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Abstract

We propose a novel approach for the temporal interpolation of city maps. The input to our algorithm is a sparse
set of historical city maps plus optional additional knowledge about construction or destruction events. The output
is a fast forward animation of the city map development where roads and buildings are constructed and destroyed
over time in order to match the sparse historical facts and to look plausible where no precise facts are available. A
smooth transition between any real-world data could be interesting for educational purposes, because our system
conveys an intuition of the city development. The insertion of data, like when and where a certain building or road
existed, is efficiently performed by an intuitive graphical user interface. Our system collects all this information
into a global dependency graph of events. By propagating time intervals through the dependency graph we can
automatically derive the earliest and latest possible date for each event which are guaranteeing temporal as
well as geographical consistency (e.g. buildings can only appear along roads that have been constructed before).
During the simulation of the city development, events are scheduled according to a score function that rates the
plausibility of the development (e.g. cities grow along major roads). Finally, the events are properly distributed
over time to control the dynamics of the city development. Based on the city map animation we create a procedural
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city model in order to render a 3D animation of the city development over decades.

Categories and Subject Descriptors (according to ACM CCS): 1.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation 1.3.4 [Computer Graphics]: Graphics Utilities—Paint Systems

1. Introduction

Creating and visualizing 3D models of real cities has be-
come an important topic in a lot of different areas such as
tourist information applications, city planning, or historical
research. Unfortunately, most reconstruction methods only
focus on a static model at a fixed point in time like the Rome
Reborn project [FriO8]. Compared to the reconstruction of a
very small set of fixed time points, an animation is a much
more convenient way for the illustration of a historical city
development, because it directly provides the viewer an intu-
ition of how the urban development might have taken place.
In this paper we propose an approach that produces smooth
and realistic animations. This is an interesting aspect, espe-
cially for educational purposes, because real world data is
interpolated in order to show historical facts in an integrated
and consistent style communicating the big picture of a city
development. Furthermore, our technique could be utilized
in the games or films industry as an innovative transition ef-
fect showing a time-lapse animation of the city development
as the story progresses.
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Figure 1: After defining a sparse set of events (e.g. taken
from historical maps), we create a dependency graph from a
rule set (e.g. houses are build close to streets). Based on a
proper event distribution we then apply a procedural inter-
polation resulting in a plausible animation of the city devel-
opment. The bottom image sequence shows the development
of Aachen, Germany over 210 years.
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If the 4th dimension, i.e., time, is taken into account, sev-
eral challenging problems have to be solved in order to gen-
erate a consistent animation. Most importantly, we can not
simply extrapolate a complex mathematical model as it is
done in previous work [WMWG09], since we are not look-
ing for a possible outcome of the unknown city development
in the future. Instead, we have to find a plausible simulation
of the city development that has to stay consistent with the
given historical data from the past. Therefore, our paper fo-
cusses on a technique to properly interpolate the given data.

Typically, the available data of historical events is rela-
tively sparse and sometimes it is even very imprecise. Espe-
cially the city maps of previous centuries are rather inaccu-
rate, because the people during that time did not have any
satellite images or precise measuring devices. If those maps
are just blended over time, the result is disappointing, since
the street graphs of different time points will not perfectly
match due to the distortion that is caused by the imprecise
measuring. We tackle this problem by rectifying images of
historic city maps with respect to the current state of the city
map, which is assumed to be precise. Taking the current city
map as a ground truth, a user just has to select objects that
did not exist in the past or insert new objects that might have
been destroyed meanwhile.

Usually, a large part of the data is available in a textual
form such as “this building was built in 1875”. Sometimes
the information is only provided in an even more fuzzy way
like “this building was built sometimes in between 1975
and 1990”. By providing an intuitive painting metaphor, this
information can be easily inserted into our system and is
thereby converted to a visual interpretation.

For the actual simulation of a possible city map devel-
opment, we have to take into account that any events, like
building a street or destroying a house, are based on a set of
logical rules. Most importantly, we observe interdependen-
cies between several events, e.g., a street will only be built
if it is connected to the rest of the street network. Further-
more, the importance of events might differ which can be
expressed by a scoring function, e.g., constructing objects
that are closer to the city center will be preferred in order
to produce a more realistic development of the city bound-
ary. Our system provides a flexible set of procedures that
heuristically derive such dependency relations or scores. Al-
though the logical rules would lead to a locally well defined
behavior of the city development, we still need to control
the global appearance of the animation. Our approach uses
a global distribution function as a reference to decide how
many events are started at a certain point in time while ensur-
ing that the animation still satisfies any inserted information
in order to generate an interpolation of the real world data.
We further enhance the simulation by a simple interpolation
technique for any underlying land use maps such as a visual-
ization layer for the vegetation or an economical distribution
map of industrial versus residential areas.

For an efficient and intuitive creation of a realistic city
map development animation, our paper mainly focuses on
the following challenges:

Procedural Interpolation  Considering a graph of inter-
dependencies between events, a scoring function for the im-
portance of an event and a histogram to control the global
distribution of events over time, our algorithm produces a
plausible simulation of the city map development that prop-
erly interpolates any inserted real world data such as histor-
ical maps or fuzzy textual information. Furthermore, maps
containing meta information are used to influence the rules
on a high level of abstraction.

Interaction We provide an intuitive user interface that
enables the insertion of potentially thousands of event con-
straints within seconds. We support the user by allowing the
use of images of historical maps in the background. Since
old maps are usually heavily distorted due to the inaccuracy,
we apply a simple distortion technique to those maps in or-
der to align them to the current state of the city map.

2. Related Work

The idea of defining rules for the automatic creation of com-
plex geometry has become a well established concept in
plant modeling by utilizing L-Systems [PL96]. Since the
process of city development behaves in a similar way to
the growth process of a plant, the L-System formalism was
extended by self-sensitivity and applied for the creation of
street networks [PMO1]. Additionally, building lots will be
generated which are subdivided to create polygons that serve
as floor plans. A common method to automatically create
complex buildings from these floor plans was inspired by
the concept of shape grammars [Sti75]. By proceeding in a
strict coarse-to-fine fashion, facade details are generated by
successively subdividing boxes and utilizing arbitrary geom-
etry as atomic elements [WWSR03, MWH™06]. For some
good overviews of common procedural techniques in the do-
main of city modeling, we would like to refer to the work
of Vanegas et al. [VAW™*(09] and Watson et al. [WMV*08].
Although our paper strictly focuses on the street network
generation for city development animations, we also present
several images (and several video sequences in the accompa-
nying video) of a simplistic 3D model that was derived from
the street networks by extruding building footprints and ran-
domly placing some vegetation.

While the coarse-to-fine method for simple buildings is a
very intuitive and constructive approach, which can even be
controlled interactively [LWWOS], the modeling of plants
relies on very professional knowledge for the definition of
the rule set which mostly involves lots of abstract (and inter-
dependent) parameters to adjust the outcome. Even a small
change of one parameter value often results in unpredictable
new results due to the highly recursive rule definitions within
the L-System. Therefore, recent work has presented several
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Figure 2: The user can define intervals where a certain at-
tribute of an object (here its existence) is known. Based on
this information and on the duration Ty(e) that is needed to
complete the event, we derive the interval [Typin(€), Tymax(€)]
in which the event has to be started in order to fulfill the
known constraints. Our system will automatically compute a
possible start point T(e) which is influenced by external fac-
tors, interdependencies and a global distribution function.

methods to guide the growth process [PHL*09, BYMM11]
which was also applied for a high-level control of street net-
works [CEW*08, LSWW11, VABW09]. While these meth-
ods allow for an interactive manipulation of the resulting
structure, our approach defines former states of this struc-
ture by a simple paint metaphor in order to animate its de-
velopment over time. Even more important is the fact, that
we want to interpolate real world data and not only arti-
ficially generated street networks. Although there is some
research about the inverse procedural modeling problem,
like deriving context-free L-Systems from a given structure
[VBM*10], defining a self-sensitive L-System for the auto-
matic creation of a specific (real world) street network is still
an open problem.

In the research area of urban planning a carefully de-
signed mathematical model can be used as a helping tool
to make future decisions. It is however generally accepted
that it is not possible to reliably predict the overall future de-
velopment of a city with these models [HMWF03, Wu02].
At best, the dynamic development of a small subset of as-
pects defining the city can be extrapolated into the near fu-
ture under the assumption that trends in the development do
not change too quickly. This, however, will certainly not end
in a previously specified state of the city. Seminal work has
been presented for this kind of simulation based on agents
[LWWEF03,Wad02] or L-Systems [WMWGO09]. While these
methods are model driven and thus rely on a large amount of
professional knowledge to define a complex model that pro-
duces a realistic extrapolation starting from an initial data
set, we use a data driven approach for the interpolation of
real world data (e.g. historic city maps) based on a rather
simple model. This also enables us to easily simulate drastic
changes in the city development, like the period of industri-
alization, by inserting a sample point (a historic city map)
which provides the needed information. Of course, our in-
termediate stages of the city development do not necessarily
agree with the real setting, but we can demonstrate in an ex-
periment that, e.g., when we interpolate between a city map
from 1865 and 1924, the interpolated result for the year 1906
is very similar to the ground truth.

(© 2012 The Author(s)
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3. Core Framework

Basically, a city map in our system consists of vertices, edges
and polygons. Each primitive has a certain object type defin-
ing its semantics. A polygon, e.g., might be a floor plan of
a house while an edge of a graph might be a street segment.
Each of the object types can have several artributes that de-
scribe a particular instance of that object in the city map.
Typical attributes are, e.g., the style and height of a house or
the type of a street. The key idea of our approach is the sim-
ulation of these attributes over time by placing events in a
timeline. An event in our system describes the change of an
attribute value at a certain point in time (cf. Figure 2). Most
importantly, the existence of an object is also expressed as an
attribute which is provided by all object types. The existence
is a simple flag that determines whether or not a specific ob-
ject instance exists at a certain point in time.

As additional input to our system, each time step in the
timeline can contain an image representing the land use at
the specific year. Our application will automatically derive
a possible image of the land use in between two explicitly
given states (cf. Figure 3). In addition to visualization pur-
poses, these maps are furthermore used by our algorithm for
high level control of the shape of the city map development.
By inserting images of economic maps into our system, the
simulation will be also influenced by this meta information
enabling the application of realistic effects like balancing the
ratio of residential and industrial areas.

3.1. Events

An event e can be understood as starting a task that needs
some time Ty(e) to fulfill, e.g., changing the existence at-
tribute of a house from false to true refers to starting the
build process of that house which might take several years
to be finished. The main problem here is, that the exact start
date of the build processes is usually not known. In seldom
cases, a precise information on this data can be found in his-
torical books, but the majority of build events can only be
soft constrained by specifying a time interval which can be
derived from historical city maps. For example, if two city
maps from 1800 and from 1850 are given, we assume that all
objects that exist in the map from 1850, but not in the map
from 1800, have been built meanwhile. Therefore, any event
could theoretically be placed somewhere in between 1800
and 1850. More generally, the placement of events is limited
by user defined soft constraints 7}, (e) and Truax(e) reflect-
ing the chronological successive values of a certain attribute.
For an intuitive handling, T}, (e) and Tinax(e) are placed in
a timeline. While we can easily denote Ty, (€) = Tyin(e) as
the earliest point in time for the event e to be started, Tiax(e)
is not the latest point in time, because e still needs some time
T, (e) to be fulfilled. Therefore, the latest possible start point
for e is Tymax(e) = Tnax(e) — Ty(e). The actual start point of
an event that has been placed by our system will be denoted
as Ts(e).
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Figure 3: By defining two land use images at two different
points in time (a,c) we can automatically derive an interme-
diate land use image (b). We animate each land use type sep-
arately (d-f) by calculating the distances to the contour for
each explicitly defined map (g,i) and linearly interpolating
the pixel values (h). We then decide for each pixel separately
to take the land use type that yields the highest value.

3.2. Land Use

A land use map is an image providing meta information for
the simulation or for visualization purposes. Our system pro-
vides layers of land use maps which are separately interpo-
lated. Each layer contains several areas that are visualized
by different colors. E.g. for a vegetation layer we can inter-
pret the colors among others as forests, grass, or fields. The
user can explicitly define land use maps at any time step by
loading it from a file or directly painting it in our applica-
tion. The interpolation between two explicitly defined time
steps of one layer is done in three passes. First, we calculate
a distance map for the contour of each color of all explicitly
defined land use maps. Afterwards we linearly interpolate
the values for all remaining time steps, yielding a distance
map for each color in each time step. Figures 3.d - 3.i illus-
trate these passes with one color. Finally, for each pixel in
the interpolated map, we take the maximal value of all dis-
tance maps that were generated for all the colors resulting in
a smooth animation of the areas (cf. Figure 3.a - 3.c).

4. Simulation

For a plausible city development animation we have to take
external factors into account that influence the automatic
placement of events. Our system relies on interdependen-
cies of the events to schedule their chronological order, a
global distribution function restricting the number of events
which are placed in each time step and a scoring function
that determines the priority of a certain event. Initially, a de-
pendency graph is created that reflects any relation between
certain events such as the construction of a street segment
that can only be started, if it is connected to the rest of the
street network. Since the timeline has a limited resolution,
e.g., one year steps, we can iteratively determine the set of
events that are placed at each point in time 7¢ based on the
scoring and the distribution function.

2
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Figure 4: This is an example situation in our system. (a) The
scene consists of 3 streets and a house. (b) The dependency
graph contains different colored edges with respect to alter-
native options, e.g., esp can start as soon as eg| and (eg or
es3) are finished. (c) The defined intervals for the scene. At
the bottom of this image, we show 2 possible distributions for
placing the events in the timeline without violating any con-
straints. The first one places all events as early as possible
whereas the second one promotes a uniform distribution.

In each step of the simulation, i.e., for each T, we have
to apply the following calculations to all events that have not
yet been started. We first compute the earliest point in time
Tamin(€) > Tymin(e) (lower bound) when any of the unplaced
events can be started with respect to its backward depen-
dencies. The latest point in time Ty (€) < Tymax(€) (upper
bound) is then determined to guarantee that all forward de-
pendent events can still be fulfilled. Based on the calculated
interval for a possible placement and other external factors,
e.g., the distance of an object to the city center, a score is
identified that reflects the priority of a certain event. With
respect to a global distribution function (e.g. a uniform dis-
tribution) the best events are chosen to be started at the cur-
rent step 7¢ in the timeline.

For a consistent terminology, we will distinguish the fol-
lowing sets of events during the iterative simulation:

Eremaining: events that have not been started so far
Efnisheq: €vents that have already been finished
Eprogress: events that are still in progress

Eplaced = Eﬁnished U Eprogress

Ey: all events in the system (Epjaceq U Eremaining)

Before the new events are started, which are determined
by the simulation in time step 7, we also have to consider
that for all events e € Eprogress One time step has passed since
the last iteration. Therefore, we interpret the value T (e) as
the remaining execution time and decrement it in each time
step by 1. Once an event e € Eprogress has reached a value
of 0 for Ty (e), we remove it from the set Eprogress and put it
into the set Egyisneq- Any new events that are chosen at the
end of one step of the simulation are removed from the set
Eremaining and put into the set Eprogress. Consequently, the set
Eremaining Will be empty after the last step of the simulation.

(© 2012 The Author(s)
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Figure 5: Example for the computation of the lower (a-d) and upper (f-h) bound. The colors of the nodes visualize the sets
Efinishea (8reen), Eprogress (yellow) and Eremaining (blue). In this scenario we assume that each event is defined in the range
[1930,1980] and the current time step T, equals 1953. Each node contains the name (top left), its remaining build time Ty (e)
(bottom left), as well as the values Typin(e) (top right) and Typax(e) (bottom right). (a) Initialization: Tjyin(e) = Tc Ve € Epjaceas
Tymin(€) = 00 Ve € Eepaining. (b-d) Iteratively update the lower bound. (e) All critical paths of the lower bound calculation
result in a DAG which is the input to the upper bound computation. (f) Initialize Ty, (€) for all events e without outgoing edges
with 1980 — T (e). All other nodes in Eepaining are set to —oo. (g,h) Iteratively update the upper bound.

4.1. Dependencies

For a consistent city development animation, we have to take
into account, that events may be dependent on each other.
Figure 4, e.g., depicts the dependency relation for a build
event eg of a street S2 which can only be placed if at least
one of the adjacent streets S1 or S3 already exists and if the
house H1 has been destroyed, i.e., one of the events eg; or
es3 and the event ey, are finished.

Formally, we represent the problem as a dependency
graph G(E,;,D) containing all events E,; as its nodes and
all dependencies D as colored directed edges. Each element
in D is a 3-tuple (eq,ez,c) with e1,ep € E,y; defining an edge
e < ey, i.e., e; depends on e;, and a color ¢ € N. Edges with
the same color represent alternative options (which corre-
sponds to an or relation, cf. Figure 4.b). The set of colors in
the dependency relation of an event e is addressed as C(e).

Currently, our system calculates the logical dependencies
automatically from the given maps based on some simple
rules or heuristics. Obviously, all objects are dependent on
other objects that occupy the same space, i.e., at a specific
point in time only one of these objects can exist in parallel.
More specific rules include streets and railroads being de-
pendent on the existence of any adjacent street or railroad,
respectively, and houses being dependent on a street or an-
other house in a certain distance. In our experiments, these
rules already serve for a very realistic city map animation,
however, our system was designed to be easily extendable
by further rules if more specific use cases are needed.

4.2. Lower and Upper Bounds

For a chronologically correct city map interpolation, all
events have to be executed and finished in their correspond-
ing interval of the timeline with respect to their dependen-
cies. Therefore, we need to prune the initial starting point
interval [Typin(€), Tsmax(e)] of an event e and calculate a new
lower bound Ty,i,(€) > Tymin(e) which is the earliest point
in time for the placement of e with respect to its dependen-
cies. Afterwards, a new upper bound Ty (€) < Tomax(e) is

(© 2012 The Author(s)
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determined to guarantee that all other events ', which are
dependent on e, can still be finished within their specified
interval [T (€”), Tnax(e')].

Notice, our dependency graph makes use of conjunctive
as well as disjunctive conditions. Thus, a simple Dijkstra al-
gorithm, which is typically used in many search problems, is
not sufficient for our dependency graph. The Dijkstra algo-
rithm would only be applicable to our problem if there were
just disjunctions involved. A critical path method, which is
typically applied in task scheduling within the domain of op-
erations research [HL02], is also not sufficient for our case,
since it would only be applicable to our problem if there
were just conjunctions involved. In this section, we describe
our technique, which can handle both types of conditions, in
form of a fixed point iteration to provide a clear mathemat-
ical exposition. In Section 7 we explain how to efficiently
implement the algorithm.

At each time step 7; of the simulation, we calculate the
lower bounds Ty,;,(e) by applying a kind of fixed point
iteration method to all events e € Ejepaining. Initially, we
set Tymin(e) = T for all e € Epjyceq, because those events
have already been placed by a previous step of the algo-
rithm (cf. Figure 5.a). Note, that T;(e) = 0 for all e € Efjsheq
and that Ty(e) is only the remaining time to finish an event
e € Eprogress- Furthermore, we set Tyy;,(e) = oo for all
€ € Eremaining- For those events, Ty(e) still refers to the ex-
ecution time (i.e. the duration to process the event) that was
initially set for each event. Since we know, that all events
e € E,y can be started at Ty,,;, (e) at the earliest, those events
will be finished at Ty, (¢) + T, (e) at the earliest.

Each step in the fixed point iteration will now update the
values Ty, (e) for all events e € Eremaining With respect to
its dependencies (cf. Figure 5.b-d). Let I.(e) be the set of
preceding events of e along the incoming edges with color
c,ie., e €lc(e) & (e, ,c) € D. For each color ¢ € C(e),
we then choose its preceding event ¢’ € I.(e) that yields the
earliest point in time for starting the event e:

Tdmin (ev C) = e/gl}r(le){Tdmin (e/) + Td (e/)}
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An event e can only be started, iff at least one event
¢’ € Ic(e) for each color ¢ € C(e) has been finished, so that
the absolute earliest starting point Ty,;,(e) for the event e
has to be determined by taking the maximum over all the
previously calculated minima as long as this value does not
lie below the defined earliest starting point Ty, (€):

Tymin(e) = max{Typin(e), max {Tymin(e,c)}}
c€C(e)

We iterate the process until 7y, (e) has converged for all
e € Eremaining 1.€., more iterations do not improve the result.

For the calculation of the upper bound, we create a sub-
graph G, (E;,Du) C G(E,y,D) which is a directed acyclic
graph (DAG) containing all critical paths that are needed to
fulfill the dependencies of any event as early as possible. The
edges Dy, are 2-tuples that are formally defined as follows:
(e,e*) €Dy 3c€Cle): e* = arg min{ Ty, (') +Ty(e)}

e'€l.(e)

For these paths we calculate the upper bounds Ty, (e)
of the events e € Eyemaining as follows: Let Ep,g € Eremaining
be the set of events which have no incoming edges in Gy,
i.e., there is no critical path containing an event ¢’ that is a
dependency for e € E,,;. Consequently, we can initially set
Tamax(€) = Tsmax(e) for all events e € E,,y, because those
events could theoretically be placed at the end of the simu-
lation. For all other events e € Egpnax = Eremaining \ Eend> We
have to set Tjq.(€) = —o0.

Similar to the lower bound computation, we now apply a
kind of fixed point iteration method to determine the values
Tumax (e) for all events e € E gy, Let O(e) be the set of suc-
ceeding events of e along the outgoing edges in the DAG,
ie., ¢ € 0(e) & 3(¢,e) € Dy. We then regard all depen-
dent events ¢’ € O(e) of an event e in all critical paths and
choose the one that yields the lowest upper bound:

Tdmax(e) = min{TVmax(e)v E,Iélg(le){Tdmax(e/) - Td(e)}}

Note, that this value is not allowed to exceed the latest
possible starting point Tsmax(e). As soon as the process has
converged, Ty,qx(e) is the latest starting point for the events
e € Eremaining such that the critical paths in G, could still
be fulfilled, i.e., although the simulation might choose the
time step Typqx(e) to start an event e € Epepgining, it is still
guaranteed that all events ¢’ which are dependent on e can
be finished within their defined interval [T, (€”), Tinax(€')].

In rare cases, if the input data is corrupted, e.g., the street
network is not fully connected, or intervals are wrongly de-
fined, i.e., there is no chronological ordering of events that
can fulfill the dependencies, the simulation might yield in-
valid bounds. In that case, we get Typin(€) > Tynax(e) for
some events e. This conflict results from a contradicting re-
lationship in the dependency graph. We overcome this prob-
lem by marking the corresponding objects in our application
in order to give the user direct feedback of any wrongly de-
fined intervals or any corrupted data.

Em“gent

Tdmaw(e) =Tc

Esolved
Timin(e) = Tc

Eremaining

Ean

Figure 6: This figure shows the different sets that are in-
volved for the calculation of the scoring. First, we split the
set Eremaining into the sets Egopyeq and Eypgolved, i-e., whether
or not they can be scheduled in the current step. Within the
set Egypeq, we furthermore have a subset Eyrgent with events
that have to be placed in the current time step in order to
guarantee that all dependent events can still be finished in
the user defined intervals.

4.3. Score Rules and Land Use Maps

Based on the previously calculated lower and upper bound
we divide the set Eyepmaining into the two disjoint sets Egopyeq
and E,501veq (cf. Figure 6). An event e € Eyepgining belongs
to the set E,q, iff its dependencies can be fulfilled in the
current time step T, i.e., Tyyin(e) = Tc. All the remaining
events € € Erepaining \ Esolveq are then put into set Eyygoiveds
i.e., Tynin(e) > T.. Furthermore, we classify events as ur-
gent by putting them into the set Eyrgenr C Ego1veq Whenever
Tymax(€) = Tc. Those events have to be placed in the current
step of the algorithm to guarantee that other events ¢’ which
are dependent on e can be finished within their defined in-
terval [T (€'), Tnax(€')]. This is one of the most essential
points within our simulation, since the interdependencies en-
sure an interpolation of the input data.

For all other events e € Escore = Esolved \Eurggn[ we cal-
culate a normalized score S(e) € [0.0,1.0], where a value
closer to 0.0 represents a rather unimportant event whereas a
value closer to 1.0 reflects an important event for the current
time step. The score can be influenced by several factors. In
our specific implementation, S(e) mainly relies on the fol-
lowing observations: Since an event becomes more urgent
as it approaches its upper bound, we basically take the pre-
vious calculation of the upper and lower bounds as a first
approximation on the importance of an event by calculating
S(e) = 1.0/ (Typax(e) — Tc). We also have to take into con-
sideration, how many events Ny, (e) are still dependent on
an event e in the overall system. The score is then weighted
by Niep(€)/|Eremaining| to assign a higher priority to events
on which more other events are dependent. This ensures a
more balanced animation, since we avoid large sets Eyrgent
of urgent events in later simulation steps.

The overall shape of the city development will be con-
trolled in several ways. The distance to a defined city center,
e.g., prevents the city from growing too fast into an arbitrary
direction. Our system can also apply weightings of the score
by considering several land use maps. Instead of just using

(© 2012 The Author(s)
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Figure 7: For a globally balanced animation, we derive an
event distribution by taking into account all the user defined
intervals. Each interval is converted into a uniformly dis-
tributed histogram. The accumulated histogram reflects the
probability, that the event is placed in a certain time step.
Summing up all the histograms of all events yields the global
event distribution and by accumulation we get the expected
number of events that have to be started at each time step.

a city center, we can thereby animate the overall shape of
the city development, i.e., streets and buildings are only al-
lowed to be built in designated areas. Moreover the ratio of
residential and industrial areas can be controlled by setting a
higher score for all events that belong to the currently disad-
vantaged type.

The provided rules and land use maps we presented al-
ready serve for a plausible animation of city map develop-
ment, however, the system is flexible enough to easily insert
any alternative scoring rules for specific fine tuning.

4.4. Histogram

The logical rules, i.e., the interdependencies and the scor-
ing, serve for a well defined local behavior of the city devel-
opment. However, this is not sufficient to get a global con-
trol of the animation. Our system uses an accumulated his-
togram that determines the number of events for each time
step in order to create a realistic event distribution (cf. Fig-
ure 7). Based on the start intervals that are defined for all
events, we derive the absolute number N,,(7:) of events
that should have been placed in the overall system at each
simulated time step 7c. More specifically, we increment the
accumulated histogram at each time step 7 within the inter-
val [Tynin(e), Tymax(e)] for each event e € E,;; by an amount
of 1.0/(Tsmax(€) — Tymin(e)). This perfectly reflects the im-
pact of each event to the overall animation and produces
a balanced distribution based on the real data input. Let
Nyiaced(Tc) be the number of events |Ep,ceq| that are cur-
rently placed in the simulation at time step 7;.. We can cal-
culate the actual number N, (T;) of events that is placed
at a time step ¢ as follows: Ny (Te) = max(0, Nyps (1) —
Nplaced(TC - 1))

After each step T of the simulation, we take the complete

set Eyrgenr as well as the Ny (T:) — |Eurgent| best events e €

(© 2012 The Author(s)
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Figure 8: This figure illustrates the behavior of the paint
metaphor, when the existence attribute of several object
classes is modified at time step 1. Here we assume that all
objects do not exist (grayed) at time step 0 whereas at time
step 2 they have to exist (colored). (a) Initially, the attribute
value differs for several objects that lie under the brush cir-
cle. (b) The user paints with the attribute value “‘exists”. (c)
The user paints with the attribute value “does not exist”. (d)
The user deletes the explicit definition of attribute values at
the current time step. Whenever the currently selected year
T. lies in the defined interval of a build or destruction event
of an object, the objects are drawn in grayed colors.

Escore With respect to their score S(e) and put them into the
set Eprogress. In the ideal case, Nyps(Tc) is equal to |Epjaceq|
for each time step. However, in rare situations we observe
‘Eurgent| > Nrel(TC) or |Esolved‘ < Nrel(TC)' In the former
case, more events are currently placed in the system than the
accumulated histogram expected, i.e., [Epiaced| > Naps(Tc),
whereas in the latter case, we are not able to place the ex-
pected number of events, i.e., |Epjaced| < Naps(Tc), because
too few of the events fulfill their dependencies. Since the
calculation of N,.;(T¢) is based on the already placed events,
this effect is amortized after several simulation steps and will
not heavily influence the overall appearance of the anima-
tion. In practice, we observe such cases very rarely and they
are usually amortized after one further simulation step.

5. Information Authoring

Shape Modeling Our system is capable of creating,
changing, or deleting any of the primitives from the input
maps, i.e., vertices, edges, or polygons. In practice, a lot
of work is saved by just loading the current street network
and floor plans from any available resources such as Open-
StreetMap [Opel0].

Timeline Editing  For any precise data, the user can de-
fine certain attribute values in the timeline which implicitly
defines the intervals for the placement of the events. Since it
would be too time consuming to apply this approach for ani-
mating the attribute values of a whole city with thousands of
elements, we introduce a paint metaphor to edit the attribute
values of a wide range of objects in parallel. The user first
selects the class of objects that should be edited, e.g., streets
and houses. Afterwards, a certain attribute value is defined
which will be used for the painting process. All elements
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Figure 9: (a) Historical city maps are usually distorted. (b)
The user can define correspondences between the historical
map and the current city map. We then apply a deformation
based on a Delaunay triangulation. By using the deformed
image in the background, the user can efficiently paint the
attribute value “does not exist” for any objects that were not
yet build in past decades.

that share the specified attribute and that touch the current
brushstroke will insert the specified value into the timeline
(cf. Figure 8). This interaction metaphor becomes a power-
ful tool, if images of historical city maps are loaded to the
background to support the editing process.

Historical City Maps  Unfortunately, historical city maps
are usually heavily distorted, because the people did not have
any precise measuring devices or satellite images during that
time. Assuming, that today’s city maps are correct and that
large parts of old city maps contain a subset of today’s ob-
jects, we can apply a simple distortion technique to the his-
torical maps (cf. Figure 9). First, an image of a historical
map is loaded to the background which is then manually
scaled, rotated and translated to align with the current map
as well as possible. Afterwards, a large subset of the street
crossings are already well-aligned with the current street net-
work. For most of the remaining crossings, however, it is
obvious that they should match the current street graph and
that this error comes from an imprecise measure. The user
can now easily establish the correspondences by placing a
source position in the image of the historical map and set-
ting its target position in the current state of the city. The
actual distortion is then calculated as follows. A Delaunay
triangulation is applied to the source positions including the
image corners which divides the original image into trian-
gular sub-images. The triangles are then deformed to fit the
target positions and the contained image data is bilinearly
interpolated.

Land Use Maps For the land use maps, the user can
load existing images or simply draw onto an existing map
by a typical paint metaphor using different colored brushes.
For a more efficient workflow, we allow locking of certain
areas, i.e., locked areas will not be affected by the current
paint process to prevent changes. This feature turned out to
be very helpful in situations, where precise maps exist for a
certain area type. In that case we are able to load the existing
maps and just paint additional information into the remain-
ing areas without touching the imported data.

6. Results

We applied our method to two completely different city
styles, i.e., a Roman-founded European city (Aachen, Ger-
many, cf. Figure 1) and a planned American city (Austin,
TX, USA, cf. Figure 10). While the former is dominated
by two major streets that define a circular ring layout and
many minor streets that behave in a very unstructured way,
the latter one is mainly dominated by a completely rectangu-
lar street pattern. We also created an artificial example that
demonstrates the application of several land use maps (cf.
Figure 11). However, we highly recommend to watch our
accompanying video, since the overall impression of the an-
imations can be hardly expressed by a set of static images.

For the city development of Aachen over 210 years (1800
- 2010) we used 8 images of historical maps, that contained
significant changes over time, and several precise items of
information from books to recover the timeline of landmark
buildings. With our interactive software, we could easily
produce digital versions of the historical maps based on the
imported street network of the current city state. The prepa-
ration for the simulation took ~8 hours of interaction includ-
ing the distortion of the 8 historical city maps, painting the
existence attribute according to these maps, inserting several
historic buildings, defining specific timelines for a few land-
mark buildings and creating several land use maps. Note,
that 8 hours are not very much if one takes into account that
over 50k events have been inserted to our system.

After the simulation step, we generated a 3D model for
each time step by extruding the floor plans and randomly
distributing trees in forest regions based on the interpolated
land use maps. For the texturing of the ground we project
the maps of the land use onto the basic terrain. Furthermore,
we improve realism by adding some effects like a sky box,
procedural clouds, shadows and ambient occlusion. This en-
ables us to create a visually pleasing flyover while the city
map development is being animated.

We also compared the interpolated result of our system
with the ground truth of an existing map by successively
deleting maps from the simulation. Removing a small set
of maps does not change the result very much, however, if
we just keep the first and the last state, our simulation will
not fully match the real history as external factors like wars
or industrialization are unpredictable (cf. our accompany-
ing video). As long as the user can provide information of
times with significant changes, the produced animation will
much more likely fit the real city development, since our
procedural interpolation ensures that the animation perfectly
matches the inserted data. Furthermore, if it is only known
that an extreme external factor is influencing the city growth
during a certain time period, like industrialization, but no ex-
plicit data is available, we could reflect this kind of behavior
by changing the global distribution function. This would be
part of future work, since our current implementation fully
derives the distribution function from the object timelines.

(© 2012 The Author(s)
(© 2012 The Eurographics Association and Blackwell Publishing Ltd.



Lars Krecklau, Christopher Manthei, Leif Kobbelt / Procedural Interpolation of Historical City Maps

1839 1879 1919

19497

1800

) @
184017 77
S

e

9, 1872, 1885, 1919, 1940, 2010).

e 1840

Figure 11: Artificial example to demonstrate our method. The overall growth behavior of the city is specified by a shape layer
at 1820 and 1840. Therefore, the city shape will first expand to the upper right (till 1820) before it starts growing into the other
directions. The close-up (red rectangle in 1840, bottom sequence) shows the development of a park in the center of the city. The
whole example was created in ~1.5 hours including the creation of the land use maps for the years 1800, 1820, 1840, 1850 and
1852 (~1h) and the painting of events for the years 1800, 1840 and 1852 (~0.5h).

In the second experiment, we generated an animation of
the city development of Austin over 171 years (1839 - 2010).
The animation is based on the information of 6 historical city
maps. Although the street layout of Austin differs a lot from
the one of Aachen, this does not affect our method since
it utilizes existing street networks as input data. The over-
all interaction time for this example was only 4 hours, as
we just used the paint metaphor to edit the timeline with-
out inserting new objects or defining specific timelines for
landmark buildings. Therefore, the workflow is even more
efficient than for the Aachen example, because over 171k
events have been inserted within just 4 hours. In this case,
the hardest part was to undistort the images of the histori-
cal city maps due to their dimension. Although our inserted
information was very sparse, the resulting information still
looks authentic (cf. our accompanying video).

7. Discussion

Implementation  Our animation tool is implemented in
C++ using the GPU for an efficient drawing of the primi-
tives. Since the calculation of the lower and upper bounds
takes the biggest part of the computation, we have highly
optimized the process by combining a breadth first traversal
starting from the set £,,4¢.q and FIFO queues for the current
working set, i.e., whenever an event calculates a better value
for itself all dependent events will be enqueued for the next
iteration. Thus we do not need to touch all events in each it-
eration, but only those that could possibly update their value.
Running our application on an Intel Core i7 at 2.67GHz our
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algorithm takes ~2 minutes for the animation of Aachen
(210 time steps involving 50k existence events) and ~5.5
minutes for the animation of Austin (171 time steps involv-
ing 171k existence events).

Manual Effort Currently, our application relies on several
manual steps to insert the data into the simulation. Especially
for the map alignment, the user has to insert around 15 to 30
correspondences in order to get a sufficiently accurate image
distortion. In our first example, the biggest amount of time
was consumed for the extraction of exact dates from history
books which is mostly important for landmark buildings. We
believe that most of the interaction processes can be auto-
mated in the future like the detection of correspondences be-
tween the historical map images and the given vector data
of the current city state [cCKS*04] or the use of history
databases (if existent) for detailed information on specific
buildings.

Deadlocks  In some situations it might happen, that the
interdependencies can not be resolved, e.g., if two different
houses are defined to exist at the same point in time at the
same location. This is due to the fact that we do not check
the input for causal correctness in advance. Therefore, we
give a visual feedback in the city map viewer to efficiently
detect and fix such configurations. Notice that such inconsis-
tencies cannot result from inconsistent maps. For example,
if a house appears on a map in 1950 and 1970 but not in
1960 then our procedural interpolation will build the house
before 1950, destroy it between 1950 and 1960, and re-build
it between 1960 and 1970.
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8. Future Work

Model vs Data We currently use a simplistic model for the
urban development. However this was made with the inten-
tion to demonstrate the capabilities of a purely data driven
approach. A model driven approach cannot easily be gen-
eralized and adjusted to different city types (e.g. a planned
US city like Austin vs. a historically grown European city
like Aachen). Hence, our approach was to rather extract the
characteristic dynamics of the city development from histor-
ical maps instead of adjusting abstract parameters in a syn-
thetic model. Of course, if such a model is available (domain
knowledge) this information can be integrated into our simu-
lation by adjusting the scoring function accordingly (e.g. by
increasing the priority for the extension of major roads).

Visualization =~ We would like to utilize the key concepts
of our approach to enhance our 3D visualization by animat-
ing the construction and the destruction of any entities like
buildings or streets. Our paper presents an intuitive way to
produce such kind of animations by uncoupling the genera-
tion of a certain structure from its development over time.

9. Conclusion

This paper proposes a novel approach for the interpolation
of several city maps supported by additional historical infor-
mation resulting in a plausible animation of the city develop-
ment. By applying an intuitive painting metaphor, a user can
efficiently insert historical events into our system regardless
of whether the information is given in textual form or as an
image of an old city map. We then interpolate the discrete
setting in a procedural manner by determining the actual
time step of a certain event taking several constraints into ac-
count like interdependencies, several scoring functions and
a global distribution function. Together with a linear inter-
polation of the underlying land use maps the development is
visualized by a virtual 3D city model. This communicates an
intuition of a possible city growth to the observer which is
more attractive than comparing a fixed set of historical maps.
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