
EUROGRAPHICS 2012 / P. Cignoni, T. Ertl
(Guest Editors)

Volume 31 (2012), Number 2

Linear Analysis of Nonlinear Constraints
for Interactive Geometric Modeling

Martin Habbecke and Leif Kobbelt

Computer Graphics Group, RWTH Aachen University, Germany

Abstract
Thanks to its flexibility and power to handle even complex geometric relations, 3D geometric modeling with non-
linear constraints is an attractive extension of traditional shape editing approaches. However, existing approaches
to analyze and solve constraint systems usually fail to meet the two main challenges of an interactive 3D modeling
system: For each atomic editing operation, it is crucial to adjust as few auxiliary vertices as possible in order to not
destroy the user’s earlier editing effort. Furthermore, the whole constraint resolution pipeline is required to run
in real-time to enable a fluent, interactive workflow. To address both issues, we propose a novel constraint anal-
ysis and solution scheme based on a key observation: While the computation of actual vertex positions requires
nonlinear techniques, under few simplifying assumptions the determination of the minimal set of to-be-updated
vertices can be performed on a linearization of the constraint functions. Posing the constraint analysis phase as
the solution of an under-determined linear system with as few non-zero elements as possible enables us to exploit
an efficient strategy for the Cardinality Minimization problem known from the field of Compressed Sensing, re-
sulting in an algorithm capable of handling hundreds of vertices and constraints in real-time. We demonstrate at
the example of an image-based modeling system for architectural models that this approach performs very well in
practical applications.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Modeling packages

1. Introduction

Modeling with constraints is an important tool for the con-
struction and modification of 3D geometric models. Espe-
cially in the case of modeling man-made structure like ar-
chitecture or machine parts, geometric constraints are able
to create and preserve ubiquitous alignment properties like
element parallelism, collinearity, fixed angles and distances,
or symmetry relations. The automatic satisfaction of these
constraints greatly simplifies the modeling process by re-
ducing the degrees of freedom and furthermore strongly im-
proves the quality of the results. Consequently, geometric
constraints have a long-standing history in Computational
Geometry and CAD/CAM. Thanks to the high computa-
tion power of commodity PCs, several interactive constraint-
based shape editing [ZFCO∗11, GSMCO09, XWY∗09] and
resizing [KSSCO08, CLDD09] approaches have been pro-
posed recently.

The central problem of interactive constrained editing is,
given a user modification in the form of re-positioning a set

of vertices, to adjust the positions of the remaining vertices
such that all constraints are satisfied. Various solutions to
handle this problem have been proposed, ranging from sim-
ple (weighted) least squares solutions [XWY∗09] over ad-
hoc propagate-and-fix approaches [ZFCO∗11, GSMCO09]
to elaborate strategies from the field of Computational Ge-
ometry [JTNM06,HL01,FASR08]. However, the main chal-
lenge of any incremental editing approach is not handled sat-
isfyingly: In order to not destroy the results of earlier (man-
ual or automatic) editing operations, it is of crucial impor-
tance to modify the positions of as few additional vertices as
possible during the automatic constraint satisfaction phase.
Figure 1 illustrates this problem at a simple example.

The main contribution of our work is an interactive con-
strained modeling approach with a well-defined strategy
that, for an atomic editing operation, computes as small as
possible model updates in terms of the total number of ad-
justed vertices. Similar to traditional constraint satisfaction
approaches [JTNM06], our method consists of two phases,

c© 2012 The Author(s)
Computer Graphics Forum c© 2012 The Eurographics Association and Blackwell Publish-
ing Ltd. Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ,
UK and 350 Main Street, Malden, MA 02148, USA.

M. Habbecke & L. Kobbelt / Linear Analysis of Nonlinear Constraints for Interactive Geometric Modeling

(a) (b) (c) (d) (e)

Figure 1: Example of a simple modeling operation with nonlinear geometric constraints on the building model (a). In addition
to the alignments depicted in (b), all red edges are constrained to be horizontal, and the shaded polygons should be symmetric.
Furthermore, all vertices should stay as close as possible to their original positions in order to change the model as little as
possible. When interactively moving one corner vertex, optimizing the positions of all remaining vertices with uniform constraint
weights (c) as well as different constraint weight classes (d) does not yield a consistent result. Only when the optimization is
performed on a minimal subset of vertices such that all constraints are guaranteed to be satisfiable (i.e., when leaving the
vertices of the roof ridge fixed), we obtain the desired result in (e).

an analysis phase that determines a set of vertices that need
to be updated in order to satisfy all constraints, and a solution
phase that computes actual vertex positions. The central idea
of our approach is to perform a linear analysis by consider-
ing infinitesimal editing operations, and to take the full edit-
ing operations into account in the nonlinear solution phase
only. Inspired by the Inverse Kinematics approach [BB04],
the analysis phase is based on the nullspace of the con-
straints’ Jacobian. For this to be feasible, we make three sim-
plifying assumptions:

1. Editing operations performed by the user are limited to
linear displacements of one or more vertices. That is, the
vertices affected by an atomic editing operation are con-
sidered to be simultaneously shifted on straight lines to-
wards their target positions.

2. All constraints are invariant under global translation.
3. Each editing operation is performed on a (input) model

instance that satisfies all constraints.

The first assumption is quite natural, especially in the case of
modeling man-made structure where it is common to move
vertices along existing edges or known scene directions. Sec-
tion 5 discusses how we integrate this assumption with an
interactive modeling system that requires the model to be
updated for visual feedback before the actual target position
of an element is known. While the third assumption might
seem to be rather strong from a traditional constraint satis-
faction point of view, we will demonstrate it to be easily sat-
isfiable by an effective, incremental initialization procedure
that is able to “bootstrap” a suitable model instance. Thus,
all three assumptions do not pose limitations in practice.

In our approach we assume the given constraint system
is under-constrained. Well-constrained systems are of little
interest for interactive modeling since no degrees of free-
dom are left. Over-constrained systems or contradicting con-
straints can be detected but we leave the resolution up to
the user. Redundant sets of constraints do not pose a prob-

lem to our algorithm. The three above assumptions enable
an algorithm that has several advantages over existing sys-
tems: By linearizing the constraint functions and examining
their nullspace, the analysis phase can be formulated as a
Cardinality Minimization Problem [RFP10] for which effi-
cient (approximate) solutions are known from the field of
Compressed Sensing [DDEK12]. Furthermore, the solution
phase can be based on a standard nonlinear solver since the
initialization required for reliable convergence is always pro-
vided by the model instance satisfying all constraints. Con-
sequently, in contrast to existing image-based constrained
reconstruction approaches [FF09, TW06], our algorithm is
able to cope with hundreds of vertices and constraints in real-
time, enabling a truly interactive modeling system.

In this work, we assume that constraints are defined on
the vertices of a 3D polygonal model. Our main target appli-
cation is image-based 3D modeling (i.e., modeling in image
overlay). At the example of a prototypical image-based mod-
eling system for 3D building models from oblique aerial im-
ages we demonstrate that our approach works very well in
practice. Notice, however, that the proposed method is not
limited to this particular application.

2. Related Work

Constrained Geometric Modeling In Computer Graph-
ics, several methods have been proposed recently to effi-
ciently modify 3D models while preserving important global
features. Two particularly innovative systems are iWires
[GSMCO09] and its recent generalization [ZFCO∗11]. The
iWires-system constructs a wire structure for an input model
and derives modeling constraints like parallelism or symme-
try. Modeling operations are propagated over the wire struc-
ture resulting in a deformed 3D model with global features
being preserved. [ZFCO∗11] generalize this concept by em-
bedding model components in cage-like controllers, thereby
lowering the burden of constructing a wire structure which

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

M. Habbecke & L. Kobbelt / Linear Analysis of Nonlinear Constraints for Interactive Geometric Modeling

can be difficult in case a model does not exhibit clear sharp
features. Both approaches yield very powerful shape editing
metaphors. However, the employed propagate-and-fix con-
straint resolution strategy in each step has a local view on
a subset of constraints only. Thus, in certain situations (e.g.
cyclic dependencies) it may get stuck in a locally unsolv-
able configuration although a global solution exists. Since
our constraint analysis approach has a global view on all
constraints, it is not prone to such failures. Our algorithm
could hence be employed as a drop-in replacement for the
constraint solver in both approaches.

[XWY∗09] present a modeling system capable of han-
dling joints naturally arising in 3D models of man-made,
technical objects. After an analysis of joint properties to
construct suitable modeling constraints, this approach per-
forms a global nonlinear optimization of all joint po-
sitions. In addition, a sophisticated constraint weighting
scheme is introduced that requires manual adjustments in
order to achieve certain modeling effects. [KSSCO08] and
[CLDD09] present methods to perform structure-aware re-
sizing of 3D models. The first method applies a sizing field
that is adapted to model features and structural detail, the
second performs an optimization of vertex positions similar
to our approach. However, the available set of constraints is
limited to linear functions. While both approaches are able to
preserve existing alignments, they do not allow for the cre-
ation of new relations between elements of a model. Yang
et al. [YYPM11] present a system for the interactive de-
formation of constrained polygonal models. Similar to our
approach, all model instances satisfying the constraints are
considered to define a manifold in a high-dimensional space.
Editing operations are mapped to finding suitable points on
this manifold. In contrast to our goal of finding a model in-
stance with only a few vertices changed, Yang et al. perform
global model updates and define additional regularization
energies (e.g. surface fairness) to handle degrees of freedom
not fixed by the constraints. GlobFit [LWC∗11] fits geomet-
ric primitives to 3D point clouds and detects their global re-
lations. While this approach is not concerned with the mod-
ification of the resulting models, similar ideas could be used
to further automate our target editing applications.

Geometric constraints and various strategies to fulfill
them are at the core of every CAD/CAM system. The sur-
veys of [JTNM06] and [HL01] give an excellent overview
of the field. As outlined by Jermann et al. [JTNM06], tradi-
tional constraint satisfaction approaches usually try to iden-
tify solvable subproblems and then incrementally construct
a complete solution. The more powerful bottom-up strategy
(as, for instance, in the image-based 3D reconstruction ap-
proach [TW06]) has the disadvantage that it is impossible
to control which vertices of the solution are free and which
are dependent. Thus it is unclear how to integrate user input.
Furthermore, such approaches are known to have problems
with redundant constraints. Similarly, the image-based re-
construction system [FF09] stabilizes the reconstruction pro-

cess by automatically detected constraints, but is not able to
incorporate interactive editing. Traditional constraint solu-
tion strategies like [TW06, FF09] often require computation
times in the order of at least a few seconds even for moder-
ately complex problems and are thus not applicable to real-
time interactive editing systems. Also related to our work
is the Dynamic Geometry system based on geometric con-
straints [FASR08]. However, this system is able to handle
sets of constraints with exactly one degree of freedom only.

Interactive Image-Based Modeling The Façade sys-
tem [DTM96] is an early image-base reconstruction system.
Façade is based on the manual construction of box-like ge-
ometric elements and the specification of links to 2D fea-
tures in the input images. The system then recovers correct
model dimensions and camera calibration parameters auto-
matically. Façade does not, however, provide modeling op-
erations in images space. Thus, in case a reconstruction fails,
the only way of interacting is to add more 3D-to-2D links.
VideoTrace [vdHDT∗07] as well as the architectural model-
ing system [SSS∗08] are also based on the user-guided con-
struction of planar polygons. Both require additional scene
information like 3D points or vanishing lines recovered by
a pre-process and thus work for relatively dense image se-
quences only. While both approaches allow for modifica-
tions of the 3D model in image overlay, the interactions
are rather simple thus often requiring tedious adjustments
of many elements.

Inverse Kinematics The problem solved by Inverse
Kinematics is strongly related to the problem of interactive
constrained editing: For a robotic component consisting of
joints and limbs, the goal is to find joint positions such that
an end effector reaches a desired target. The resulting op-
timization problem usually is under-constrained. Instead of
computing simple least-squares solutions, several ideas have
been proposed to exploit the remaining degrees of freedom:
For instance, [BB04] tries to reach secondary target posi-
tions, [DW97] minimize the maximal joint velocity. To our
knowledge, however, the problem of moving as few joints as
possible has not been considered.

Compressed Sensing The central insight of Com-
pressed Sensing [DDEK12] in signal processing is that many
real-world signals are sparse, i.e., can be represented as
sparse vector x ∈ Rn with respect to a suitable basis. Given
a measurement process modeled as y = Ax with A ∈ Rm×n,
m� n, the goal is to reconstruct the sparse signal x from
the measurement y. We will see in Section 3.2 that the con-
straint analysis can be formalized in a very similar way, i.e.
as the solution of a linear system with as few non-zero ele-
ments as possible. The main difference of our setting regards
the measurement matrix A: While finding suitable matrices
A with favorable properties is a major research topic in Com-
pressed Sensing, in our constraint analysis it is defined by the
modeling constraints and does not allow for adjustments.

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

M. Habbecke & L. Kobbelt / Linear Analysis of Nonlinear Constraints for Interactive Geometric Modeling

3. Constraint Resolution Approach

3.1. Method Overview

In our modeling system, constraints are encoded as func-

tions c j : R3n → R with c j(x1, . . . ,xn)
!
= 0, where n is the

total number of vertices and xi ∈ R3 are the vertex po-
sitions. Constraint functions c j can be nonlinear, with the
only requirement that the gradients are well defined and
|c j| is a meaningful measure of constraint deviation. We
denote by X = (xT

1 , . . . ,x
T
n)

T a vector in R3n with all ver-
tex coordinates stacked upon each other, and by c(X) =
(c1(X), . . . ,cm(X))T : R3n → Rm a vector-valued function
that contains all constraints.

As stated earlier, we assume that each editing operation is
performed on a model instance X0 with c(X0) = 0. An edit-
ing operation is given in the form of a displacement d ∈R3n

where d has non-zero elements for the explicitly modified
vertices only. The central goal of our constraint resolution
approach is, for a given editing displacement d, to find a
correction displacement d′ such that c(X0 + d + d′) = 0.
Clearly, d′ has to be chosen in a way such that the non-
zero elements of d and d′ are disjoint. More formally, let
I(d) ⊆ {1, . . . ,n} be the indices of the vertices affected by
the displacement d, then I(d)∩ I(d′) = ∅. Otherwise the ex-
plicitly placed vertices would not remain at their intended
position. Furthermore, d′ should be as sparse as possible in
order to modify as few auxiliary vertices as possible.

We represent the space of possible movements of each
vertex xi with a basis {bi,1,bi,2,bi,3}, bi,k ∈ R3. The canon-
ical basis bi,1 = (1,0,0)T , bi,2 = (0,1,0)T , bi,3 = (0,0,1)T

is a viable choice. However, the basis vectors allow for the
integration of application-specific knowledge such as local
geometric alignment into the constraint analysis phase. In
Section 5.2 we will discuss the construction of a basis specif-
ically targeted at image-based modeling. For the sake of no-
tational correctness, we extend the 3-dimensional basis vec-
tors to vectors Bi,k := (0, . . . ,0,bT

i,k,0, . . . ,0)
T ∈ R3n with

3(i− 1) leading zeros. The correction displacement d′ can
then be represented as linear combination

d′ := ∑
i 6∈I(d)

3

∑
k=1

αi,kBi,k. (1)

The computation of the correction displacement d′ is split
into two parts. In the analysis phase, only an as small as pos-
sible set of basis vectors, i.e., set of non-zero αi,k, is deter-
mined. The actual displacement, i.e., the values of the previ-
ously selected αi,k, are computed in the solution phase.

3.2. Analysis Phase

The determination of the basis vectors required to compute
a correction displacement is formulated as a relaxation pro-
cess. Initially, all vertices xi, i 6∈ I(d) are fixed at their po-
sitions defined by the initial configuration X0 by setting all

αi,k = 0. The algorithm then allows for specific values αi,k
to take on non-zero values.

For the analysis, we examine the nullspace of the con-
straints’ Jacobian Jc ∈ Rm×3n, where the jth row of Jc con-
tains the gradient of c j. The Jacobian can be considered as
a map from vertex movement directions in R3n to variations
of the constraint functions c. Thus, given that all constraints
are satisfied at X0, a vertex movement in the nullspace of
Jc(X0) does not violate any constraint. In most cases, the
vertex displacement d is not in the nullspace of Jc(X0). Con-
sequently, our goal is to construct a correction displacement
d′ such that the total displacement d+d′ is in the nullspace
again. Clearly, in general the above argument is valid for
infinitesimal displacements d and d′ only, while actual dis-
placements have finite extend. However, the nullspace is em-
ployed to solve the combinatorial problem of relaxing ver-
tices (respectively basis vectors) only. The actual correction
displacement is determined by a nonlinear solver in the so-
lution phase. As discussed in Section 3.4, the set of relaxed
vertices obtained by this approach is correct except for a few
singular cases which are easy to handle.

An alternative interpretation in analogy to [YYPM11] is
derived from the observation that the vertex positions X of
all model instances satisfying c(X) = 0 define a manifold
M in R3n. The nullspace of the constraint’s Jacobian is the
tangent space ofM at X, each non-zero coordinate in d can
be considered as an intersection of the tangent space with
a (3n− 1)-dim. hyperplane. Hence, finding the correction
displacement d′ is equivalent to finding a point in the inter-
section space with the least number of non-zero coordinates.

A straight forward formalization of the search for a to-
tal displacement d+d′ in the nullspace of Jc is to solve the
linear system P(d+d′) = 0 with P := Jc. However, as dis-
cussed in Section 6, superior results can often be achieved by
exploiting the projection onto the nullspace of Jc instead of
using the Jacobian directly. Let NJ = (n1 . . .nl) ∈ R3n×l be
the matrix of nullspace basis vectors of Jc(X0). Then NJNT

J
is an orthogonal projection from R3n onto the nullspace,
I−NJNT

J yields the residual of the projection. To find the
correction displacement d′, we set P := I−NJNT

J and again
solve P(d+d′) = 0. With (1) this expand to

∑
i 6∈I(d)

3

∑
k=1

αi,kPBi,k =−Pd, (2)

which is a linear system in the unknowns αi,k.

Our main goal is to relax as few vertices as possible, i.e.,
to compute a solution vector with minimal cardinality. While
this problem is known to be NP-hard in general [RFP10], re-
search in Compressed Sensing has developed several approx-
imate solution strategies with favorable properties. One that
suits our needs particularly well is the Orthogonal Matching
Pursuit (OMP) [TG07]. Its main advantage over more elab-
orate techniques is that the actual cardinality does not have

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

M. Habbecke & L. Kobbelt / Linear Analysis of Nonlinear Constraints for Interactive Geometric Modeling

Algorithm 1 Orthogonal Matching Pursuit (OMP)
procedure OMP(Matrix A, right-hand side y)

r← y // Residual vector
Λ = ∅ // Set of column indices of A
while ||r||2 > ε1 do

g← AT r // Projection onto columns of A
Λ← Λ∪{argmaxl(|gl |)} // Idx of largest col.
solve A|Λx = y // A restricted to columns in Λ

r← y−Ax // Updated residual
end while

end procedure

to be known a-priori. OMP is outlined in Algorithm 1. It is
called with the matrix A = P(· ·Bi,k · ·) and the right-hand
side vector y = −Pd. OMP then iteratively increases the
cardinality of the solution by selecting columns of A (that
is, by relaxing basis vectors) which best reduce the resid-
ual error. Λ is the set of selected columns of A, A|Λ denotes
a matrix that contains these columns only. The procedure
terminates when enough basis vectors have been relaxed to
solve (2) with sufficient precision. In our implementation,
we set ε1 = 10−6. For an under- or well-constrained set of
constraints, the procedure is guaranteed to find a suitable set
Λ since we made the assumption that a uniform displace-
ment of all vertices satisfies all constraints. A solution with
all columns of A selected and a non-vanishing residual in-
dicates that the constraints are contradicting. Please notice
that, while the relaxation of individual basis vectors is possi-
ble, it is usually (geometrically) more meaningful to relax all
three basis vectors of a vertex at once. In Section 5.2 we will
discuss a specific strategy for image-based modeling that ei-
ther relaxes a single or all three basis vectors of a vertex.

The intuition behind the above procedure is to relax the
movement direction that best reduces the residual error,
i.e., that brings the total displacement d+ d′ closest to the
nullspace. Due to the greedy nature of the algorithm (and
the NP-hardness of the problem in general), a minimal solu-
tion cannot be guaranteed. A simple means to find a smaller
set of relaxed vectors is to loop over all (but the last) basis
vectors and to try to individually remove them from Λ again.

3.3. Solution Phase

Due to the linearization, the total displacement d+d′ emerg-
ing from the analysis phase often is not a solution of the non-
linear constraint functions, i.e., c(X0 + d + d′) 6= 0. How-
ever, the degrees of freedom provided by the relaxed basis
vectors allows for the computation of a correct solution (ex-
cept for rare singular cases discussed in Section 3.4). To find
a suitable correction d′, we minimize the objective function

E
(
{αi,k|(i,k) ∈ Λ}

)
= ∑

j∈C
c2

j
(
X0 +d+∑αi,kBi,k

)
, (3)

(a) (b) (c)

Figure 2: Analysis of (a) an orthogonality constraint, (b)
two edges with fixed lengths, and (c) a planarity constraint.
(a) and (b) are 2D, (c) is a 3D example. Top: the arrows de-
pict the gradient directions of the respective constraints, i.e.,
the directions of maximal constraint violation (orthogonal
to the nullspace). Bottom: red arrows depict user-specified
displacements d, green arrows the computed corrections d′.

with C being the set of all constraint indices that involve the
vertices affected by the displacements d or d′, and Λ be-
ing the set of relaxed basis vectors. We employ the well-
established, iterative Levenberg-Marquardt algorithm (cf.
[NW06]) to solve (3). Since the number of relaxed vertices
(respectively basis vectors) usually is much smaller than the
total number of vertices, the Levenberg-Marquardt iteration
can be computed in real-time to provide visual feedback dur-
ing interactive editing operations.

The set of relaxed vertices, combined with all af-
fected constraint functions, often yields a slightly under-
constrained system, in particular when the basis vector selec-
tion strategy of Section 5.2 is employed. That is, the number
of relaxed basis vectors is slightly larger than the degrees of
freedom of the involved constraint functions. To fix these re-
dundant degrees of freedom, we add a penalty term for each
relaxed basis vector that drags the respective vertex back to
its original position. More formally, let xi,0 ∈R3 be the posi-
tion of vertex i in the initial configuration X0. We add a con-
straint function ω(xi−xi,0)

T bi,k, with bi,k being the relaxed
basis vector and ω a small weight. In our implementation,
we set ω = 10−3. This approach has the advantage that each
relaxed vertex, independent of the actual degrees of freedom,
stays as close to its original position as possible. The weight
ω is chosen small enough such that all constraints in c can
be satisfied with sufficient numerical precision.

3.4. Discussion and Solution of Singular Cases

As illustrated in Figure 2, posing the constraint analysis as
a linear problem by considering infinitesimal displacements
works well in practice. Although the initial correction dis-
placements usually are not a solution of the nonlinear con-
straints c, in most situations they correctly determine which
vertices need to be relaxed.

In two particular cases, however, the consideration of in-
finitesimal displacements may not yield enough relaxed ver-
tices. The first case is caused by a user-specified displace-

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

M. Habbecke & L. Kobbelt / Linear Analysis of Nonlinear Constraints for Interactive Geometric Modeling

(a) (b)

Figure 3: Problematic cases caused by the consideration of
infinitesimal displacements. Constraints of red edges are not
satisfied. (a) For a length-constrained edge, displacements
that lie exactly in the linearization of the curved nullspace
yield too few relaxed vertices. (b) Combination of three
length-constrained edges. While the relaxation of the indi-
cated vertex is correct for an infinitesimal displacement, the
length constraints cannot be satisfied for a very far actual
displacement. Both cases are solved by a simple extension
of the 2-phase process.

ment (or a correction displacement) that happens to exactly
lie in the linearization of an actually curved (e.g., quadratic)
nullspace (cf. Figure 3a). Notice, however, that this happens
almost never in practice: in the example in Figure 3a, the
displacement has to be exactly horizontal while the edge
is exactly vertical without being constrained as such. If the
edge was constrained to be vertical, the additional constraint
would cause more vertices to be relaxed. In fact, to provoke
such cases in our experiments, we had to artificially con-
struct them, e.g. by first adding and subsequently removing
an orthogonality constraint from a length-constrained edge.

The second case is caused by the fact that considering in-
finitesimal displacements does not take possible length re-
strictions into account. This happens, for instance, when two
or more length-constrained edges are combined as illustrated
in Figure 3b. The linear analysis correctly relaxes the ver-
tex next to the vertex moved by the user. However, once the
displacement becomes too large during the interaction, the
length constraints cannot be satisfied anymore.

Both above cases are easily detectable by a non-zero
residual of the nonlinear solution algorithm and allow for
a simple solution that seamlessly integrates with the lin-
ear constraint analysis approach. In both cases the (lin-
earized) nullspace is too “permissive”, i.e., allows displace-
ments which are actually not feasible. Hence, this problem
can be solved by reducing the degrees of freedom of the
nullspace by adding more constraints and then re-run the lin-
ear relaxation process. In our implementation, we add stiff-
ening constraints to affected vertices. More specifically, for
two vertices xi1 , xi2 we add a constraint

cstiff(xi1 ,xi2) = (xi1 −xi2)− (x0,i1 −x0,i2)
!
= 0,

that enforces the vertices to remain in the same relative
configuration as in X0. Stiffening is applied to all vertices
of the constraint with the largest residual error of the lin-
early determined displacement, i.e., to all vertices affected
by cmax = argmaxc j (|c j(X0+d+d′)|). Notice that the stiff-

Algorithm 2 Combination of linear constraint analysis with
nonlinear solution.

input: editing displacement d
Λ = ∅
repeat

run nonlinear solver with d, Λ; compute residual r
if ||r||∞ > ε2 then

if Λ 6= ∅ then
add stiffening constraint

end if
run linear analysis on d, extend Λ

end if
until nonlinear residual ||r||∞ ≤ ε2

ening constraints are only considered in the analysis phase
to relax more vertices, but are not used in the solution phase.
The resulting algorithm that interleaves the linear analysis
and the nonlinear solution phases is outlined in Algorithm 2.
The threshold ε2 to detect unsatisfied constraints clearly de-
pends on the actual implementation of the constraints. In our
modeling system, we formulate all constraints in terms of
Euclidean distances and set ε2 = 10−3, i.e., all constraints
have to be satisfied with a precision of at least 1mm.

4. Constraint Initialization

To initialize new constraints we basically perform the same
procedure as for the regular editing (linear analysis and non-
linear solution), with a slight modification of the linear sys-
tem used in the OMP algorithm. We separate all constraints
into a set of satisfied constraints csat(X0) = 0 and a set of
new, unsatisfied constraints cnew(X0) 6= 0. As before, the
nullspace and the projection P= I−NJNT

J is computed from
the satisfied constraints csat only. Since no explicit displace-
ment d is given, we employ the Taylor expansion

cnew(X0 +d′) ≈ cnew(X0)+ Jnew(X0)d
′ !
= 0

to construct a suitable right-hand side of the linear system.
That is, to compute a correction displacement d′ that lies in
the nullspace of csat and in addition fulfills the above Taylor
approximation, the input to the OMP algorithm is

A =

(
P

Jnew

)
(· ·Bi,k · ·), y =

(
0

−cnew(X0)

)
.

Notice that, similar to the regular analysis phase, in rare
cases the relaxed basis vectors do not allow for the nonlinear
computation of a correct solution. We hence employ Algo-
rithm 2 for the initialization of new constraints as well.

5. Image-Based Modeling System

In this section we discuss the integration of our constraint
resolution approach into a prototypical image-based 3D
modeling system. For more details on the system itself,
please refer to [Hab12] and the supplemental video.

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

M. Habbecke & L. Kobbelt / Linear Analysis of Nonlinear Constraints for Interactive Geometric Modeling

5.1. System Overview

As for most image-based modeling systems, the main source
of information is a set of calibrated input images. The in-
terface provides one or more views of the current model,
rendered over the images that show the object to be recon-
structed. The actual editing is performed by dragging ver-
tices, edges, and faces or by adding constraints. Similar to
other image-based modeling systems, we exploit epipolar
geometry (cf. [HZ03]) to simplify the editing process. Dur-
ing editing, the user declares one view as reference. In this
view, elements of the 3D model are allowed to be moved
according to simple rules (vertices move on adjacent edges,
edges move on adjacent facet planes, etc.) In contrast, in all
other (non-reference) views, vertices are restricted to move
on viewing rays through the reference camera center. This
enables the precise 3D positioning of a vertex by (at most) a
1D / 2D operation in the reference image and a subsequent
1D adjustment in any other view.

Due to ubiquitous alignments, in the specific application
of architectural modeling from aerial images large parts of a
building can be implicitly generated by extrusion operations.
Consequently, in many cases it is sufficient to construct a
sparse set of polygons to define the roof shape and possibly
geometric detail on the facades, cf. Figure 5. For the gen-
eration of building surfaces from a sparse set of polygons
we employ a volumetric CSG-like approach. The creation
of new facets is based on a sketch-based interface enabling
the user to draw the shape of a planar polygon in one of the
images. Automatic image fitting procedures are employed to
initialize the supporting planes of new polygons and to pre-
cisely align existing model components with the underlying
images.

5.2. Integration with Constrained Modeling

Basis Construction While the canonical basis works well
in many modeling scenarios, Figure 4 illustrates that image-
based modeling with the concept of epipolar geometry re-
quires adjusted basis vectors. For a vertex xi and a reference
camera center p ∈ R3 we therefore construct the first ba-
sis vector as bi,1 = xi − p, and the two remaining vectors
as bi,2 = bi,1× o, bi,3 = bi,1×bi,2, where o is an arbitrary
direction not parallel to bi,1. Clearly, relaxing only bi,1 and
keeping bi,2 and bi,3 constrained in the analysis phase en-
ables the vertex xi to move on its respective viewing ray.

Basis Vector Relaxation Strategy The above construc-
tion implies a simple basis vector relaxation strategy for
image-based modeling. In each relaxation step, we only con-
sider two possible cases, either {bi,1} is relaxed alone, or all
three basis vectors {bi,1,bi,2,bi,3} of a vertex are relaxed at
once. In the actual implementation (cf. Algorithm 1), after
finding the basis vector with the largest dot product with the
residual vector, we potentially add two more indices to the
set Λ, depending on which basis vector has been selected in
the first place.

re
fe

re
nc

e
vi

ew
no

n-
re

f.
vi

ew
ba

si
s bi,k

bi,k

Figure 4: Epipolar modeling with and without basis vec-
tors aligned to vertex viewing rays. Left: a polygon cor-
rectly aligned with the reference view. Center: moving the
indicated vertex on its viewing ray triggers the relaxation of
all three canonical basis vectors of the blue vertex, result-
ing in a destroyed alignment. Right: in case of basis vectors
aligned with their respective viewing rays, it is sufficient to
relax only a single basis vector of the blue vertex, resulting
in the preservation of the alignment in the reference view.

Interactive Editing Thanks to the interleaved applica-
tion of the linear analysis and the nonlinear solution dis-
cussed in Section 3.4, it is an easy task to extend the al-
gorithm to a fully interactive editing system. The basic idea
is to initialize Λ = ∅ in Algorithm 2 only when an interac-
tive editing operation is started. When the displacement d
is updated by the user dragging a model element, we call
Algorithm 2 again but reuse the set of previously relaxed ba-
sis vectors. Consequently, in most cases the nonlinear solver
quickly converges to an updated solution. If the residual of
any constraint is larger than ε2, we distinguish two cases. In
case the direction of d has not changed (w.r.t. a small toler-
ance) since the last run of the linear analysis, we add stiffen-
ing constraints in order to trigger the relaxation of more ver-
tices. If the direction has changed, we simply run the analy-
sis again on the new direction.

Implemented Constraint Types In our modeling sys-
tem, all facets are constrained to be planar by default. In ad-
dition, we have implemented the following set of constraints:

• Plane / edge horizontal,
• plane / edge vertical,
• pair of planes / edges parallel,
• pair of planes / edges orthogonal,
• vertices / planes coplanar,
• vertices / edges collinear,
• fixed vertex distance,
• two vertices symmetric with a vertical symmetry plane,
• “cloned” groups of vertices with identical shape.

Notice that in this list “planes” can either be the support-
ing planes of facets (e.g., when snapping vertices to a facet),

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

M. Habbecke & L. Kobbelt / Linear Analysis of Nonlinear Constraints for Interactive Geometric Modeling

Example A1 Example A2

Figure 5: Modeling of a roof structure with dormers. Left: original configuration. Center: editing operation such that the base-
plane of the dormers changes its orientation (example A1). Right: the dormers’ base plane does not change (example A2). Blue
vertices are relaxed in the analysis phase and automatically updated by the editing system. Please see text for more details.

but also more general planes (e.g., a vertical plane spanned
by a (non-vertical) edge). Clearly, this list is by no means
exhaustive and other modeling tasks might require differ-
ent constraints. A major advantage of our general constraint
analysis and solution scheme is that it can easily be extended
by additional constraints (for instance, rotational symmetry).
For the task of architectural modeling in aerial images, how-
ever, we have found that this set of constraints is sufficient.

6. Results and Discussion

We have performed several experiments to demonstrate the
practical applicability of our approach. Table 1 lists the de-
tails. Figure 5 (examples A1 and A2) demonstrates two edit-
ing operations on a building roof with several dormers. The
dormers’ base-vertices are constrained to be coplanar with
the roof. Thus, in case A1 these vertices are required to be
updated in order to satisfy all constraints. In example A2,
the plane to which the dormers are attached does not change.
This situation is correctly recognized and only the required
vertices are updated. Examples B1 and B2 (cf. Figure 6)
show two editing operations on a snake-like roof structure.
While B1 is performed in the reference view, the operation
of B2 is performed in a non-reference view. Again, in both
cases the correct minimum cardinality solution is found.

In the spring example S depicted in Figure 7 all edges are
constrained to have fixed lengths. This case requires the in-
cremental relaxation of additional vertices by Algorithm 2
during the interactive dragging. Our algorithm correctly re-
laxes one vertex after the other, enabling the structure to un-
fold. In Table 1 the respective row contains the values of the
last analysis step only. As all previous steps work on smaller
input data sets, their running times are even shorter. Notice
that such combinations of length-constrained edges are dif-
ficult for propagate-and-fix solution strategies such as em-
ployed in iWires [GSMCO09]: When propagating the mod-
ification from vertex to vertex, each vertex has (in the 2D
case) one degree of freedom. However, by fixing these de-
grees of freedom with only local knowledge, it cannot be
guaranteed that e.g. a desired target position is reached.

Ex. #V #C #N #rx #fx Alg2 TBa TOMP TUp
A1 116 812 73 51 3 1 227ms 16ms 5ms
A2 116 812 73 9 0 1 227ms 1.2ms 1.1ms
B1 45 117 62 90 6 1 16ms 34ms 6ms
B2 45 117 62 22 0 1 16ms 1.9ms 5ms
G5 100 395 41 24 0 1 134ms 3.1ms 1.2ms
G7 196 819 57 36 0 1 1.41s 14.7ms 3.2ms
G10 400 1740 81 54 0 1 13s 85ms 5.3ms
S 11 32 11 3 0 7 1.5ms 1.2ms 4ms

Table 1: Details of the experiments. “Ex” denotes a par-
ticular example, #V the number of vertices, #C number of
constraint functions, #N the dimension of the nullspace. The
columns #rx and #fx contain the numbers of relaxed and sub-
sequently re-fixed basis vectors. “Alg2” denotes iterations
in Algorithm 2, the last three columns contain the times for
the basis construction, the linear analysis, and the nonlinear
solution. All experiments were run on an Intel Core i7 920.

All experiments in Table 1 employ the nullspace pro-
jection in (2) rather than directly using the constraints’ Ja-
cobian. This choice influences the two main computation
steps of the analysis phase, the construction of the trans-
formed basis PBi,k (TBa in Table 1) and the OMP algo-
rithm (TOMP). While the basis construction usually is faster
for the Jacobian-only approach (e.g. A1: TBa=110ms, B1:
TBa=4.6ms), for two reasons the OMP algorithm performs
better with the nullspace projection. First, the size of the ma-
trix P usually is smaller, leading to faster solutions of the
linear system in Algorithm 1. Second, the greedy relaxation
often is more effective. The orange vertices in examples A1
and B1 depict cases in which the respective vertices have
been relaxed during the OMP iteration and then have been
fixed again in the final pass over all relaxed basis vectors.
Notice that these are the only such cases for the nullspace
projection. When using the Jacobian in (2) directly, in exam-
ple A1 the algorithm relaxes #rx=75 and later fixes #fx=27
basis vectors, and thus takes TOMP=72ms. In example B1,
#rx=117, #fx=33, TOMP=58ms. Hence, due to the better per-
formance of the greedy OMP algorithm, the nullspace pro-

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

M. Habbecke & L. Kobbelt / Linear Analysis of Nonlinear Constraints for Interactive Geometric Modeling

Example B1 Example B2

Figure 6: Editing of a snake-like roof structure. In each
quad, the upper and lower edges are constrained to be par-
allel. Furthermore, all ridge vertices as well as all lower ver-
tices are aligned horizontally. Center: moving a lower quad-
edge downwards in its supporting plane results in the relax-
ation of all lower vertices (blue). Right: moving one of the
ridge vertices along its viewing ray in a non-reference view
yields the relaxation of only the first basis vectors (which are
aligned with the respective viewing rays) of all other ridge
vertices (blue).

jection is the method of choice for interactive systems. The
main drawback of the nullspace projection is the requirement
of computing the nullspace basis. In our current implemen-
tation, the basis is computed by a standard singular value
decomposition (SVD) and thus constitutes the main bottle-
neck especially for the larger examples. However, notice that
the transformed basis does not depend on the actual editing
operation. The basis for editing operation k can therefore be
constructed immediately after operation k− 1, thereby ef-
fectively hiding its computation from the user. Furthermore,
the Jacobian Jc has a sparse structure which can be exploited
during the nullspace computation [GT08].

Examples G5, G7, and G10 are based on the grid structure
depicted in Figure 8(a). G5 has been performed on a grid of
5×5 quads, G7 on 7×7 quads, and G10 on 10×10 quads.
Notice that, as in all examples, all vertices of the quads are
defined in R3. All quads are constrained to be coplanar, all
neighboring edges (depicted by arrows in the figure) are con-
strained to be collinear. The results in Table 1 correspond to
the operation of moving a vertex along an adjacent edge.
These artificial examples clearly are extremal cases. How-
ever, they demonstrate that the OMP algorithm and the non-
linear solution phase (TOMP and TUp in Table 1) can be per-
formed in real-time even for very large constraint systems.

Figure 8(b) compares the behavior of our approach to
propagate-and-fix strategies (like iWires) on the same grid
structure with collinear edges. The red vertex is assumed to
be fixed. Our approach detects that the blue vertices have to
be relaxed, and then computes suitable positions in the non-
linear solution phase. In contrast, propagate-and-fix strate-
gies determine final vertex positions for each individual
quad. When fixing the first quad (affected by the editing op-
eration), the algorithm is not aware of the fixed vertex at the
end of the propagation chain. It is thus not able to determine

Figure 7: Unfolding a spring-like structure. All edges are
length-constrained. Due to the incremental relaxation of ver-
tices in Algorithm 2, the structure unfolds as expected.

the correct position of the lower left corner in the first quad
and the propagation strategy gets stuck in an unsolvable sit-
uation eventually.

Column “Alg2” in Table 1 demonstrates that in all exper-
iments except the spring configuration in example S a single
iteration of Algorithm 2 was sufficient. Thus, in practice the
linear analysis finds suitable sets of vertices, stiffening con-
straints are required to handle rare cases only.

Notice that the minimal set of vertices which are required
to be updated in general is not unique. Furthermore, in cer-
tain situations editing operations with more relaxed ver-
tices “feel” more natural than the minimal solution. This is
the case in example A1: Each dormer has three vertices in
the roof plane. The minimal solution (cf. the supplemental
video) rotates the roof plane about the axis through the fixed
lower pairs of vertices, only the five upper vertices are re-
laxed. As a simple means to guide the analysis algorithm, our
interface allows for the manual exclusion of vertices from
the relaxation process. In particular, the red vertex in exam-
ple A1 has been marked for exclusion to achieve a more nat-
ural editing operation with more relaxed vertices.

In its current formulation, the choice of vertices affected
by the correction displacement d′ is dominated by a com-
binatorial process rather than by the actual geometry of the
model. Due to our goal of altering as few auxiliary vertices
as possible, geometric primitives with low numbers of ver-
tices may be preferred over primitives with many vertices
in the relaxation process. In our interactive modeling system
we consider this behavior a feature: primitives with many
vertices usually require more editing effort and thus should
be changed with lower probability. Cases in which this is not
desired could, for instance, be handled with an extended re-
laxation strategy. Simultaneously relaxing groups of vertices
belonging to the same primitive would reduce the strong
combinatorial influence of the analysis procedure.

Computing a correction displacement d′ may be achiev-
able by alternative means, e.g. by optimizing a displacement
of all vertices while imposing a l1-norm regularizer. How-
ever, we chose the 2-phase procedure presented in Section 3
over such approaches for two main reasons: Regularizing en-
ergies are usually unable to completely prevent undesired
vertex movements. That is, while the majority of d′s “en-

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

M. Habbecke & L. Kobbelt / Linear Analysis of Nonlinear Constraints for Interactive Geometric Modeling

(a) (b)

Figure 8: (a) 3×3 example of grid-structure used in exam-
ples G5, G7, and G10. (b) Behavior of our approach (left)
and a propagate-and-fix strategy (right). See text for details.

ergy” is distributed to a few vertices only, many other ver-
tices move slightly and thereby compromise previously gen-
erated alignments. Furthermore, such a formulation would
require the optimization of all vertices in parallel. Even for
only moderately complex models this would contradict our
goal of real-time interactive modeling operations.

In contrast to traditional constraint analysis approaches,
our algorithm is based on several (well-established) numeri-
cal techniques with two simple thresholds. Due to inevitable
numerical inaccuracies, these thresholds cannot be set arbi-
trarily low. Hence, all constraints are satisfied up to a thresh-
old only (a maximal deviation of 1mm in our implementa-
tion) which might not be acceptable for certain applications.

7. Conclusion

We presented a novel approach to analyze and solve non-
linear constraints for geometric modeling. Given an explicit
editing operation, the main problem we are considering is to
find an as small as possible set of auxiliary vertices such that,
after these vertices have been adjusted, all constraints are
satisfied again. Our analysis strategy is based on linearized
constraint functions which enables a very efficient algorithm
and allows for the application of well-established nonlinear
solution techniques to compute actual vertex positions. At
the example of several real-world modeling problems, we
have demonstrated that this approach works well in practice
and can easily be integrated into interactive 3D modeling
systems with real-time visual user feedback.

Acknowledgment: This project was funded by the DFG
Cluster of Excellence UMIC (DFG EXC 89) and the DFG
Graduate School AICES (DFG GSC 111).

References
[BB04] BAERLOCHER P., BOULIC R.: An inverse kinematic ar-

chitecture enforcing an arbitrary number of strict priority levels.
The Visual Computer 20 (2004), 402–417. 2, 3

[CLDD09] CABRAL M., LEFBVRE S., DACHSBACHER C.,
DRETTAKIS G.: Structure-preserving reshape for textured ar-
chitectural scenes. In Eurographics (2009). 1, 3

[DDEK12] DAVENPORT M., DUARTE M., ELDAR Y., KU-
TYNIOK G.: Introduction to compressed sensing. In Compressed
Sensing: Theory and Applications, Eldar Y. C., Kutyniok G.,
(Eds.). Cambridge University Press, 2012. 2, 3

[DTM96] DEBEVEC P. E., TAYLOR C. J., MALIK J.: Modeling
and rendering architecture from photographs: a hybrid geometry-
and image-based approach. In SIGGRAPH (1996). 3

[DW97] DEO A., WALKER I.: Minimum effort inverse kinemat-
ics for redundant manipulators. IEEE Trans. on Robotics and
Automation 13, 5 (1997), 767–775. 3

[FASR08] FREIXAS M., ARINYO R. J., SOTO-RIERA A.: A
constraint-based dynamic geometry system. In Proc. of ACM
SPM (2008), pp. 37–46. 1, 3

[FF09] FARENZENA M., FUSIELLO A.: Stabilizing 3d modeling
with geometric constraints propagation. Computer Vision and
Image Understanding 113, 11 (2009), 1147–1157. 2, 3

[GSMCO09] GAL R., SORKINE O., MITRA N., COHEN-OR D.:
iWIRES: An analyze-and-edit approach to shape manipulation.
SIGGRAPH (2009). 1, 2, 8

[GT08] GOTSMAN C., TOLEDO S.: On the computation of null
spaces of sparse rectangular matrices. SIAM J. Matrix Anal. Appl.
30 (2008), 445–463. 9

[Hab12] HABBECKE M.: Interactive Image-Based 3D Re-
construction Techniques for Application Scenarios at Different
Scales. PhD thesis, RWTH Aachen Univeristy, 2012. 6

[HL01] HOFFMAN C. M., LOMONOSOV A.: Decomposition
plans for geometric constraint systems, part i. J. Symbolic Com-
putation 31 (2001), 367–408. 1, 3

[HZ03] HARTLEY R., ZISSERMAN A.: Multiple View Geome-
try in Computer Vision, second ed. Cambridge University Press,
2003. 7

[JTNM06] JERMANN C., TROMBETTONI G., NEVEU B.,
MATHIS P.: Decomposition of geometric constraint systems: a
survey. IJCGA 16, 5-6 (2006), 379–414. 1, 3

[KSSCO08] KRAEVOY V., SHEFFER A., SHAMIR A., COHEN-
OR D.: Non-homogeneous resizing of complex models. In Proc.
of SIGGRAPH Asia (2008). 1, 3

[LWC∗11] LI Y., WU X., CHRYSATHOU Y., SHARF A.,
COHEN-OR D., MITRA N. J.: Globfit: Consistently fitting prim-
itives by discovering global relations. In SIGGRAPH (2011). 3

[NW06] NOCEDAL J., WRIGHT S.: Numerical Optimization,
2nd ed. Springer, 2006. 5

[RFP10] RECHT B., FAZEL M., PARRILO P. A.: Guaranteed
minimum-rank solutions of linear matrix equations via nuclear
norm minimization. 471–501. 2, 4

[SSS∗08] SINHA S. N., STEEDLY D., SZELISKI R., AGRAWALA
M., POLLEFEYS M.: Interactive 3d architectural modeling from
unordered photo collections. In SIGGRAPH Asia (2008). 3

[TG07] TROPP J. A., GILBERT A. C.: Signal recovery from
random measurements via orthogonal matching pursuit. IEEE
Trans. Inform. Theory 53, 12 (2007), 4655–4666. 4

[TW06] TROMBETTONI G., WILCZKOWIAK M.: Gpdof - a fast
algorithm to decompose under-constrained geometric constraint
systems: Application to 3d modeling. Int. J. Comput. Geometry
Appl. 16, 5–6 (2006), 479–512. 2, 3

[vdHDT∗07] V. D. HENGEL A., DICK A. R., THORMÄHLEN T.,
WARD B., TORR P. H. S.: Videotrace: rapid interactive scene
modelling from video. ACM Trans. Graph. 26, 3 (2007). 3

[XWY∗09] XU W., WANG J., YIN K., ZHOU K., VAN DE
PANNE M., CHEN F., GUO B.: Joint-aware manipulation of de-
formable models. ACM TOG 28 (July 2009). 1, 3

[YYPM11] YANG Y.-L., YANG Y.-J., POTTMANN H., MITRA
N. J.: Shape space exploration of constrained meshes. In SIG-
GRAPH Asia (2011). 3, 4

[ZFCO∗11] ZHENG Y., FU H., COHEN-OR D., AU O. K.-C.,
TAI C.-L.: Component-wise controllers for structure-preserving
shape manipulation. In Eurographics (2011). 1, 2

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

