once for each view corresponding to one of

its vertices. This could be optimized by binding the triangle to three textures but we

have not found overdraw to be a speed limitation. This algorithm provides piecewise
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(b)

1/8

3/8 3/8

1/8

M} (d) N (e) (f) (g)

Figure 5-2: Piecewise-linear and viewpoint-subdivision rendering for a new viewpoint
V. (a) The color at a ray can be linearly reconstructed by barycentric interpolation of
three adjacent views. (b) This is equivalent to projecting the triangles corresponding
to the captured viewpoints onto the image plane. (c) For piecewise-linear reconstruc-
tion, each captured view W projects onto a triangle fan with weight 1 in the center
and 0 at the periphery. The fan is texture-mapped with the image captured from W.
(d) Our viewpoint-subdivision reconstruction renders each image onto a subdivision
of its projected 2-ring. (e-f) Loop subdivision rules are applied to the weights of a
given image inside its 2-ring. (g) Wide-aperture rendering is achieved by warping the
2-ring onto a disk corresponding to the projection of the aperture with respect to the
corresponding viewpoint onto the focal plane. The projection of the various views
through the aperture (in red) overlap, which leads to a shallow depth of field.

linear reconstruction. Later we extend it to piecewise bicubic reconstruction.

5.2 Viewpoint triangulation

Because we guided the user to capture images roughly on a spherical shell around

the subject, we use spherical coordinates to create a 2D triangulation (Fig. 5-3). Our

implementation uses the Euclidean library by Shewchuck [24] 1. For this, we transform

the input viewpoints Wr into the spherical coordinate system centered at the subject

ihttp://www.cs.cmu.edu/ quake/triangle.htnil

23



Figure 5-3: Triangulation of the captured viewpoints before and after subdivision.

selected by the user during capture. We then compute a Delaunay triangulation over

the 0 and < dimensions of our projected points and apply the resulting graph to the

original WI. 2

In some light fields captured in environments with obstacles or captured by in-

experienced users we found that the distances between input views and the subject

could vary discontinuously. When rendering views very close to the input images this

may cause self occlusions in the projection of the viewpoint manifold, creating sharp

discontinuities in the blending field. In these cases it is useful to smooth the radial

coordinate of each viewpoint until the self occlusions are gone. We iteratively change

the distance of a vertex from the subject center to be 0.75 times its current distance

and 0.25 times the average subject distance of its neighbors. In practice most light

fields needed no smoothing at all, and even challenging light fields can be fixed with

minor smoothing ( 3-5 iterations). Note that this smoothing only affects the compu-

tation of the blending field and not the computation of texture coordinates, so that

perspective remains geometrically accurate.

2In cases with full 180 degrees of coverage around a subject this can create a seam in the viewpoint
manifold. This issue can be resolved by replacing Shewchuck's code with air implementation of
spherical Delaunay triangulation.
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5.3 Subdivision rendering

We can extend our piecewise-linear reconstruction and use subdivision over the tri-

angulation of viewpoints to achieve a smooth reconstruction of the camera blending

field that is piecewise-bicubic at the limit. For this, we extend the influence region

of a given stored view W to the projection of its 2-ring. To compute the weights of

W across this influence region we first assign the vertex corresponding to W with a

weight of 1 and the other vertices with 0. We then apply the Loop subdivision rules

[18] as modified by Warren [31] to the topology of the 2-ring and these weight values.

Note that, unlike traditional subdivision surfaces, we do not modify the geometry of

the subdivided mesh. We instead use the subdivision rules on the vertex weights to

compute a smooth blending field that converges to a bicubic function if iterated until

convergence [27].

We perform this process independently for the 2-ring of each image. We then

render all the subdivided triangles with their weights as alpha values. This means

that a given triangle is rendered multiple times, but this does not noticeably affect

performance. In practice our implementation applies only one subdivision step, but

more could be performed, or, better, closed-form formulas could be used within each

triangle after one step [27]

5.3.1 Rendering with geometry

Our algorithm separates the computation of a camera blending field from the choice

of a geometric proxy. This is done by rendering two passes. The first pass renders a

depth map corresponding to a geometric proxy to determine which pixels to sample

from each input image. The second pass computes the blending field as described

above and renders the final image. This separation makes it easy to use different

kinds of geometric proxies.

We tested three types of proxies. The first is a simple plane of focus as used in

[16]. While this choice of proxy tends to exhibit ghosting and blurring away from the

depth of focus, this blurring appears relatively natural compared to other types of
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artifacts as it resembles a shallow depth of field.

The second type of proxy consists of a screenspace triangulation of the SLAM

feature points. This is a view dependent proxy similar to the one used in [4]. When

this proxy works well it produces much better results than a plane of focus. How-

ever, such proxies sometimes produce temporal artifacts when the topology of the

screenspace triangulation changes, and since there is no notion of occluding surfaces

in the triangulated point cloud there are often highly objectionable artifacts in scenes

with large occlusions.

The third type of proxy is a world space triangle mesh. We compute this using

multiview stereo ([6]) paired with Poisson surface reconstruction as in [7]. This is

probably the most popular type of proxy in related work. When it fails it sometimes

produces artifacts similar to a screenspace triangulation, but when it works well it

often produces the best looking results.

In general, geometry produces better results than a simple plane of focus only if

the geometry is very accurate. Even if such accurate geometry is not available a plane

of focus provides a basic standard of quality for all light fields.

5.4 Discussion and comparison to the unstructured

lumigraph

The algorithm described above focuses on smooth and scalable reconstruction, while

unstructured lumigraph rendering [4] deals better with low viewpoint density and, in

particular, ID datasets. We require a triangulation of the set of input viewpoints,

which implies dense coverage. In contrast, unstructured lumigraph rendering makes

no such assumption and relies on k-nearest-neighbor reconstruction. Unstructured lu-

migraph degrades gracefully when reconstructing outside the convex hull of the input

viewpoints, while our method may have poor-aspect-ratio triangles at the boundary

of the set of views. As future work, we consider the insertion of virtual points outside

the convex hull of our triangulation to better leverage the information around the
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Y
Unstructured

Lumigraph
Rendering

Time (camera moving up and down)

Figure 5-4: A comparison of our rendering method (top) to the unstructured lumi-
graph (bottom) over time. Each column of the images on the left is taken from a
different frame of the cue example in our video. Since the camera motion is up and
down, we expect the images on the left to look like sine waves. The stair-stepping
artifacts on the left correspond to temporal artifacts in the video. We can see that
these artifacts are more pronounced in the unstructured lumigraph.

boundary.

Unstructured lunigraph rendering has problems when the set of viewpoints is

large. First, the computation of k nearest neighbors may become prohibitive. For

example, we found that our implementation of unstructured lumigraph rendering is

50 times slower (8.4Hz vs. 430Hz) than our subdivision technique for a medium-

density light field of 183 viewpoints and using 2,000 triangles for the acceleration

of the blending weights for the unstructured lumigraph. For the same scene, our

piecewise-linear rendering is 20% faster than the subdivision method.

Second, k-nearest-neighbor reconstruction results in more discontinuities than our

piecewise-bicubic approach. In particular, consider a set of viewpoints such as those

shown in Fig. 5-1(a). The density of samples in the horizontal dimension is higher
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than in the vertical dimension. This is common in light fields captured by hand be-

cause it is easier for a user to cover a dense set of views along the path of a camera

than it is to connect paths for coverage in a second dimension. Unstructured lumi-

graph rendering computes the blending field at point V as a weighted average of the

k-nearest neighbors at V. Since sampling in the horizontal direction is denser, there

will be more nearest neighbors in this direction. As a result, a point in the blending

field uses a wide footprint in the direction of dense sampling and a narrow one in the

direction of sparse sampling. This leads to excessive blur in the direction of dense

sampling and discontinuities in the direction of sparse sampling (see Fig. 5-1(a)). The

blurring is not as noticeable because it happens where sampling is already dense. The

discontinuities, however, lead to serious temporal artifacts (Fig. 5-4). In contrast,

our reconstruction leverages the topology of the input samples via the triangulation

and can smoothly interpolate in both the vertical and horizontal direction. The re-

sulting blending field (Fig. 5-1(c)) is smoother than that of unstructured lumigraph

rendering (Fig. 5-1(b)). The improvement is best seen under camera motion, as

demonstrated by our video.

While unstructured lumigraph rendering also relies on a triangulation, it is used

only as a way to reduce the cost of k-nearest-neighbor computation and not to exploit

the topology of the set of viewpoints for smoother interpolation.

In a nutshell, the limitations of our method are due to the need for a trian-

gulation, but its strength comes from the triangulation, which allows us to use a

spatially-smoother reconstruction. We use unstructured lumigraph rendering for

sparse datasets, in particular ID sets of views, and our viewpoint-subdivision ren-

dering for denser datasets such as those produced by our capture approach.

5.5 Wide-aperture rendering

Our piecewise-linear and subdivision rendering methods seek to achieve the sharpest

possible reconstruction. We can, however, extend them to perform wide aperture

rendering and create depth of field effects, which is well know to address aliasing in
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the background of light fields [16, 5, 12]. (Fig. 5-2(d)) shows the geometry of wide

aperture rendering. A given input image contributes all the rays that originate from it

and go through the aperture. This corresponds to projecting the image from a stored

viewpoint W onto the new focal plane from W and through the aperture. Note that

the projection is now with respect to each captured viewpoint, and that the location

of the focal plane determines the part of the scene in focus.

We observe that when this projection is smaller than the 1-ring of W, the requested

aperture is too small for the viewpoint sampling rate. In a sense, our triangulation-

based rendering uses, for each stored image, the smallest possible aperture given the

viewpoints samples. On the other hand, when the aperture is larger, we need to

increase the region of influence of W in the image to cover the full projection of

the aperture. Our method simply warps the 2-ring radially in a vertex shader so

that the boundary vertices are warped to the projection of the outer circle of the

aperture (Fig. 5-2(d)). An advantage of this method is that vertices are warped

individually, handling even the case where some vertices are inside the projection of

the aperture while others are outside. Inner vertices are warped according to their

relative topological distance to W.

In the case of wide-aperture rendering, the weights at a pixel are no longer nor-

malized, so we perform an additional rendering pass for normalization.
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Chapter 6

Results

We have used our system to capture light fields with a webcam and with a DSLR.

The number of views varies from tens to about a thousand, which compares favorably

to a camera array (e.g. 100 cameras for the Stanford array [32]), and typical capture

time varies from under a minute to 11 minutes (Table 6.1 and Fig. 6-1). To assess

the range of available camera motions, we compute the angular range as the maxi-

mum horizontal and vertical angle between the center of the subject and the camera

locations used for capture. We also compute the average length of the edges in our

viewpoint triangulation, expressed in degrees from the object center, as an indication

of viewpoint density.

Pose estimation initialization takes between a few seconds to about a third of the

capture time for difficult scenes. Most of the time, we use the augmented aperture

visualization when specifying the distance to the subject because it is more precise

and does not require the user to move as much. We typically review the light field

once or twice per capture to assess the range of motion available. The light fields

that were captured in under 2 minutes came from users who were asked to capture

their scene in that amount of time. All other light fields were captured at the user's

leisure under no instruction concerning speed.

We use 7 pixels as the coverage reprojection threshold for high-resolution capture

such as Keyboard, Face, Couch, Armchair and 12 pixels for faster capture. For a

scene like the Keyboard, we place the sphere to bound the torso of the musician, and
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Kitchen Babrook Face Armchair

Snowman Cue Girl Face Sentokun

Break

Figure 6-1: Images from the light fields described in table 6.1.

the depth range of the character is conservatively over-estimated, which means that

reprojection error is usually less than the bound.

Most light fields were captured by the authors. However, novices have also found

the system easy to use. The Couch scene was acquired by a novice user who had no

problem achieving a large angular range (95x60 degrees) with good coverage. Moving
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Table 6.1: Statistics for a small subset of light fields captured with our system.

the camera while looking at our visualization is easy because our visual feedback is

overlaid on the live view and the user does not need to look at the scene directly.

The view-dependent effects afforded by light fields can be best assessed in video

and so we refer the reader to our supplementary material. We demonstrate the range

of viewpoint motion enabled by our captured data, including rotations around the

center of the object and forward translation. We also implemented a "Vertigo" effect

where the camera moves forward as it zooms out. We demonstrate translations that

reduce the distance to the center of the object by a factor of 2 to 2.5, for e.g. the girl

face, Babrook, and bush scenes.

Limitations and discussion Pose estimation needs distinct image features that

are stable across a range of viewpoints. This sometimes requires the capture of a wider

field of view than desired to include enough such features. In fact, stable features

often come from the background rather than the object itself - especially in light fields

with human subjects, transparent subjects, or highly specular subjects.

Errors in pose estimation can result in popping artifacts during rendering. A
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Scene name # views Capture angular average

time range angle

(min) (degrees)
Keyboard 800 8 77x31 2.02
Couch 842 10 95x60 2.19
Roboto 549 4 77x45 2.51
Building 48 3 50x2 3.23
Kitchen 240 6 90x47 4.67
Babrook 166 2 64x36 4.21
Face 691 5 80x53 2.67
Armchair 573 11 127x 77 3.39
Snowman 423 9 82x31 2.67
Cue 183 <1 64x46 4.5
Girl Face 261 2 123x65 6.10
Sentokun 133 <1 95x48 6.73
Break 190 <1 61x31 3.64



final global bundle adjustment might help fix this, but would be expensive given the

number of images in larger light fields.

Our sampling criterion relies on a Lambertian assumption and specular objects

might be undersampled. We have nonetheless captured highly specular objects such

as the refractive glass sphere example in our video, but the highlights do not move

smoothly, as their apparent depth is outside of the bounding sphere. Nevertheless,

our light fields give a strong impression of high-frequency view-dependent effects such

as reflections and refraction.

The mobile phone prototype is limited in scale by the need for a fiducial in the

scene similar to the original lumigraph. Larger scenes would require fiducials of a size

that is not compatible with a lightweight approach. Furthermore, because the fiducial

is flat, it limits the precision and range of pose estimation. The limited memory and

bandwidth of the device also reduce the amount of data that can be recorded.

User mobility can limit the range of captured viewpoints. This can be due to the

large scale of a scene, which might limit relative vertical mobility. This can also be

due to clutter in the scene and occlusion and is inherent to hand-held capture.

Many of the current problems with our system have more to do with the challenges

associated with visual SLAM than with our system's design. Improvements in real

time pose estimation over time will make our system even more robust.

We have focused on the capture of dense light fields of static scenes and our sub-

ject needs to remain sill during capture. We have nevertheless captured light fields of

humans (in comfortable poses). A camera array solution [32] has the advantage that

all views can be taken at the same time, a critical aspect when capturing dynamic

scene. In comparison, our approach is lightweight and can be run on portable com-

modity hardware. Furthermore, the range of viewpoints enabled by a camera array is

often limited, even with reconfigurable solutions. Our range of viewpoints is limited

only by the user.
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Chapter 7

Conclusions

Our system allows a user to capture and render light fields with a commodity hand-

held camera and a laptop. We address the key challenge of achieving dense coverage

over two dimensions of parallax. For this, we derive a geometric error criterion that

accounts for all four dimensions of the light field in terms of reprojection error. We

use this criterion to decide which viewpoints are well covered and visualize, in real-

time, a coverage map that helps the user assess where they need to move the camera.

Real-time feedback is critical to enabling hand-held capture of a complex function

such as a light field. We introduce a new rendering algorithm that is scalable and

leverages the dense yet unstructured datasets generated by our capture process. Using

a triangulation of the set of captured viewpoints, we show how subdivision rules can

be applied to achieve smooth reconstruction. Our system is portable and can be used

to capture light fields of real scenes that range from miniature size to buildings. We

hope that this approach will make it easy for a wide audience to capture light fields.
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