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Figure 1: Our tri-lens implementation of a depth-encoding mask whose structural component consists of three Dirac deltas. (a)
A tri-lens mask inside a Pentax 50 mm objective lens. (b) A structurally-deconvolved photograph of a scene captured through
the lens shown in (a). (c) Distance map computed automatically from the captured image. The scale is in mm and illustrates
the achieved accuracy and depth range. (d) Comparison between a portion of a captured image (top) and the corresponding
structurally-deconvolved result (bottom).

Abstract

We present a coded-aperture method based on a family of masks obtained as the convolution of one "hole" with
a structural component consisting of an arrangement of Dirac delta functions. We call the arrangement of delta
functions the structural component of the mask, and use it to efficiently encode scene distance information. We
illustrate the potential of our approach by analyzing a family of masks defined by a circular hole component
and a structural component consisting of a linear combination of three Dirac deltas. We show that the struc-
tural component transitions from well conditioned to ill conditioned as the relative weight of the central peak
varies with respect to the lateral ones. For the well-conditioned structural components, deconvolution is efficiently
performed by inverse filtering, allowing for fast estimation of scene depth. We demonstrate the effectiveness of
our approach by constructing a mask for distance coding and using it to recover pairs of distance maps and
structurally-deconvolved images from single photographs. For this application, we obtain significant speedup,
and extended range and depth resolution compared to previous techniques.

Categories and Subject Descriptors (according to ACM CCS): I.4.1 [Computing Methodologies]: Digitization and
Image Capture—Computational Photography.

1. Introduction

The use of optical masks to extend the limits of conventional
photography has long been an active area of research. Intro-
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duced by Dicke [Dic68] and Ables [Abl68] in the context
of X and Gamma-ray astronomy, the use of masks has be-
come extremely popular in computational photography as a
way to encode additional scene information. For instance,
coded apertures have been used with single-lens systems to
estimate scene depth [DC94, ZLN09], perform image de-
blurring [ZN09], motion deblurring [RAT06], and for per-
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forming deconvolution and estimating a coarse distance map
from a single image [LFDF07].

The intuition behind the use of coded-apertures to encode
depth is straightforward: an out-of-focus scene point p ap-
pears blurred on the camera’s sensor; the blurring has the
same shape as the camera’s aperture, and its size is propor-
tional to the distance from p to the camera’s focal plane.
Unfortunately, large amounts of blurring cause strong atten-
uations on high frequencies, which become difficult, if not
impossible, to undo.

We present an efficient approach for recovering scene-
depth information from single images based on a family
of coded-aperture masks that can be modeled as the con-
volution of a set of delta functions and a single-hole mask
(Figure 3). The arrangement of deltas functions, called the
structural component of the mask, is used to encode dis-
tance information, allowing for the recovery of extended
and more detailed distance maps when compared to tra-
ditional techniques. The hole component, used to improve
the mask’s light efficiency, is responsible for the blurring
that arises from the finite size of the hole itself. Factoring
the mask in these two components has several advantages,
as it greatly simplifies mask analysis, design, implemen-
tation, and deconvolution. For instance, deconvolution can
then be performed in two steps. First, the structural com-
ponent is deconvolved producing a structurally-deconvolved
image and a distance map. By properly designing the struc-
tural component (Section 4.2), such deconvolution can be ef-
ficiently performed using inverse filtering. This is much sim-
pler than performing deconvolution with the original mask.
The structurally-deconvolved image has the appearance of a
regular photograph with a depth of field related to the size of
the mask’s hole component. A second (optional) step may
be used to deconvolve the hole part, taking advantage of the
distance map created in the first step.

We illustrate the potential of our approach by analyzing
a family of masks whose structural components consist of a
linear combination of three Dirac deltas disposed symmetri-
cally around the origin. For such masks, we derive expres-
sions for their structural-part inverses both in frequency and
spatial domain. We show how such structural parts transi-
tion from well to ill conditioned as a result of varying a
single parameter. We also discuss different ways of con-
structing actual masks with a given structural component.
This contrasts with previous techniques where the masks
are obtained performing an optimization on some searching
space [RAT06,LFDF07,ZN09] and often require regulariza-
tion even to recover the distance map.

We demonstrate the effectiveness of our approach by de-
signing and physically constructing a mask for distance
coding and using it to recover pairs of distance maps and
structurally-deconvolved images from single photographs.
Figure 1 (a) shows our mask prototype inserted in a Pentax
50 mm objective lens. Figures 1 (b) shows a structurally-

deconvolved photograph from a scene captured using the
modified lens in (a). The reconstructed distance map is
shown in (c) with a scale in mm, illustrating a smoother
and extended depth range compared to previous tech-
niques [LFDF07]. Figure 1 (d) compares a portion of a cap-
tured image and the corresponding structurally-deconvolved
result. Since our approach uses inverse filtering, constructing
the depth map of a 10 Megapixel image takes 347 seconds
using an unoptimized MATLAB script on a 3.0 GHz CPU.

The contributions of this paper include:

• An efficient approach for recovering scene-depth infor-
mation from single images (Section 4). Compared to
previous approaches, ours is significantly simpler, faster,
and produces smoother and extended depth ranges;
• A family of ideal structural components consisting of

a linear combination of three Dirac deltas disposed
symmetrically around the origin. For these masks,
we present formal derivations for their frequency and
spatial-domain inverses, and an analysis of their noise
amplification properties (Section 4.2);
• A demonstration of how to implement physical masks

with a given structural-mask component (Section 5);
• A method for constructing masks using small lenses that

decouples structural and hole components (Section 5.1).
• An algorithm for computing distance maps based on

the analysis of the gradient magnitudes of structurally-
deconvolved images (Section 5.1).

2. Related Work

Coded apertures were introduced by Dicke [Dic68] and
Ables [Abl68] for imaging high-energy sources in astron-
omy. For this area, several mask patterns have been devel-
oped [Bro74,FC78,Fen78,Gol71,GF89], and a good survey
can be found in [CSC∗87].

Deblurring and Depth Coding: Coded apertures have
recently received considerable attention in computational
photography, where they have been used to improve im-
age deblurring [RAT06, VRA∗07, LFDF07, ZN09] and for
coding scene-depth information [DC94, LFDF07]. Such
techniques explore certain masks properties, such as their
high-frequency attenuation pattern and the presence of ze-
ros in their Fourier transforms. For instance, for image
deblurring, Raskar et al. [RAT06] and Veeraraghavan et
al. [VRA∗07] search specifically for broadband masks, as
these may simplify the deconvolution process; Dowski and
Cathey [DC94], on the other hand, used coded aperture to
obtain a distance map from a single image. Recently, Levin
et al. [LFDF07] presented a technique that recovers a de-
blurred image and a distance map, also from a single image.
Both approaches benefit from the use of masks with zeros
in the frequency domain to improve distance discrimination.
Bando et al. [BCN08] use color-filtered aperture to extract
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depth and alpha matte, encoding depth as parallax differ-
ences among the color channels.

Most of these approaches use masks obtained through
some optimization procedure over a regular grid of square
holes with binary or varying transparency. Our approach, on
the other hand, encodes depth using only the structural com-
ponent of the mask. This leads to extended depth ranges, and
allows for efficient structural deconvolution and depth recov-
ery using inverse filtering. A second convolution step may be
performed with the shape of the hole to improve deblurring.

Depth from Focus and from Defocus: These techniques ex-
tract depth from multiple images, and some variations use
coded apertures to improve distance discrimination. Hiura
and Matsuyama [HM98] present a multi-exposure camera
and use simple pinhole delta patterns as coded masks. Zhou
et al. [ZLN09] search for optimal coded-aperture pairs for
depth from defocus. Levin [Lev10] analyses the problem
of depth discrimination from a set of images captured with
different coded apertures. The problem of finding optimal
coded apertures for defocus deblurring is treated in [ZN09].
Contrary to these techniques, our approach extracts depth
from a single image.

Light-field Capture: Several works explore light-field cap-
ture using arrays of micro lenses [Ng05, NLB∗05, GZC∗06,
GI08], or a single multiplexed lens [LLW∗08, NKZN08,
NZW∗10, GSMD07]. Ihrke et al. [IWH10] present a the-
ory of plenoptic multiplexing. Several works [BEMKZ05,
ERDC95, LHG∗09] present techniques to extend the cam-
era depth of field. We use small lenses to create physical
masks with a given structural component. The images ac-
quired with such masks, once structurally deconvolved have
a depth of field given by the aperture of the small lenses.

3. Depth from a Single Image

The image of a scene point p located at a distance x in front
of a thin lens is formed at a distance x′ behind the lens (Fig-
ure 2). The relation between x and x′ is given by Gaussian
lens formula: 1/ f = 1/x+ 1/x′, where f is the lens’ focal
length. If p is outside the camera’s focal plane, its image
appears blurred on the camera’s sensor. The shape of the
blurred image mimics the aperture mask, and its size de-
pends on the point distance x. The diameters of the resulting
circles of confusion on the sensor can be computed as:

d = L
∣∣∣∣s ( 1

f
− 1

x

)
−1
∣∣∣∣ , (1)

where L is the diameter of the lens aperture, |.| is the
absolute-value operator, and s is the distance from the lens
to the sensor (Figure 2). Equation (1) allows one to estimate
the distance x from p’s blurring size d. The process of image
formation can then be modeled as

g = f ⊗mx +η, (2)

Figure 2: The image of a point p at distance x in front of a
lens is formed at a distance x′ behind it. Points out of the fo-
cal plane appear blurred on the sensor. The size of the circle
of confusion encodes the distance from p to the focal plane.

Figure 3: Mask factorization: a multi-hole mask (left) ex-
pressed as the convolution of a structural component sx (cen-
ter) and a hole component hx (right). sx provides information
about the holes’ locations and transparency levels.

where g is the captured image, and f is an ideal "all in focus"
image. mx is a mask that models the blurring of a scene point
as a function of its distance x from the lens, and η models
additive noise. Recovering scene depth from a single im-
age can be achieved by selecting, for each image region, the
mask scale that produces least artifacts in the deconvolved
image [LFDF07, VRA∗07].

4. Coding Depth through Mask Structure

Even though the whole mask may be used to code depth,
we work with a family of masks that can be factorized into
a structural component and a hole component, and show
how to code distances using only the structural compo-
nent. Masks factorable in this way are composed of several
equally-shaped holes, with possibly different transparency
levels. They can be expressed as the convolution of the struc-
tural component sx and the hole component hx (Figure 3):

mx = sx⊗hx.

The structural component specifies the locations and trans-
parency levels of the holes. Thus, to identify the appropriate
kernel size, only the structural component needs to be decon-
volved. This has several advantages as sx is easier to model
and analyze than the whole mask mx, and it can be designed
for fast deconvolution. The hole component improves the
mask’s light efficiency. The structural component must not
be confused with a physical pinhole mask. In our approach,
sx is always associated with a hole hx.

c© 2012 The Author(s)
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Figure 4: Thin lens with a multi-hole (left) and a multi-lens
mask (right). Structural component analysis (both designs):
chief rays (solid red) from a scene point p at distance x from
the thin lens converge on a plane at distance x′ behind it. H
(middle row) is the distance between the centers of two mask
holes. h is the distance between the corresponding chief rays
over the sensor. One can infer x from h using structural in-
formation only. Hole component analysis: D (top row) is the
size of the mask holes. d is the size of the circle of confu-
sion associated with a point p at distance x. Rays passing
through the small lenses (right column) converge a little be-
fore than in the case of the multi-hole mask. The multi-lens
design leads to smaller circles of confusion, which translates
into extended depth range discrimination. It allows for the
determination of the distances of scene points located be-
hind, on, or in front of the camera’s focal plane Pml .

4.1. Masks with a Given Structural Component

There are several ways of constructing real masks with a
given structural component. Essentially, one can use any
method that superposes images captured with the same hole-
component mask slightly displaced and with controllable
relative intensity. For instance, they can be implemented us-
ing a mask with several holes of the same shape and size,
pinholes, small lenses, prisms, tilted parallel-sided glasses,
combinations of multiple exposures, etc. This section de-
scribes two realizations: a multi-hole and a multi-lens mask.

A multi-hole mask consists of several equal holes cut out
from a support. Figure 4 (left column) illustrates such a
mask attached to a thin lens with focal distance f . The image
of a point located at a distance x in front of the lens will be
sharply formed at a distance x′ behind the lens. If the camera
sensor is at distance s 6= x′ behind the lens, multiple blurred
images of the point will appear on the sensor. The relation-
ship between x and the distance h between the centers of the

Figure 5: The trident structural component. The central
delta is β times bigger than the laterals ones. 1/(2+ β) is
a normalization factor. q is the distance between the lateral
deltas and the central one.

projected circles of confusion is given by

h = H
∣∣∣∣ s
(

1
f
− 1

x

)
−1
∣∣∣∣ . (3)

Here, H is the distance between the centers of two holes in
the mask (Figure 4, second row, left). The centers of all holes
define the structural component of the mask. A similar rela-
tion can be derived for the sizes d of the circles of confusion:

d = D
∣∣∣∣ s
(

1
f
− 1

x

)
−1
∣∣∣∣ . (4)

The multi-lens mask is shown in Figure 4 (right column).
It has small convergent lenses on top of the mask holes. The
focal length of the small lenses is much larger than the cam-
era’s main lens focal length. The small lenses do not deviate
rays passing through their centers (chief rays), and Equa-
tion (3) for the structural component still holds (Figure 4,
middle row). Due to the extra power of the small lenses, rays
coming through an individual hole now converge a little be-
fore than in the case of the multi-hole mask. The diameters
of the resulting circles of confusion on the sensor can be
computed as:

d = D
∣∣∣∣ s
((

1
f
+

1
fsmall

)
− 1

x

)
−1
∣∣∣∣ , (5)

where fsmall is the focal length of the small lenses.

In both designs, the distance x of a scene point p can be es-
timated from the dimension h of the projection of the struc-
tural component of the mask on the sensor (Figure 4).

4.2. The Trident: a Simple Structural Component

To make the discussion more concrete, we introduce a fam-
ily of structural components consisting of three Dirac deltas
disposed symmetrically around the origin. The weight of the
central peak can be different from the laterals ones. It means
that, when convolved with a hole, the "transparency level"
of the central hole of the resulting mask will be different
from that of the lateral holes. We call these structural com-
ponents tridents. They are characterized by two parameters:
the distance q from one lateral delta to the central one, and
the relative magnitude β of the central delta with respect to
the two lateral ones (Figure 5). β plays an important role in
determining the invertibility of the resulting kernel.

c© 2012 The Author(s)
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Figure 6: Comparison of trident properties for various val-
ues of β (from left to right, β = 0, 1, 4, and∞). For β > 2,
the tridents have no zeros in the frequency domain. From
top to bottom: spatial domain, frequency domain, inverses
in frequency domain, and inverses in spatial domain.

Figure 7: Trident’s inverse noise amplification
(10 log(σ2

restored/σ
2
blurred)) as a function of β for a

500-column mask with q = 1. Our tri-lens mask (Section 7)
uses β = 4.

In spatial domain, a trident is represented by a matrix with
only three non-null elements on the first row:

t(β,q)0,0 =
β

(2+β)
, t(β,q)0,q = t(β,q)0,C−q =

1
(2+β)

, (6)

where t(β,q)r,c is the matrix element at row r and column c. C is
the number of columns of the matrix. The Fourier transform
of a trident is

T (β,q)
u,v =

β+2cos(2π( v q
C ))

(2+β)
. (7)

Appendix A presents derivations for this expression, for the
trident inverse in frequency and spatial domains, and for
the trident inverse noise amplification. According to Equa-
tion (7), for β> 2 the resulting trident has no zeros in the fre-
quency domain. For such well-conditioned structural com-

(a) (b) (c)

Figure 8: A tri-lens mask. (a) one prototype built with
5.5 mm diameter contact lenses. (b) Mask installed inside a
Pentax 50 mm objective lens. (c) View from behind the lens.

ponents, deconvolution can be performed using inverse fil-
tering, which is simple and fast. The value β = 2 defines a
transition from an ill-conditioned to a well-conditioned ker-
nel (Figure 7). If β= 0, it reduces to a two-delta kernel. Like-
wise, as β approaches infinity, it converges to a single delta
at the origin, which is the identity operator. Figure 6 shows
a comparison of tridents for various values of β. Tridents
with β > 2 have no zeros in the frequency domain. The tran-
sition between well-conditioned to ill-conditioned is clearly
visible in Figure 7, which shows the trident’s inverse noise
amplification as a function of β for a 500-column mask and
q = 1. A detailed explanation of noise amplification and the
derivation of the plotted data is presented in Appendix A.

5. Practical Implementation: The Tri-lens Mask

We constructed a multi-lens mask (Figure 4, right column)
that has a trident structural component. We call this mask a
tri-lens mask (Figure 8, (a)). We built it using three fluoro-
carbon custom-made contact lenses with focal distance of 4
meters (i.e., +0.25 diopters) and 5.5 mm of diameter. They
were mounted on a plastic support, with their optical axes
parallel to one another and 6 mm apart. Behind the lenses,
we added a black paper mask with three square holes aligned
with the holes of the support. The central hole has 4x4 mm2,
while the two lateral holes have 2x2 mm2, making β = 4.
The use of a central hole larger than the lateral ones sim-
plifies construction by reducing the number of components.
The limitations of this implementation choice are discussed
in subsection 7.4.

The choice of β = 4 guarantees low noise amplification
(Figure 7), allowing deconvolution of the structural compo-
nent to be performed using inverse filtering. There is a com-
promise between noise amplification (ease of inversion) and
depth discrimination: larger β values reduce noise amplifi-
cation, but attenuate the relative contribution of the lateral
lenses, which reduces depth discrimination. For the experi-
ments reported in this paper, we inserted the tri-lens mask
on a 50 mm f:1.7 lens (model smc PENTAX-M 1:1.7), as
shown in Figures 8 (b) and (c), which was attached to a
10 Megapixel PENTAX K10 DSLR camera. The mask was
mounted inside the lens close to the diaphragm, which con-
tinues to operate freely.

c© 2012 The Author(s)
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5.1. Depth Estimation with a Tri-lens Mask

An image captured through a tri-lens mask consists of three
slightly displaced copies of the scene. This is illustrated in
the zoomed-in portion of the calibration panel shown in Fig-
ure 10 (bottom left). The displacement between the leftmost
and the rightmost copies varies with the distance from the
scene object to the camera and, within the thin lens approx-
imation, is given by Equation (3). An image deconvolved
with the wrong trident scale has artifacts not present in the
image deconvolved with the correct trident scale (Figure 9).
The sum of the magnitudes of the first derivatives computed
at a neighborhood Ni around a pixel pi in the deconvolved
image has a local minimum at the correct trident scale. To
associate a depth with a pixel pi, we find the trident size that
minimizes this sum at a neighborhood Ni around pi, and use
the calibration data of Figure 10 to obtain the corresponding
depth. This corresponds to searching for the solution that
minimizes an L1 norm on the gradients in the reconstruc-
tion. It can be interpreted as a sparse gradient image-prior
assumption, similar to the one used in [WF07, LFDF07].

6. Extended Depth Range and Resolution

Depth estimation is based on blur-kernel size estimation.
Thus, depth discrimination range and resolution are limited
by the range of kernel sizes, measured in pixels over the sen-
sor, that can be distinguished. Levin et.al. [LFDF07] report a
range of discriminable kernel sizes from 4 up to≈ 14 pixels.
When the blur size is smaller than 4 pixels, depth discrimi-
nation becomes impossible due to the lack of structure; for
blur sizes larger than 14 pixels, the blur cannot be robustly
inverted. Veeraraghavan et.al. [VRA∗07] report good deblur-
ring results up to a blur size of ≈ 20 pixels. In contrast, our
method handles much larger kernel sizes, which can vary
from 25 to 75 pixels (Figure 10).

The reason for our extended depth-discrimination capa-
bility is twofold: first, the well-conditioned structural com-
ponent is invertible for almost all scales (i.e., the frequency
attenuation properties of its Fourier transform only depend
on the parameter β, not on the parameter q that defines the
scale). The limit on the resolution range is imposed by the
size of the hole component, which attenuates high frequen-
cies, destroying information about image features. Second,
our tri-lens design minimizes the size of the projection of
the hole component in the central part of the depth discrim-
ination range, where it vanishes. Besides generating smaller
circles of confusion, it discriminates scene points that are in
front, on, or behind of the camera’s focal plane. There is no
ambiguity about equidistant points at different sides of the
focal plane.

7. Results

Figures 1, 11 and 12 show images processed using our ap-
proach. The images were captured using raw DNG (Digi-

(a) (b) (c) (d)

Figure 9: Image deconvolved: (a) with wrong trident scale,
and (c) with correct trident scale. (b) and (d) are the respec-
tive horizontal derivative magnitudes (contrast enhanced).

tal Negative) format, which were then converted to ppm and
processed using MATLAB scripts. The camera was mounted
on a tripod and delayed shooting was used to minimize cam-
era shake during capture. The scenes were indirectly illumi-
nated with two 500 watt halogen light reflectors. The cam-
era sensitivity was set to ISO 100, and shutter speed to 0.4
secs to compensate for the low intensity provided by indi-
rect illumination. The camera aperture was fixed at f/1.7 to
maintain the diaphragm completely opened and to not inter-
fere with the tri-lens mask. We set the focal distance at 2.4
meters according to the graduated scale of the camera lens.
The presence of the tri-lens mask changes the resulting fo-
cal distance. This setup corresponds to the upper curve in
Figure 10, which gives a discernible range of distances from
1,400 to 2,600 mm.

7.1. System Calibration

The effective size of the tri-lens kernel on the sensor varies
with object distance. However, discrepancies between the
thin lens model and the real optical system also cause the
kernel to vary its form across the image. Thus, we model
the trident kernel using three parameters recovered through
a calibration process:

• β: the relative intensity of the central delta with respect to
the laterals ones;

• ql and qr: the distances from the left and right deltas, re-
spectively, to the central one.

We use a semi-automatic calibration procedure based on
the minimization of the sum of the magnitudes of the first
derivatives (Section 5.1) of a deconvolved calibration pattern
placed at known distances. The calibration pattern consists
of a 1,000×1,600 mm2 black panel covered with randomly
distributed white rectangles and circles (Figure 10 left). We
then took pictures of the panel from distances varying from
830 mm to 3,000 mm at increments of 70 mm. The images
were divided in 35 blocks (5 by 7), as shown in the bottom-
left portion of Figure 10 (right). Each block was processed
independently to obtain the optimal β, ql and qr parameters
for the deconvolution kernel. The parameter values obtained
for each image block and distance to the calibration pattern
were linearly interpolated to provide a complete set of tri-
dent mask parameters for every pixel of an image at a given

c© 2012 The Author(s)
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Figure 10: (right) Trident size versus objects distances. Cal-
ibration curves for the green channel in the central region of
the image for three focal distances. A calibration panel (left-
top) and a zoomed-in portion of it as imaged through a tri-
lens mask (left-bottom). This image consists of three slightly
displaced copies of the pattern.

distance in the calibration range. Since each color channel
presents slightly different calibration results, they were cal-
ibrated independently. Thus, deblurring an RGB image re-
quires three passes, one for each color channel.

Figure 10 (right) shows calibration curves obtained for
three different focal distances according to the marks of the
Pentax lens. It plots the distances between the lateral peaks
(i.e., ql + qr) for the green channel, inside the calibration
range. The plotted data correspond to distances computed
for the central block of the images. The solid lines repre-
sent fittings to the experimental data using an h = a+ b/x
approximation, as suggested by Equation (3). Here, x is the
distance from the calibration panel to the camera.

7.2. Distance Map Computation

Given an image I captured using a tri-lens mask, the process
of recovering a distance map can be divided in four steps:
(i) perform deconvolution of I with kernels of various scales
si, producing a sequence of structurally-deconvolved images
Ii; (ii) for each deconvolved image Ii, compute the sum Di j
of the absolute values of the first derivatives of Ii at a neigh-
borhood N j around each pixel p j; (iii) identify the scale sk
that minimizes the Dk j for each pixel p j; and (iv) discard
unreliable distance values.

Deconvolution for depth map calculation is performed at
full resolution (10 Megapixels) for 160 depth layers (incre-
ments of 8.75 mm in a range from 1,275 to 2,675 mm). The
images are divided in blocks of 128 columns by 64 rows.
Each block is deconvolved using one-dimensional inverse
filtering in frequency domain. To avoid artifacts, deconvo-
lution is done on an window with 512 pixels, after which
only the central 128 columns are kept.

The second step consists of calculating Di j at a neighbor-
hood N j around each pixel p j. In practice, however, we only
calculate Di j at every 16 pixels both in the horizontal and

vertical directions, thus creating a distance map with a res-
olution of 1/256 of the resolution of the input image I. N j
consists of 80 rows by 144 columns of the deconvolved im-
ages Ii (at full resolution). For each pixel p′k in the distance
map, we assign the minimum Dik (i.e., the minimum D value
for that pixel across all scales). As mentioned in the previous
section, different color channels require independent calibra-
tions. To compute distances maps we only process the green
color channel, as that is the channel of best resolution.

As with any other passive depth-extraction technique, im-
age regions with uniform luminance levels (i.e., no texture)
do not provide enough information for distance recovery.
Thus, we discard distances corresponding to featureless re-
gions of the image. For this, we built a binary mask based
on the magnitude of the derivative at each pixel. To com-
pute these derivatives, we use a luminance version of the
captured image and a 1D horizontal (three-pixel-wide) high-
pass filter. We further remove noisy pixels using morpholog-
ical opening with a vertical-line structuring element consist-
ing of 4 pixels. Then, we fill small gaps using morphological
closing with a 20×20 pixels structuring element.

Processing time varies linearly with the number of dis-
tances (scales) processed. For example, for 160 depth layers,
the algorithm takes a total of 347 seconds for a 10 Megapixel
image using an unoptimized MATLAB script on a 3 GHz
Core 2 Extreme CPU. This is significantly faster than the
approach of Levin et al. [LFDF07], for which the authors re-
port one hour to process a 2 Megapixel image on a 2.4 GHz
CPU, for a only a few depth layers.

Figures 1, 11, and 12 show distances maps obtained for
three different scenarios designed to test the limits of our
system. Black marked regions correspond to unclassified
pixels, which result primarily from the lack of texture in
those regions. Figure 1 (b) shows an ordered array of cans
positioned against two calibration panels. The panels were
used to check the ability of our solution to produce smooth
distance maps. The range of recovered distances is shown in
Figure 1 (c) and smoothly varies from 1,200 mm to 2,600
mm, with the depth of the great majority of pixels correctly
classified. Such a range is about twice as large as the one
reported by Levin et al. [LFDF07] and much more detailed.

Figure 11 shows the same arrangement of cans placed
against two sheets of textureless clear paper. For this exam-
ple, our solution is capable of estimating depth values for the
cans and for a seam between the two paper sheets, as well as
for a visible edge on the right. As expected, most of the pix-
els were discarded due to the lack of texture information.

Figure 12 tests our solution with a natural scene with
several objects placed within the range of discriminable
distances. Our solution recovers proper distance values all
along its calibration range for regions containing discernible
features. Note its ability to exploit even subtle details, such
as in the case of the dark statues in the back of the scene.
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7.3. Structural Image Deconvolution

We use the distance map, as well as the calibration data to
select the appropriate kernel parameters for structural im-
age deblurring (deconvolution of the structural component).
Since each cell of the distance map corresponds to a block
of 16× 16 pixels in the captured image I, all pixels in a
block are deconvolved using the same kernel parameters.
Deconvolution is performed by 1D inverse filtering in the
frequency domain. To avoid artifacts, it is done on a 140-
pixel-wide window but only the central 16 columns are kept.
For featureless regions of the image, we simply copy the
pixel values from the input image. Because of the separate
calibration of the different color channels, they are processed
independently. As we only deconvolve the structural part of
the mask, deconvolution removes the three ghost-like effect
introduced by the tri-lens mask. With our current prototype,
structurally-deconvolved images look like conventional pho-
tographs taken with a small aperture (the size of the small
lens) of approximately f/8.

Figures 1 (d) and 13 compare portions of captured images
with the structurally-deconvolved results. Figure 13 shows
a zoomed-in version of the structurally-deconvolved result
obtained for a portion of the living-room scene shown in
Figure 12. All features of these objects have been sharply
reconstructed. For instance, compare the phone antenna and
the figurines in the captured and deconvolved images. High-
resolution versions of these images are provided in the sup-
plementary materials for close inspection.

7.4. Discussion and Limitations

Our tri-lens mask prototype is a good approximation to an
ideal mask that can be factorized into structural and hole
components. It provides important insights about the behav-
ior and potential of more complex masks. For instance, it
shows that it is possible to discriminate distances in front, on,
and behind the camera’s focal plane. By orienting the trident
so that it becomes horizontally (or vertically) aligned with
the camera sensor, one simplifies the implementation of the
algorithms required to process the captured data. Such algo-
rithms can then be implemented in 1D along rows (columns)
of the captured image. On the other hand, such a configura-
tion does not allow the exploration of image gradients per-
pendicular to the direction of the trident. To take advantage
of gradients along arbitrary directions, the mask can be mod-
ified so that its peaks form a triangle.

Creating a tri-lens mask requires aligning the small lenses
on its support, which is not required for other masks used
in computational photography [RAT06, VRA∗07, LFDF07,
ZLN09, ZN09]. The use of a central hole bigger than the
lateral ones (used to get β = 4) causes the prototype to not
exactly follow the image formation model, and may lead
to the occurrence of ghost artifacts. However, such artifacts
only appear for objects far from the focal plane of the op-
tical system comprised by the camera lens and the small

Figure 11: Coke cans against a textureless background.
(top) Structurally-deconvolved image. (bottom) Recovered
distance map.

lenses. This results from the superposition of "circles" of
confusion of different scales on the camera’s sensor, which
cannot be undone through deconvolution by the inverse of a
pure trident. For objects close to the focal plane, the differ-
ences in the scales of the circles of confusion can be disre-
garded, as demonstrated by the high-quality deconvolution
result shown in Figure 13. One way of avoiding the occur-
rence of such artifacts is to use holes of the same size under
the three small lenses, and enforce β = 4 using neutral den-
sity filters over the lateral holes. Artifacts may also result
from errors in the calibration process in areas of the image
away from its center. This is likely to be the main cause of
the errors in the depth estimation at bottom left portion (bot-
tle and chair) of Figure 12. Finally, modifying the camera
lens’ focal distance requires recalibrating the system for this
new configuration, which is also required for conventional
masks.

8. Conclusion and Future Work

We have presented an approach for the analysis and design
of a family of coded-aperture masks for computational pho-
tography. Such masks can be modeled as a convolution be-
tween a structural component and a hole component. Factor-
ing a mask into these elementary components greatly sim-
plifies both analysis, design, implementation, and deconvo-
lution. This results from the fact that some properties can be
identified with individual mask components, and their anal-
ysis carried out separately from other aspects of the mask.
We have analyzed a family of structural masks, for which
we presented a formal treatment for their frequency and spa-
tial domain inverses and corresponding noise amplification
properties. We also discussed different ways of constructing
physical masks with a given structural component. This con-
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Figure 12: Detail of a living room. (top) Structurally-
deconvolved image. (bottom) Recovered distance map.

Figure 13: Portion of the living room scene from Fig-
ure 12. (left) Image captured with our tri-lens mask. (right)
Structurally-deconvolved image. Note the properly recon-
structed details on the antenna, phone base, and figurines.

trasts with previous approaches, which are based on the use
of optimization procedures [RAT06, LFDF07, ZN09].

We demonstrated the effectiveness of our approach by
designing and physically constructing a mask for distance
coding and using it to recover pairs of depth maps and
structurally-deconvolved images from single photographs.
Since our approach uses inverse filtering, it is significantly
faster than previous techniques. Our structural-mask-based
solution also allows for the recovery of smooth distance
maps with extended range in comparison with previous ap-
proaches. For this, we use an algorithm based on the analysis
of the gradient of the deconvolved images.

We have demonstrated how structural components can
be used for encoding depth. There should be other prob-
lems that can be efficiently solved with the use of structural
mask components. We hope that our approach will inspire

researchers to design masks with optimal structural and hole
components for solving other problems, as well as to analyze
the properties of existing masks using the presented factor-
ization technique.

Appendix A: Trident Analysis

In spatial domain, the trident is represented by a matrix with
R rows and C columns and only three non-null elements on
the first row (Equaton 6). Using the definition of the Fourier
transform F of a matrix f with R rows and C columns:

Fu,v =
R−1

∑
r=0

C−1

∑
c=0

fr,c exp(−2πi(
ur
R

+
vc
C

)),

The Fourier transform of the trident t(β,q) (Equation (6)) is:

T (β,q)
u,v =

1
(2+β)

[β+ exp(−2πi(
vq
C

))+ exp(−2πi(
v(C−q)

C
))]

T (β,q)
u,v =

β+2cos(2π( v q
C ))

(2+β)
. (8)

Its inverse in the frequency domain is simply the multiplica-
tive inverse of Equation (8): T−1(β,q)

u,v = 1/T (β,q)
u,v .

We present formal expressions for the trident inverse
t−1(β,q) in spatial domain for two representative cases of
Equation (6): (i) for q = 1 (Equation 9) and (ii) for q′ > 1
and C an integer multiple of q (i.e., C = nq) (Equation 10).
Due to space constraints, the derivations of these expressions
are provided as part of the supplementary materials.

t−1 (β,1)
i, j = δi0 (−1) j 2+β

exp(λ)− exp(−λ)
exp(−λ j) (9)

t−1(β,q′)
i, j′ =

{
t−1 (β,1)
i, j if j′ = q′ · j

0 otherwise
(10)

Trident Inverse Noise Amplification: The pixel values of
a noisy image can be seen as a set of independent random
variables. Thus, the deconvolution of a blurred image B us-
ing a trident’s inverse mask t−1(β,q) can be represented as a
linear combination of these random variables. The variance
σ

2
restored in the pixel values of the deconvolved (restored) im-

age can then be expressed as:

σ
2
restored = σ

2
blurred

R−1

∑
r=0

C−1

∑
c=0
|t−1(β,q)

r,c |2, (11)

where σ
2
blurred is the variance associated with the pixel val-

ues of the blurred image. Using Parseval’s theorem, the same
result may be obtained in the frequency domain:

σ
2
restored = σ

2
blurred

1
RC

R−1

∑
u=0

C−1

∑
v=0
|T−1(β,q)

u,v |2. (12)
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When β > 2 and C→∞, it follows from Equations (9) and
(11) that the resulting mean-square noise amplification is:

σ
2
restored

σ2
blurred

= (
2+β

exp(λ)− exp(−λ)
)
2 1

1− exp(−2λ)
. (13)

According to Equation (11), noise amplification will be
high when the inverse contains terms with high magnitude
spread all over its domain, as shown in the two leftmost
examples in the bottom row of Figure 6. In the frequency
domain, this corresponds to the occurrence of zeros in the
Fourier transform of the mask itself. For values of β > 2,
the Fourier transforms of both the trident masks and their
inverses contain no zero.
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