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Abstract
The theory of optimal size meshes gives a method for analyzing the output size (number of simplices) of a Delaunay
refinement mesh in terms of the integral of a sizing function over the input domain. The input points define a
maximal such sizing function called the feature size. This paper presents a way to bound the feature size integral
in terms of an easy to compute property of a suitable ordering of the point set. The key idea is to consider the
pacing of an ordered point set, a measure of the rate of change in the feature size as points are added one at a
time. In previous work, Miller et al. showed that if an ordered point set has pacing φ, then the number of vertices in
an optimal mesh will be O(φdn), where d is the input dimension. We give a new analysis of this integral showing
that the output size is only Θ(n + n logφ). The new analysis tightens bounds from several previous results and
provides matching lower bounds. Moreover, it precisely characterizes inputs that yield outputs of size O(n).

Categories and Subject Descriptors (according to ACM CCS): F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—Geometrical problems and computations

1. Introduction

Mesh generation is the process of decomposing a domain
into simple geometric elements (simplices). It is fundamen-
tal to applications in physical simulation, graphics, and data
analysis (see the recent survey by Shewchuk [She11b]). In a
common variant of the problem, the input is a set of n points
P⊂ Rd and a bounding domain Ω containing P and the out-
put is a simplicial complex decomposing Ω such that the
points of P are among the vertices. Throughout, the size or
complexity of a mesh is the number of simplices in the out-
put.

The quality of a mesh is measured by the shapes of the
simplices. Definitions of quality vary by application, but one
commonly used criterion is that all simplices have an upper
bound on the circumradius to shortest edge ratio (see Fig-
ure 1) [MTTW95]. In such cases, we say that the output
mesh has bounded radius-edge. The Delaunay refinement
paradigm of meshing adds extra points called Steiner points
to a set of input points so that all of the simplices of the
Delaunay triangulation have bounded radius-edge. The dual
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view of Delaunay refinement is Voronoi refinement where
quality is measured by the aspect of the Voronoi cells (see
Figure 2 for examples and the precise definition). Figure 3
shows an example of an input, its Delaunay triangulation,
and the quality output mesh.
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Figure 1: Examples of circumradius to shortest edge ratios.

One consequence of this definition of quality is that the
number of vertices and the number of simplices in the output
are the same up to constants, i.e. each vertex participates in
only a constant number of simplices [MTTW95]. So, bound-
ing the asymptotic mesh size is the same as bounding the
number of vertices in the output.

A critical challenge in mesh generation is to balance the
competing demands of having both small mesh complexity
and high quality elements. To achieve this balance, it is often
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Figure 2: The Voronoi aspect ratio is R/r where R is the
distance from the vertex to the farthest vertex of the cell and
r is the radius of the largest contained ball centered at the
vertex.

required that the output mesh is graded, with smaller sim-
plices in dense areas gradually growing into larger simplices
in sparse regions. This grading can be seen in Figure 3 with
smaller simplices near the curve and larger simplices around
the outside. Optimal meshes are those that have asymptoti-
cally minimum size among all quality meshes of a given in-
put. Delaunay refinement naturally produces graded meshes
of asymptotically optimal size up to constants of the form
2O(d). The main result of this paper gives new bounds on the
size of such optimal meshes. In particular, we show when
these meshes have linear size.

1.1. Optimal Size Meshes

A celebrated result of Ruppert [Rup95] showed how to con-
struct quality Delaunay meshes in the plane with an asymp-
totically optimal number of vertices. The key idea in Rup-
pert’s analysis is the local feature size fP : Rd → R≥0 in-
duced by the input set P; it is defined as

fP(x) := min{r : |P∩ball(x,r)| ≥ 2}.

Equivalently, fP measures the distance to the second-nearest
neighbor in P. Note that fP is 1-Lipschitz: fP(a) ≤ fP(b)+
‖a− b‖ for any pair of points a,b ∈ Rd . We have given the
definition of fP for point sets, but Ruppert’s work was also
concerned with more general inputs including features like
edges.

The straightforward generalization of Ruppert’s work to
Rd says that the number of vertices in an optimal mesh of a
point set P in a domain Ω ⊂ Rd is bounded (up to constant
factors) by the feature size measure:

µP(Ω) :=
1

Vd

Z
Ω

1
fP(x)d dλ(x),

where Vd denotes the volume of the unit d-ball, and λ is the
volume measure on Rd . Because of the form of the defini-
tion, the feature size measure is sometimes called the feature
size integral. The constant factors in the Ruppert bound may
also depend on the desired quality of the output.

The precise constants in the Ruppert bounds depend on
details of the particular meshing algorithm used. For ex-
ample, different refinement schemes prioritize some refine-

ments over others, which can have an impact on the output
size. Moreover, the constants depend on the desired output
radius-edge ratio. Lastly, the relationship between the fea-
ture size measure and the output of a meshing algorithm de-
pends on the fatness of the domain to be meshed; a long
skinny convex set can have non-negligible measure and yet
may contain no vertices of a quality mesh. Thus, some fat-
ness condition on the domain is necessary as will be seen
in the Theorem statements below. It is an active area of re-
search to find heuristics that improve these constants in both
theory and practice, but these efforts only affect the constant
factors in asymptotically tight bounds. This paper deals con-
siders the most general case, analyzing the feature size mea-
sure directly rather than attempting to treat only a specific
algorithm.

The Ruppert lower bounds are quite general. Any mesh
of P in Ω with bounded radius-edge will have size at least
µP(Ω) up to constants. It applies equally to meshing al-
gorithms applying heuristics or post-processes to smooth
and improve mesh quality and reduce size. These in-
clude variational methods [ACSYD05], Laplacian smooth-
ing, off-center methods [Üng09] and Hodge optimiza-
tion [MMdGD11] among many others. Again, these meth-
ods may improve the constants, but the asymptotic growth is
governed by the Ruppert bound.

The Ruppert approach presented here appears in different
forms in other work. Other sizing functions were considered
in Alliez et al. [ADA07]. Pav also gave anisotropic bounds
on mesh size in terms of the smallest angles allowed that
relied on integrating a density induced by the sizing field
over the domain [Pav04].

1.2. The Search for Meaningful Bounds

The tight bounds on mesh sizing from the Ruppert bounds
are nice, but they are not very informative because they de-
pend on the feature size integral rather than n, the number
of input points. They do not, for example, tell when the out-
put size will be O(n2) or O(n) or any other tidy function of
n. Moreover, they do not give an easy way to evaluate the
amortized change in the output size as a result of adding a
single new point.

There have been several previous attempts to give more
meaningful bounds on the size of output meshes. In their
work on quadtree meshes, Bern et al. [BEG94] prove
that the output size is O(n log(aspect(Del(P)))), where
aspect(Del(P)) is the maximum aspect ratio among all sim-
plices in the Delaunay triangulation of P. A similar bound
comes from considering the gap ratio introduced by Tal-
mor [Tal97]. In both cases, the upper bounds are O(n log∆P),
where ∆P is the spread of P defined as the ratio of largest to
smallest interpoint distances.

There is also a local version of these bounds based on the
spread. It can be shown using similar packing methods that
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Figure 3: An example of an input point set (left), its Delaunay triangulation (center), and the output mesh with its Voronoi
diagram (right).

the optimal output size is at most

∑
p∈P

log(aspect(Vor(p))).

As we will show in Section 2, these bounds can be quite
loose.

Later optimal meshing algorithms such as those
by Mitchell and Vavasis [MV00] and by Cheng and
Dey [CD04] used volume packing arguments similar to
those employed by Ruppert. However, in these cases, the al-
gorithms consider higher-dimensional features and thus the
optimality proofs must be intertwined with the removal of
badly shaped simplices called slivers. For point set inputs,
existing sliver removal methods such as those by Li and
Teng [Li03] or by Cheng et al. [CDE∗00] imply that the size
of the optimal mesh with slivers is within a constant factor
of the size of the optimal mesh without slivers. So, we don’t
need to consider slivers in our analysis.

The immediate ancestor of the current paper is the work
of Miller et al. [MPS08] that introduced the notion of pac-
ing. That paper gave the first bounds on optimal mesh size
that could recognize a linear size mesh in the presence of
bad aspect ratio input simplices. However, the upper bound
was far from tight; it could easily be off by a factor of n.
Moreover, the bounds were dependent on a particular (best)
permutation of the input points unlike Theorem 1.1 (below),
which applies to any permutation starting with the farthest
pair.

1.3. Contribution

In this paper, we give a new analysis of the feature size mea-
sure that provides tight upper and lower bounds. Our analy-
sis makes it clear exactly when an input will yield an opti-
mal mesh of O(n) size. Moreover, the analysis, gives a tight
bound on the influence of a single new point, which may

have implications for future algorithms, particularly in dy-
namic meshing.

We need a few definitions in order to state the main result.
For an ordered point set P = {p1, . . . , pn}, the ith prefix of
the ordering is defined as Pi = {p1, . . . , pi}. For any point pi
in the ordering (i ≥ 3), the pacing is defined as the ratio φi
of the feature sizes at pi induced by Pi−1 and Pi:

φi :=
fPi−1(pi)

fPi(pi)
.

Equivalently, φi is the ratio of distances to the second and
first nearest neighbors of pi among its predecessors. The def-
inition implies that φi ≥ 1 for all i. Define φ1 := φ2 := 1 by
convention. The pacing of the ordering is the geometric
mean of the φis and is denoted by φP := (∏n

i=1 φi)
1/n. The

more useful form of this definition is

n logφP =
n

∑
i=1

logφi.

Theorem 1.1 Let P = {p1, . . . , pn} be an ordered set of n
points in Rd such that r = ‖p1− p2‖ is the largest pairwise
distance. Let Ω be a subset of Rd such that ball(p1,2r) ⊆
Ω⊆ ball(p1,cr), for some constant c≥ 2. Then,

µP(Ω) = Θ(n+n logφP) .

In previous work, it was shown that the feature size mea-
sure is at most O(nφ̂

d
P) [MPS08], where φ̂P = maxi φi is

a possibly larger notion of pacing. Theorem 1.1 implies a
bound of O(n + n logφP). This tightens the previous results
using this method, moving them from theoretically novel to
practically useful. Also, as a side effect, it eliminates the
need to optimize over permutations in order to express the
bound.

The proof of Theorem 1.1 will be broken up into two
parts: the upper bound in Theorem 5.3 and the lower bound
in Theorems 6.2 and 6.3. There are two theorems for the
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lower bound because the Ω(n) and Ω(n logφP) lower bounds
are proven separately to handle the case when logφP < 1.

The upper and lower bounds in Theorem 1.1 only assume
that the order on the points starts with the farthest pair. Con-
sequently, the same bound holds asymptotically for any such
ordering. Section 2.1 gives an example where this condition
or a similar one is necessary. The result is stated for ordered
point sets because the pacing is a function of the ordering
and is not well defined otherwise.

Using the pacing instead of the spread gives a sharper
bound, because for all point sets P and all orderings of P,
∆P ≥ φP. Moreover, for simple examples such as the one de-
scribed below in Section 2.2, the spread can be exponentially
larger than the pacing.

Our presentation makes no assumption about the dimen-
sion of the inputs. Although most meshing applications
deal with 2- or 3-dimensional domains, recent work has
shown that higher dimensional meshes are ideal for geo-
metric and topological inference as they provide a nice ba-
sis for a space of smooth functions graded according to the
density of the input points [HMOS10, She11a]. Functions
such as the distance function to the input or the distance
to the empirical measure can be used to recover the homol-
ogy of the underlying space from which the input was sam-
pled [CL06, CCSM11].

2. Some Difficult Inputs for Mesh Generation

In this section, we present two simple examples of input
point sets that have caused problems in guaranteed mesh
generation. The first example is just two points close to-
gether in the middle of a big empty annulus with a sparse
bounding box around it. It is a canonical configuration of
points leading to superlinear output size in that any super-
linear output mesh contains a similar configuration of in-
put points up to scaling and rotation. This bad example in-
spired many of the looser mesh size analyses described in
Section 1.2 such as those based on the spread or the aspect
ratio of the input Delaunay triangulation. Such bounds are
tight on this bad example.

The second bad example we present is the foil to previous
efforts to give a meaningful bound on the output mesh size
in terms of n and a simple geometric parameter of the input.
The example is a set of exponentially spaced points on a
line. As we show below, any of several previous bounds give
O(n2) bounds whereas the true output size is only O(n). The
linear output size is easily computed from Theorem 1.1.

2.1. The Two Point Example

Let P contain two points of distance 1 in the center of a
bounding box of sidelength ∆ composed of 2d vertices ar-
ranged on the corners of a d-cube. This case is illustrated
in Figure 4. From the picture, it is clear that the grading of

the refined mesh causes it to have only a constant number of
Steiner points in each of the geometrically growing annuli
around the points in the center. There are only O(log∆) such
annuli and so the total output size is O(n log∆).

This example is simple enough that it is also possible to
derive the O(n log∆) bound by evaluating the integral in the
definition of the feature size measure. To turn this constant
size example into an asymptotic lower bound, it suffices to
pack O(n) copies of the bounding box into a box of side-
length O(n1/d

∆).

The two point example also demonstrates the reason for
farthest pair condition on the ordering of the input points. If
the two close points in the center are allowed to be first in
the permutation, the pacing can be constant. Then, a bound
of O(n logφP) would predict a linear size output, which we
have already shown is not the case.

2.2. The Exponentially Spaced Example

123456

0 1/2

Figure 5: Exponentially spaced points on a line.

The following example will show that previous ap-
proaches at giving meaningful optimality bounds are not
tight on all instances.

Consider the set of points P = {p1, . . . , pn} ⊂ R2 where
pi := (2−i,0). Moreover, such a point set only requires
O(logn) bits of floating point precision to represent, so it
is reasonable. The spread ∆ of P is 2Θ(n). Thus, n log∆ =
Θ(n2). This is not fixed by taking a more local approach.
For example, the aspect ratio of the Voronoi cell of pi is
also 2Θ(i), assuming a bounding domain with constant ra-
dius. Thus,

n

∑
i=1

log(aspect(Vor(pi))) =
n

∑
i=1

Θ(i) = Θ(n2).

A similar result holds if one looks instead at the aspect ratios
or radius-edge ratios of the Delaunay triangles. In all cases,
the previous methods predict a quadratic size mesh. How-
ever, moving pn to the beginning yields a permutation such
that the pacing of pi is less than 2 for each i = 1, . . . ,n− 1.
So, the pacing of this permutation is Θ(1). Thus, Theo-
rem 1.1 implies that the actual mesh size will only be Θ(n).

3. The History and Usefulness of Pacing Analysis

We refer to the bounding of the feature size measure in terms
of the pacing of an ordering as pacing analysis. Pacing anal-
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Figure 4: The Two Point Example (left) and its resulting mesh after refinement (center) including its Voronoi diagram. The
refined mesh only has a constant number of vertices in each of the geometrically growing annuli (right).

ysis has proven useful both in the analysis of meshing al-
gorithms and also in guiding the development of new algo-
rithms. We will give some history of this idea, its origins,
and its uses.

Pacing analysis was developed out of a desire to gener-
alize certain properties of quadtree-based meshes to Delau-
nay meshes. Here, we use “quadtree” as a general term for
quadtrees, octtrees, and their higher dimensional analogues.
A quadtree may be constructed from a point set by iteratively
splitting every box that contains more than one input point
into 2d equal boxes. To balance the quadtree, more boxes
are split so that no two adjacent boxes have dramatically dif-
ferent sizes. It was observed early on that O(n) new splits
sufficed to balance a quadtree with n boxes. This is what is
meant by the so-called “linear cost of balancing a quadtree”
(see [Moo95] for an extensive treatment of quadtree balanc-
ing analysis though the idea is older than that paper).

Balancing quadtrees plays the same role as refinement in
Delaunay refinement; it fills out the ambient space so that
sizes change gradually, i.e. so that the output is graded. The
original motivation for pacing analysis was the search for an
analogue of the linear cost of balancing a quadtree that ap-
plies to Delaunay refinement. This would require a class of
point sets to stand in analogy with the unbalanced quadtrees
so that the output of Delaunay refinement on any such point
set has only a linear number of vertices. In light of the Rup-
pert bounds, this amounts to a family of n-point sets P such
that

µP(Ω) = O(n).

There are obvious point sets that satisfy such a criterion.
For example, the output of any size-optimal meshing algo-
rithm works, but this is too restrictive to be useful. A much
richer class of point sets is generated by the following tech-
nique. Starting with any two points, iteratively add a point on
the Voronoi diagram of the current point set. Repeat. That is,

each new point is equidistant from its two nearest neighbors.
The only requirement is that the first two points must remain
the farthest pair throughout. In particular, the vertices of a
quadtree may be generated this way. This corresponds to a
point set with pacing φP = 1.

To generalize this idea further, Miller et al. showed that
as long as the distance to the first and second nearest neigh-
bors of each new point differed by at most a constant fac-
tor φ, then the output size would be O(φdn) [MPS08]. This
was used to generalize an idea from Bern, Eppstein and
Gilbert [BEG94], who showed that quadtree methods could
be used to produce linear size meshes in any dimension by
relaxing the usual balancing and aspect ratio conditions. This
relaxation was nearly equivalent to the notion of a com-
pressed quadtree, a variant that permits large changes of
scale. In this light, the Miller et al. paper showed that com-
pressed quadtrees also have a natural analogue in Delaunay
refinement.

The next major use of pacing was in the proof of the
Scaffold Theorem of Hudson et al. [HMPS09]. This the-
orem gives simple conditions on the a sample of points
from a surface, under which the surface mesh and the vol-
ume mesh will have the same size up to constant factors.
This was essential for showing that existing output-sensitive
optimal-size meshing algorithms remained output sensitive
even if they preprocessed the input by placing it in a bound-
ing box and then later eliminated the extra simplices gener-
ated around the outside. This is a very common procedure
as it is difficult to identify the inside and outside of a surface
before actually building the mesh. The main open problem
presented in the conclusion of the original paper on the Scaf-
fold Theorem is whether necessary and sufficient conditions
could be found for bounding mesh sizes in terms of the num-
ber of vertices. This question is settled by the tight bounds
of Theorem 1.1.

Miller et al. extended the linear-size Delaunay meshes of
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their previous work to hierarchical quality meshes [MPS11].
They showed that these meshes can be constructed with O(n)
size in O(n logn) time. Pacing analysis plays two vital roles
in the analysis, both to bound the size of the mesh and also
in the analysis of the point location data structure. In fact,
the algorithm explicitly computes the pacing of each newly
inserted point and behaves differently for well-paced inser-
tions than for others.

In the current work, we present an asymptotically tight
version of pacing analysis. This implicitly tightens bounds
in each of the preceding results. We also achieve mesh size
bounds from pacing analysis in a way that does not depend
on the specific ordering given. This means that the change
in the final mesh size induced by the insertion of any single
point can be approximated up to a constant factor as long as
that points is not one of the farthest pair.

4. Basic Definitions

A measure µ on Rd is a function from Σ, the set of (Borel)
subsets of Rd , to R that is

1. nonnegative: µ(A)≥ 0 for all sets A ∈ Σ,
2. countably additive: µ(

S
i∈N µ(Ai)) = ∑i∈N µ(Ai) for any

countable collection of disjoint sets Ai ∈ Σ, and
3. has null empty set: µ(∅) = 0.

An immediate consequence of the nonnegativity and count-
able additivity properties is that measures are subadditive
with respect to unions, i.e. µ(A∪B)≤ µ(A)+µ(B).

Throughout, we use λ to denote the standard volume mea-
sure on Rd . We use σ to denote the surface area measure
over the unit (d− 1)-sphere. So, letting B = ball(c,r) with
boundary (d− 1)-sphere S, λ(B) =

R
x∈B dλ(x) = rdVd and

σ(S) = drd−1Vd .

Given two measures µ and ν, we say that µ is a submea-
sure of ν, denoted µ� ν, if µ(A)≤ ν(A) for all A∈ Σ. We do
some basic arithmetic on measures. For example, the sum of
two measures is a measure defined as (µ + ν)(A) = µ(A)+
ν(A). If µ � ν then ν− µ is a measure, where (ν− µ)(A) =
ν(A)−µ(A).

The feature size measure is defined with respect to a den-
sity. That is, for a fixed point set P, we can define the mesh
density f = 1

Vd fd
P

. This allows us to write µP = f ·λ. In this
case, we say that µP has density f with respect to the volume
measure λ.

For point sets P ⊆ Q, fP ≥ fQ, because the distance to
two points in Q is at most the distance to two points P. This
implies that µP � µQ. This defines a kind of monotonicity on
the feature size measures induced by increasing point sets.
Moreover, P⊆ Q implies that µQ−µP is a measure.

5. Upper Bound

The proof of the upper bound on the feature size measure
will follow a simple pattern. First, we prove a bound for in-
puts consisting of only two points (Lemma 5.1). Then, we
bound the change in the measure upon adding a single new
point (Lemma 5.2). Finally, we apply this Lemma induc-
tively to get the final bound (Theorem 5.3).

Lemma 5.1 (Just two points) If P = {p,q} and Ω ⊆ B =
ball(p, c

2‖p−q‖) for some constant c > 4, then

µP(Ω)≤ 1+d lnc.

Proof The assumption that Ω ⊆ B implies µP(Ω) ≤ µP(B).
Rewriting µP(B) in polar coordinates yields

µP(B) =
1

Vd

Z
B

dλ(x)
fP(x)d =

1
Vd

Z
s∈Sd−1

c
2‖p−q‖Z

0

rd−1

fP(rs)d drdσ(s),

where Sd−1 denotes the unit (d − 1)-sphere bounding
ball(0,1), rs denotes the point s ∈ Rd with all coordinates
scaled by a factor r, and we assume without loss of general-
ity that p is the origin.
For all x ∈ Rd , fP(x)≥max{ 1

2‖p−q‖,‖x− p‖}. So,

µP(Ω)≤ 1
Vd

Z
s∈Sd−1

c
2‖p−q‖Z

0

rd−1

(max{ 1
2‖p−q‖,r})d

drdσ(s)

= d


1
2‖p−q‖Z

0

rd−1dr
( 1

2‖p−q‖)d
+

c
2‖p−q‖Z

1
2‖p−q‖

rd−1dr
rd


= 1+d lnc.

We now bound the change in the feature size measure in-
duced by the addition of a single point.

Lemma 5.2 (One more point upper bound) Let P⊂Rd be
a finite point set and let P′ = P∪{q} for some q ∈ Rd \P.
Let φ = fP(q)

fP′ (q) . Then, for any domain Ω⊆ Rd ,

µP′(Ω)−µP(Ω)≤ 1+d ln(3dφ).

Proof Since P ⊆ P′, ν := µP′ − µP is a measure and thus it
will suffice to prove the statement for Ω = Rd , i.e. that

ν(Rd)≤ 1+d ln(3dφ).

Let U be the subset of Rd where fP 6= fP′ . It follows that

ν(Rd \U) = 0. (1)

Let R := fP′(q); this is the distance from q to the nearest
point of P. The definitions of R and φ imply that Rφ = fP(q).
For all points x in the ball B = ball(q, R

2 ), fP′(x)≥ R
2 , so

ν(B) =
1

Vd

Z
B

(
1

fP′(x)d −
1

fP(x)d

)
dλ(x)

c© 2012 The Author(s)
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≤ 1
Vd

Z
B

(
2
R

)d

dλ(x) = 1. (2)

For any x ∈U ,

fP(x)≤ ‖x−q‖+Rφ, (3)

because fP is 1-Lipschitz. Moreover,

fP′(x)≥ ‖x−q‖, (4)

because q must be one of the two nearest neighbors of x if
fP(x) 6= fP′(x). We apply the bounds in (3) and (4) as follows.

ν(U \B) =
1

Vd

Z
U\B

(
1

fP′(x)d −
1

fP(x)d

)
dλ(x)

≤ 1
Vd

Z
U\B

(
1

‖x−q‖d −
1

(‖x−q‖+Rφ)d

)
dλ(x)

≤ d
Z ∞

R/2

(
1
rd −

1
(r +Rφ)d

)
rd−1dr

< d ln(3dφ). (5)

We have extended the integral over all of Rd \B (the function
is nonnegative) and rewrote it in polar coordinates with ori-
gin at q. The final inequality follows from a straightforward
calculus exercise (the full proof may be found in Lemma A.1
below). The claim now follows from the subadditivity of ν

and the inequalities (1), (2), and (5) as follows.

ν(Rd)≤ ν(Rd \U)+ν(U \B)+ν(B) < 1+d ln(3dφ).

Theorem 5.3 (Upper bound) Let P = {p1 . . . , pn} be an
ordered set of points such that ‖p1− p2‖= diameter(P). Let
Ω ⊆ ball(p1,

c
2‖p1 − p2‖) for some constant c > 4 be the

bounding region. Then,

µP(Ω) < 1+d lnc+n+dn ln(3dφP).

Proof Recall that Pi = {p1, . . . , pi} is the ith prefix. We
rewrite the measure as a telescoping sum:

µP = µPn = µP2 +
n

∑
i=3

(µPi −µPi−1).

The bounds from Lemmas 5.1 and 5.2 imply that

µP(Ω) < 1+d lnc+
n

∑
i=3

(1+d ln(3dφi)) .

The result now follows from the definition of φP as the geo-
metric mean of the φis.

6. Lower Bound

The proof of the lower bound will be similar to the proof of
the upper bound in that we will use the pacing of a single
new point to bound the change in the feature size integral.

Lemma 6.1 (One more point lower bound) Let P be a set
of at least 2 points and let P′ = P∪{q} for some q ∈ Rd .
Let Ω ⊂ Rd be a set containing ball(q,diameter(P′)). Let
φ = fP(q)

fP′ (q) . Then,

µP′(Ω)−µP(Ω)≥ 1
2d

(
d ln

φ

3
−1
)

Proof The bound is trivial if φ ≤ 3, so we may assume that
φ > 3. Let R = fP′(q). Since P⊂ P′, ν := µP′ −µP is a mea-
sure. By the subadditivity of ν, it will suffice to prove a lower
bound on ν(U), where U = {x : R≤‖x−q‖≤ Rφ

3 }⊆Ω. For
all x ∈U ,

fP(x)≥ 2Rφ

3
, and

fP′(x)≤ R+‖x−q‖ ≤ 2‖x−q‖.

The lower bound follows because there is at most one point
of P in the interior of ball(q,Rφ). The upper bound follows
because fP′(x) is 1-Lipschitz. We apply these bounds and
convert to polar coordinates:

ν(U) =
1

Vd

Z
U

(
1

fP′(x)d −
1

fP(x)d

)
dλ(x)

≥ 1
Vd

Z
U

(
1

(2‖x−q‖)d −
(

3
2Rφ

)d
)

dλ(x)

>

(
d

Z Rφ

3

R

rd−1

(2r)d dr

)
− 1

2d

=
1
2d

((
d

Z Rφ

3

R

dr
r

)
−1

)

=
1
2d

(
d ln

φ

3
−1
)

.

When we apply the preceding lemma to a set of n points
and use the same telescoping sum argument as in Theo-
rem 5.3, we get the following lower bound.

Theorem 6.2 (Pacing Lower Bound) Let P = {p1 . . . , pn}
be an ordered set of points with pacing φP. If Ω ⊂ Rd is a
set containing ball(p1,2diameter(P)), then

µP(Ω) >
n
2d

(
d ln

φP

3
−1
)

.

The Pacing Lower Bound can be sublinear in n (or nega-
tive!) because of of the negative term and the possibility that
φP is small. For completeness, we also include a proof of a
linear lower bound on µP(Ω). This could also be deduced
directly from the Ruppert lower bounds and the observation
that the output mesh must contain all the input points.

Theorem 6.3 (Linear Lower Bound) Let P = {p1 . . . , pn}
be an ordered set of points with pacing φP. If Ω ⊂ Rd is a
set containing ball(p1,2diameter(P)), then

µP(Ω)≥ n
3d .
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Proof For each pi ∈ P, let Bi := ball(pi,
1
2 fP(pi)). Observe

that the interiors of the Bis are pairwise disjoint. For x ∈ Bi,
the Lipschitz property of fP implies that fP(x) ≤ fP(pi) +
‖x− pi‖ ≤ 3

2 fP(pi). This bound implies that for any pi ∈ P,

µP(Bi) =
1

Vd

Z
Bi

dλ(x)
fP(x)d ≥

1
Vd

Z
Bi

dλ(x)
( 3

2 fP(pi))d
=

1
3d .

Let S :=
Sn

i=1 Bi. Since S⊂Ω,

µP(Ω)≥ µP(S) =
n

∑
i=1

µP(Bi)≥
n
3d .

7. Some directions for future work

The work of Ruppert on optimal meshing has been extended
to feature size functions that also take into account input
features beyond just point sets, including piecewise linear
or even piecewise smooth complexes [DL09]. One direction
for future work is to extend these methods for bounding the
feature size measure in these settings as well.

It would also be interesting to extend this approach to
anisotropic sizing functions, such as in [BWY11]. In that
setting, it is not known how to relax the quality constraints
to guarantee a linear size mesh.

Given that the spread has been used extensively to bound
the complexity of Voronoi diagrams [Eri01, Eri05] (without
Steiner points) and the pacing provides provably tighter re-
sults for mesh sizing than the spread, it might be possible to
use pacing analysis to prove tighter per-instance bounds on
the complexity of Voronoi diagrams.

Moreover, since the proof of Theorem 1.1 bounds the cost
of adding a single point, it makes sense to apply these an-
alytic techniques to dynamic meshing problems in which
points may be added or deleted. In this case, the pacing of a
point to be inserted tells us how to bound the work needed to
complete the insertion. Similarly, we can estimate the cost of
a deletion. In both cases, we can change the behavior of the
algorithm when the number of local changes induced by an
insertion or deletion will be exorbitant. This approach was
shown to be effective in decreasing the total point location
work in the static setting [MPS11].
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Appendix A: A bit of calculus

Lemma A.1 Given positive constants φ≥ 1 and R,Z ∞
R/2

(
1
rd −

1
(r +Rφ)d

)
rd−1dr < ln(3dφ).

Proof We bound this integral using the change of variables
u = Rφ

r +1 as follows.Z ∞
R/2

(
1
rd −

1
(r +Rφ)d

)
rd−1dr =

Z 1+2φ

1

(
ud−1

ud(u−1)

)
du

=
d−1

∑
i=0

Z 1+2φ

1
ui−ddu

< ln(1+2φ)+
d−2

∑
i=0

1
d− i−1

< ln(1+2φ)+ lnd

≤ ln(3dφ).
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