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Figure 1: Constraint-based optimization and interactive shape exploration on different geometry representations. Blue dots
denote handle positions, green areas are constrained to remain rigid and red spheres indicate that vertices should be arranged
on a sphere.

Abstract

We introduce a unified optimization framework for geometry processing based on shape constraints. These con-
straints preserve or prescribe the shape of subsets of the points of a geometric data set, such as polygons, one-ring
cells, volume elements, or feature curves. Our method is based on two key concepts: a shape proximity func-
tion and shape projection operators. The proximity function encodes the distance of a desired least-squares fitted
elementary target shape to the corresponding vertices of the 3D model. Projection operators are employed to min-
imize the proximity function by relocating vertices in a minimal way to match the imposed shape constraints. We
demonstrate that this approach leads to a simple, robust, and efficient algorithm that allows implementing a va-
riety of geometry processing applications, simply by combining suitable projection operators. We show examples
for computing planar and circular meshes, shape space exploration, mesh quality improvement, shape-preserving
deformation, and conformal parametrization. Our optimization framework provides a systematic way of building
new solvers for geometry processing and produces similar or better results than state-of-the-art methods.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Geometric algorithms, languages, and systems;

1. Introduction

Geometry processing is commonly concerned with editing,
optimizing, or otherwise transforming geometric data. An
important goal in many applications is to obtain or preserve
certain geometric shapes within this data. By shapes we
mean the spatial relation of subsets of points in the geometry,
such as mesh polygons, one-ring neighborhoods, curves in a

mesh, etc. For example, equilateral triangles or tetrahedra
are often desirable in surface or volume meshing. Meshes
with planar polygons, or polygons whose vertices all lie on
a circle, are of great interest in architectural geometry, since
they directly relate to benefits in physical production. In in-
teractive design, lengths or angles should commonly be pre-
served as much as possible when deforming a 3D model,
leading to near-isometric and quasi-conformal deformation
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methods that favor rigid motions or similarity transforms of
each of the mesh elements. Similarly, preserving element
shapes is essential when computing a 2D parameterization
of a 3D model.

All these application examples share the common trait
that they transform a polygonal mesh such that sets of ver-
tices preserve or assume predefined shapes. We show that
this class of geometric problems can be formulated in a uni-
fied framework, leading to simpler, more robust, and in some
instances more efficient implementations than current state-
of-the-art algorithms.

We introduce two key concepts: a shape proximity func-
tion and shape projection operators. The proximity func-
tion encodes the distance of a desired least-squares fitted
elementary target shape, e.g. a regular polygon, to the cor-
responding vertices in the mesh. Our optimization method
uses projection operators as the main ingredient to minimize
the proximity function. These operators relocate vertices in
a minimal way to match the imposed shape constraints. We
show that our formulation has several important advantages:

• Unification. The general problem of prescribing shapes
on discrete geometric data sets can be solved in a unified
manner, i.e. with one optimization framework by simply
combining suitable projection operators. Our approach is
not restricted to triangle or quadrilateral meshes, but is
applicable to meshes with arbitrary degree polygons, vol-
ume meshes, point clouds, or other discrete geometry rep-
resentations (see Figure 1).
• Robustness. Numerous algorithms rely on the derivative

of angles with respect to the vertex positions or need to
divide by edge length or face area. These computations
become numerically unstable as soon as an element de-
generates, leading to a premature halt of the optimization.
Our solution is based on least-squares shape matching, re-
sulting in robust numerics even in the presence of degen-
erate elements.
• Simplicity. Our framework allows solving geometry pro-

cessing problems by simply defining the least-squares fit
of a desired shape to a set of vertices. This conceptual sim-
plicity translates directly into simplicity of implementa-
tion, which is crucial for integration into existing systems
or adaptation to new geometric problems and application
domains.

Related Work. Enforcing shape constraints by least-
squares fitting has been used successfully for interac-
tive editing tools and physics-based simulation [IMH05,
MHTG05, BPGK06, GSMCO09]. Our approach is most
closely related to the as-rigid-as-possible deformation
method of Sorkine and Alexa [SA07] in that we also em-
ploy a two-step optimization strategy for shape constraint
optimization. In this paper we unify, formalize, and extend
this concept, and show how it can be applied to solve a large
variety of different problems in geometry processing.

We review some of these applications that until now have
typically been solved by specialized optimization algorithms
tailored to certain application domains. This review does not
aim for completeness, but rather provides an overview of the
scope of algorithms that our framework encompasses.

Deformation and parametrization are two prominent ap-
plications where preservation of certain geometric features
is crucial, such as the shape of polygons or one-ring neigh-
borhoods. Near-isometric and quasi-conformal methods for
deformations [IMH05, BPGK06, SA07, EP09, SBCBG11,
CPS11] or parametrization [LPRM02, DMA02, LZX∗08,
MTAD08, AW11] aim to preserve lengths or angles, respec-
tively. More recently, mesh editing tools have been devel-
oped [MYF07, GSMCO09] that integrate shape constraints
on larger compound structures such as feature curves, allow-
ing for intuitive deformations with high-level feature preser-
vation.

For many geometry processing algorithms and especially
finite element analysis, the accuracy of computation depends
on the size and shape of the elements. Numerous meth-
ods have been designed to improve numerics by relocat-
ing vertices on the mesh in order to minimize certain er-
ror measures based on element size, shape, and smooth-
ness [Mun07, ZBX09]. These methods are often combined
with remeshing algorithms [BK04, TACSD06] in order to
further improve the elements of a mesh.

In freeform architecture, mechanical engineering, and
product design, curves and surfaces are commonly split
into pieces that can be manufactured separately. Optimiz-
ing the shape of those pieces is important to facilitate pro-
duction or reduce manufacturing cost. Several rationaliza-
tion methods have been proposed that optimize vertex posi-
tions in a mesh to satisfy certain geometric properties im-
posed by physical production. Planar, conical, or circular
meshes [LPW∗06, CW07, ZSW10, LXW∗11], and planar,
circular, or geodesic curves [DPW11] are examples of such
shape optimization methods in architectural design.

Contributions. The core contribution of this paper is the
unification of shape constraints into a single energy formu-
lation. We introduce a toolbox of projection operators that
allows reformulating many of the above cited methods in
one optimization framework that is simple, robust, and leads
to efficient implementations. Beyond shedding new light
on these existing methods by highlighting their similarities,
our algorithm facilitates plug-and-play design of new op-
timization methods. Implementing and combining suitable
projection operators provides a flexible tool for constraint-
based shape optimization and exploration that is applicable
in many different application domains.

2. Shaping Discrete Geometry

The main feature of our method is to prescribe shape con-
straints for sets of points in a geometric model. We first de-
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Figure 2: The proximity function φ(x) is the weighted sum of
squared distances di(x) of the point x to the projections Pi(x)
onto the respective constraint sets Ci. Minimizing φ(x) yields
a feasible solution if the constraint sets intersect (left), and
a least-squares solution otherwise (right).

scribe the general approach for constraint satisfaction based
on projection, then adapt this algorithm to the domain of dis-
crete geometry.

2.1. Proximity Function

We draw inspiration from a technique applied in the sig-
nal processing community for constraint satisfaction prob-
lems that may not have feasible solutions [Com94]. Cen-
tral to the method is a proximity function that measures the
weighted sum of squared distances of a point to a collection
of constraint sets, i.e. the sets containing feasible solutions
to their respective constraints. For a collection of constraint
sets {C1,C2, ...,Cm}, let di(x) measure the ’least amount of
change’ in x ∈ Rn in order to satisfy the constraint Ci. The
proximity function is then defined as

φ(x) =
m

∑
i=1

widi(x)2, (1)

where wi are non-negative weights that control the relative
importance of the different constraints. Formally, di is the
distance between a point x and its projection Pi(x) onto the
constraint set Ci (see Figure 2). We can formulate this pro-
jection as

y = Pi(x) = argmin
y∈Ci

||y−x||22, (2)

which can be seen as moving x in the minimal way to satisfy
the constraint. The proximity function can now be written as

φ(x) =
m

∑
i=1

wi||x−Pi(x)||22. (3)

This function encodes how well the constraints are satisfied
through a distance measure. Finding a solution that mini-
mizes the proximity function will therefore satisfy all the
constraints if φ(x) = 0. Otherwise, a least-squares solution
is obtained.
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Figure 3: Two iterations of the two-step minimization of the
proximity function φ(x) with wi = 1. Step I computes the pro-
jections using the current estimate x. Step II updates x by
minimizing φ(x) keeping the projections fixed. At each step,
φ(x), illustrated by the sum of the error bars, will decrease,
even if some of the individual elements increase.

For linear projections Pi the global optimum is found us-
ing standard linear least-squares. Often, however, the projec-
tions are nonlinear and do not have an intuitive gradient. We
therefore employ an iterative two-step minimization strat-
egy:

I Compute the projections Pi(x) using the current esti-
mate x.

II Update x by minimizing Equation 3, keeping Pi(x)
fixed.

This scheme is guaranteed to converge monotonically to a
local minimum, even though this minimum is not necessar-
ily reached in a finite number of steps. The convergence rate
depends on the conditions of the problem and the projec-
tion functions involved. To understand why the optimization
converges, we observe that step I weakly decreases each con-
straint cost ||x−Pi(x)||22 given the current estimate x, hence
φ(x) cannot increase. Step II minimizes Equation 3 glob-
ally for a fixed Pi(x), thus φ(x) also cannot increase. As a
consequence, we obtain a sequence that is non-increasing
and bounded from below (as mean-square errors cannot be
negative), a sufficient condition for convergence to a local
minimum. This argumentation is similar in spirit to the con-
vergence proof exposed in [BM92] for the Iterative Closest
Point (ICP) algorithm. The two step process is illustrated in
Figure 3.
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Figure 4: Our optimization alternates between projection and linear solve. In this example, we prescribe a regular polygon
constraint that pushes all quadrilaterals to become squares. The projection finds the best matching square for each quadrilateral
to determine the target position for each vertex. The linear solve reconciles these projected positions in a least-squares sense.

2.2. Shape Proximity for Geometric Data

The key observation of this paper is that the proximity func-
tion is ideally suited to encode geometric shape constraints.
The projection of a set of vertices onto a geometric shape is
found by minimizing the sum of the squared distances of the
vertices to the corresponding constraint set. This minimum is
computed through shape matching, i.e. by finding the least-
squares fit of the constraint shape onto the set of vertices.
Let V be a vector that stacks all vertices v1, . . . ,vn ∈ Rd

of our d-dimensional data set and let Vi ⊆ V be the ni ver-
tices involved in shape constraint Ci. We formulate the shape
proximity function as

φ(V) =
m

∑
i=1

wi||NiVi−Pi(NiVi)||22, (4)

where wi are weights and Pi(·) is the projection onto the con-
straint Ci, i.e. the corresponding least-squares fitted shape.
The matrix Ni is used to center the vertices of Vi at their
mean and is defined as

Ni = (Ini×ni −
1
ni

1ni×ni)⊗ Id×d , (5)

where⊗ is the Kronecker product and 1ni×ni is a ni×ni ma-
trix of ones. Subtracting the mean allows translational mo-
tion as a degree of freedom during the optimization. This
introduces a global solve, but considerably improves con-
vergence (see also Figure 10). This formulation is possi-
ble because shape projections are invariant under translation.
Equation 4 can be reformulated by rewriting φ(V) as

Eshape = φ(V) = ||QV−p||22, (6)

where the matrix Q combines all weighted mean-centered
constraint vertices, and p integrates all projections. The al-
ternating optimization scheme for each iteration then be-
comes:

I For fixed V, compute the projection vector p using
shape matching.

II For fixed p, solve the normal equations QT QV = QT p
to update V.

Since Q only depends on the shape constraints, we can
pre-factor the matrix QT Q using sparse Cholesky factoriza-
tion. Figure 4 illustrates our two-step optimization scheme.
In the projection step, we first compute the best fitting shape
for each shape constraint. From the fitted shapes, we obtain
the projected vertex positions and solve the linear system by
back substitution using the prefactored matrix.

3. Shape Constraints and Projections

The core ingredient of our optimization framework are the
shape projection operators. As mentioned above, we find the
minimal displacement of vertices by projecting them onto
the least-squares fit of the shape over those vertices. In this
section we present a variety of different shape projections
that can be combined, adapted, or extended to formulate new
geometric optimization solutions. To simplify notation, we
now denote with V = {v1, . . . ,vn} the vertices of a single
constraint Ci (and not the full dataset) in the current configu-
ration, and assume that these vertices are already mean cen-
tered. The original vertex positions are denoted by an apos-
trophe, i.e. V′ = {v′1, . . . ,v′n}, and the projected vertex posi-
tions by a star, i.e. V∗ = {v∗1 , . . . ,v∗n}.

We describe three classes of constraints. Continuous
shapes, such as planes or circles, polygonal shapes, such
as line segments, regular polygons, or rectangles, and rel-
ative shapes. The latter encode the class of transforma-
tions that the shapes of the original geometry, e.g. polygons,
tetrahedra, one-ring neighborhoods, etc., can undergo during
the optimization. This allows the preservation of geometric
properties such as lengths or angles of the original model.

3.1. Continuous Shapes

Line - Plane. This constraint specifies that the
vertices of V should all lie on a continuous line
or plane.

Projection: We can efficiently solve for the projection by
first computing the sorted eigenvectors U =

[
e1,e2,e3

]
of

the 3× 3 covariance matrix CT C where C =
[
v1, . . . ,vn

]
.

c© 2012 The Author(s)
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We remove the last column of U for plane projection and the
last two columns for line projection. The projected vertices
are then given as

[
v∗1 , ...,v

∗
n
]
= UUT C.

Circle - Sphere. This constraint specifies that
the vertices of V should all lie on a 2D circle
or a 3D sphere.

Projection: Since the direct projection of 3D vertices to
their 2D least-squares circle can be computationally expen-
sive, we apply an approximate projection. We first project
the vertices onto their least-squares plane (see above) and
then fit a 2D circle within that plane. Circle fitting is
achieved by minimizing ∑ j(||v j−c||22− r2)2, where r and c
are the unknown radius and center of the circle, respectively.
We solve for these parameters using the closed-form solu-
tion of [TC89] and project the vertices of V onto this circle
to obtain V∗. The projection onto a sphere is computed by
minimizing the same equation directly on the 3D points.

3.2. Relative Shapes

Rigid - Similar. These constraints are defined
relative to the original vertex set V′, i.e. they
constrain the type of transformation that the ver-
tex set can undergo. Rigid aims at restricting the
deformations to isometries, while Similar aims
for a conformal deformation.

Projection: Finding the closest rigid transform or similar-
ity that maps the original vertices V′ onto the current set V
can be solved using the method described in [Ume91]. The
algorithm computes the rigid transformation and uniform
scale using least-squares fitting and allows a minimal and
maximal scale constraint by keeping the rigid transforma-
tion as is and clamping the scale to the desired range.

While this approach works well, we also propose a faster
projection operator for 2D shapes. The idea is to first project
the vertices onto their least-squares plane and then formulate
the fitting in 2D. We denote the projected 2D points by a
bar, e.g. v′j is the projection of the original vertex v′j onto the
least-squares plane.

Let M be all the sets of points conformal to the 2D points
V′ = {v′1, . . . ,v′n}. We first find the point set V∗ ∈M closest
to V, i.e. solve for

{v∗1 , . . . ,v∗n}= argmin
V∗∈M

n

∑
j=1
||v∗j −v j||22. (7)

As explained in [Hor87], at the minimum of Equation 7 the
centroids of V and V∗ coincide. Therefore, if V is centered,

Equation 7 can be expressed as

argmin
v∗1x,v∗1y

||


I2×2
s2Rθ2

...
snRθn


︸ ︷︷ ︸

A

v∗1︸︷︷︸
x

−


v1
v2
...

vn


︸ ︷︷ ︸

b

||22, (8)

where siRθi represent the scale and rotation mapping the first
point to the ith point in the original centered set V′.

The minimum x of Equation 8 is obtained by solving the nor-
mal equation x = (AT A)−1AT b. We can then express the
projection as a linear operator P = A(AT A)−1AT , which
maps the current point set V to the closest point set V∗ in
M. The matrix P depends only on the original point set V′

and can thus be precomputed. If P is applied to any point set
in M, by the idempotence property of the projection oper-
ator, the result is unchanged. Since AT A is a 2× 2 matrix,
this projection operator has a closed form expression.

3.3. Polygonal Shapes

Line Segment. For a pair of vertices {v1,v2},
this constraint specifies the allowed value for
their relative distance.

Projection: Let d = ||v1 − v2||2 be the current distance
between the vertices and d∗ the desired length of the line
segment. Then the projection {v∗1 ,v∗2} is computed as v∗1 =
d∗

d v1 and v∗2 =−v∗1 .

Regular Polygon. This constraint specifies that
the vertex set V should assume the shape of a
regular polygon, i.e. have all angles be equal and
all sides be of equal length.

Projection: Since a regular polygon is invariant only un-
der similarity transformations, we can use the same projec-
tion method as described above for relative shapes. We sim-
ply replace the original vertex set V′ by the vertices of the
regular polygon of the corresponding order.

Parallelogram. This constraint specifies that a
quadrilateral should become a parallelogram, i.e.
have two pairs of parallel sides.

c© 2012 The Author(s)
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Figure 5: An architectural design (left) optimized for planar (middle) and circular mesh elements (right). The colored images
provide a visual comparison of the planarity error ep and circularity error ec. The error per face is the average squared distance
of its vertices to the least-squares fit. In addition to shape constraints, we apply closeness and smoothness terms, using weights
(λshape,λclose,λsmooth) = (5,10,2) in Equation 13. The bounding sphere diameter of the object is 1.

Projection: We formulate the parallelogram fitting by ex-
tending the projection for relative shapes as described above.
We first project the vertices onto their least-squares plane,
then formulate the optimization as

argmin
v∗1 ,v∗2

||
[

I4×4
−I4×4

]
︸ ︷︷ ︸

A

[
v∗1
v∗2

]
︸︷︷︸

x

−


v1
v2
v3
v4


︸ ︷︷ ︸

b

||22. (9)

As previously, the solution of this optimization is V∗ =
A(AT A)−1AT b.

Rectangle. This constraint specifies that a
quadrilateral should become a rectangle, i.e.
have only right angles.

Projection: We first project the vertices onto their least-
squares plane and then fit the rectangle in 2D. Unlike the
other polygonal shapes, we compute the equation of the four
lines that define the rectangle by solving

argmin
c1,c2,n

||



1 0 v1x v1y
1 0 v2x v2y
0 1 v2y −v2x
0 1 v3y −v3x
−1 0 v3x v3y
−1 0 v4x v4y
0 −1 v4y −v4x
0 −1 v1y −v1x


︸ ︷︷ ︸

A


c1
c2
nx
ny


︸ ︷︷ ︸

x

||22 s.t ||n||22 = 1.

(10)

This optimization is minimized by taking the QR decom-
position of A and solving a 2× 2 eigenvalue problem as
described in [GH95]. We then find the projected points by
computing the intersection of these four lines.

As we show below, the projection operators introduced
here provide a versatile toolbox for constructing geomet-
ric optimization methods. Other constraints, e.g. projection
onto a spline curve, a developable surface, or explicit sur-
face geometry, offer numerous opportunities for extending
our framework and designing new projection-based solvers.

4. Applications

Before we evaluate the behavior and performance of our
shape optimization framework, we highlight several appli-
cations. Beyond the shape constraints expressed in the prox-
imity function, these applications typically have other ob-
jectives that can be directly integrated into our approach by
defining suitable energy functions. In our examples, we use
two such additional energies, a smoothness term and an en-
ergy that penalizes deviation from a given reference surface.

The closeness energy measures the distance of a vertex vi
to the original surface as

Eclose =
n

∑
i=1
||vi− c(vi)||22, (11)

where c(vi) is the closest point on the original surface to the
vertex vi. We use a similar energy for boundary preserva-
tion and handle-based deformation. For smoothing, we use a
Laplacian energy [BKP∗10] of the form

Esmooth =
n

∑
i=1
|| ∑
{i, j}∈E

wi j(l j− li)||22, (12)

where E denotes the mesh edges, li = vi for the surface
smoothing energy and li = vi − v′i for smoothing the de-
formation. We set the scalars wi j to the standard cotan-
gent weights for triangular meshes and uniform weights

c© 2012 The Author(s)
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input 
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Figure 6: Complex shape spaces can be defined by combining projection operators. Left: circle constraints on the polygons
maintain the circular property of the mesh during interactive shape exploration. Right: circle constraints on the straight line
curves of the input mesh define a functional web. A similarity constraint on the mesh elements leads to a quasi-conformal
deformation. No smoothing energy or closeness term is used in Equation 13, except to define positional constraints for the
deformation handles (see video).

otherwise. Alternatively, the weighting scheme proposed
in [AW11] could be used for general polygonal meshes.

The final energy used in our framework is a convex com-
bination of the previous energies

Efinal = λshapeEshape +λcloseEclose +λsmoothEsmooth, (13)

where the weights (λshape,λclose,λsmooth) are parameters
that can be selected by the user. By reformulating Efinal anal-
ogously to Equation 6, we can minimize the energy with our
alternating projection method (see also Figure 4). This gen-
eral procedure can be applied to numerous different domains
using exactly the same optimization code, simply by com-
bining suitable projection operators. We demonstrate this
by illustrating applications in architectural geometry, mesh
quality improvement, interactive deformation, and parame-
terization. Note that even when adding the additional ener-
gies for closeness and smoothness, the convergence guaran-
tee of Section 2.1 remains valid. In step I of the optimization,
vertices are kept fixed, so the projection has no influence on
Eclose and Esmooth, and hence Efinal decreases weakly. Step
II is a global minimization of Equation 13 over the vertex
positions, so Efinal cannot increase either.

4.1. Planar and Circular Constraints

Planar and circular meshes, i.e. meshes in which the vertices
of each polygonal face lie on a plane or circle, are impor-
tant in the field of architectural design, since they directly
relate to benefits in physical production [PW08]. We can op-
timize for element planarity and circularity using the plane
and circle projections introduced above. Contrary to previ-
ous work [LPW∗06, ZSW10, LXW∗11] our approach is not
restricted to quadrilateral meshes, since the projections are
defined for arbitrary vertex sets. We can even apply the same
solver to optimize for planar or circular curves on a surface

to generate functional webs similar to [DPW11]. Figure 5
shows examples of architectural models that have been op-
timized with our approach. We also provide a comparison
with the method of [LPW∗06] in Figure 11, illustrating the
benefits of our approach.

Planar and circular constraints can also be combined with
relative shape constraints (see Sections 3.2 and 4.3) to en-
able interactive exploration of the space of planar or circular
meshes with fixed connectivity, similar to [YYPM11]. An
example of shape exploration using a handle-based editing
metaphor is illustrated in Figure 6. Compared to [YYPM11],

before after
80 90 100 80 90 100

Figure 7: Mesh quality optimization. The quadrilateral
surface on the left has been generated with the meshing
algorithm of [BZK09]. Applying the square shape con-
straint to each element improves the angle distribution as
illustrated by the histograms. Weights for Equation 13:
(λshape,λclose,λsmooth) = (5,1,0).
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conformal quads conformal 1-rings conformal 2-rings

Laplacian of deformation original 1-rings

2-rings tetrahedra

isometric
deformation 

Figure 8: A variety of shape preserving editing tools can be implemented with our framework. Top center: rigid constraints
on the polygons lead to intuitive rotations of the protrusions. Bottom left: when stretching the plane with similarity constraints,
different deformation behavior is obtained depending on the size and overlap of the elements. Right: comparison of rigid
constraints on surface and volume elements. These examples use no smoothing energy or closeness term in Eq. 13, except to
define positional constraints for the deformation handles (blue) dragged in the direction of the arrows.

our implementation is substantially simpler and allows for
more flexible shape exploration. We can apply the circular
constraints not only on the mesh polygons, but on arbitrary
vertex sets, including curves embedded in the surface. As
the figure and the accompanying video illustrate, this leads
to interesting new design tools suitable for architectural form
finding and fabrication-aware design.

4.2. Mesh Quality Improvement

In geometry processing and especially in finite element anal-
ysis, the accuracy of computation depends on the size and
shape of the elements. In numerous cases, having isotropic
elements such as equilateral triangles or squares leads to bet-
ter numerics (see [She02] for more details). Various meth-
ods have been designed to enhance mesh quality by iterat-
ing between topological remeshing operations to improve
mesh connectivity, and vertex relocation to improve element
shapes [AMD02, BK04, TWAD09]. Our approach is ideally
suited for the second step, since we can directly prescribe
the desired element shapes using the polygonal shape projec-
tions of Section 3.3. In Figure 7 we illustrate how a quadri-
lateral mesh that has been generated with the mixed-integer
quadrangulation method of [BZK09] is optimized for better
element shapes using the square projection operator. Corners
and feature curves are fixed in this example, but vertices are
allowed to slide along the feature curves.

4.3. Interactive Deformation

Surface and volume deformation algorithms have become
an integral component of interactive design tools. The main

goal of these methods is local shape preservation to allow in-
tuitive shape deformation based on simple handle constraints
controlled by the user. In particular, local feature preser-
vation can be achieved by only allowing shape elements
to translate, rotate, and possibly scale uniformly, leading
to as-rigid-as-possible [IMH05, BPGK06, SA07] or quasi-
conformal [EP09,SBCBG11,CPS11] deformation methods.

Our approach provides a general recipe for creating shape
preserving deformation methods as illustrated in Figure 8.
Using the relative shape constraints of Section 3.2, we can
design a multitude of near-isometric and near-conformal de-
formation methods by applying the projection operators to
different local subsets of vertices, such as polygons, volume
elements, local 1-rings, 2-rings, etc. These different combi-
nations allow tailoring the deformation model to a desired
behavior and specific application context.

Parametrization. As shown in Figure 9 we can also ob-
tain a discrete free-boundary conformal parameterization of
arbitrary degree polygon meshes by setting the projection
Pi(NiVi) to PiNiVi where Pi is the linear 2D projection de-
fined in Section 3.2:

φ(V) =
m

∑
i=1

wi||(Ni−PiNi)Vi||22. (14)

This is similar in spirit to the method proposed by [LZX∗08]
where each 3D element is projected onto the 2D parameter-
ization domain and globally optimized. In our formulation
this reduces to a homogeneous linear least-squares problem
that we solve using a sparse eigenvalue solver. In order to be
independent of the meshing (as seen in Figure 9), the weights
wi can be set to the inverse of the area of the original poly-
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input mesh texture mapping

Figure 9: A variant of similarity shape constraints are em-
ployed to compute free-boundary conformal parameteriza-
tions on an irregular triangle mesh (top) and a mesh with
higher order polygons (bottom).

gons as explained in [MTAD08]. Our parametrization for tri-
angular meshes is visually similar to [MTAD08]. The differ-
ence in quasi-conformal error (as defined by [SSGH01]) is
within ±0.004.

5. Discussion

In this section we analyze the behavior of the optimization,
report performance data and implementation details, and dis-
cuss limitations of our approach.

Robustness. One important advantage of our approach is
numerical stability. In Figure 10 we show how the opti-
mization can recover from a highly corrupted initial con-
figuration. Since our projection operators are stable even
for degenerate vertex positions, we avoid the instabilities of
many gradient-based methods that rely on derivates of an-
gles with respect to vertices. Figure 11 illustrates how this
improved robustness facilitates higher quality results than
previous methods. In this example, the design objective of
achieving smooth curves while keeping all elements circular
is in conflict with the numerical requirement of avoiding col-
lapsed edges on which previous work is dependent. With our
method, we achieve higher overall smoothness by allowing
degenerate elements that can easily be handled by the shape
matching operators.

Performance. The gradient ∇φ(x) = 2∑
m
i=1 wi(x− Pi(x))

of the proximity function (Equation 3) is simple to compute,
since it avoids the explicit computation of the partial deriva-
tives of the projection function (see Appendix A). However,
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100
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104

100 300

mean-centered (alternating)

#iterations
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Figure 10: Stability of our optimization. The algorithm is
able to recover the original raptor model from a collapsed
initial state by prescribing the original one-ring shapes.
Centering the vertices at their mean for each shape con-
straint is essential for fast convergence as illustrated in the
plots (red vs. blue). The alternating minimization performs
significantly better than BFGS, a Quasi-Newton method
(green vs. blue).

we found that the alternating optimization scheme discussed
in Section 2.2 performs significantly better than simple gra-
dient descent or BFGS, a Quasi-Newton method [NW00]
(see convergence plots in Figure 10). Note that standard
Gauss-Newton or Newton-type solvers are not easily appli-
cable for this optimization problem, since they require the
computation of the Jacobian or Hessian. In contrast to the
gradient, these computations do require the evaluation of the
partial derivatives of the projection function, which can be
difficult to compute.

The number of iterations necessary for our solver to con-
verge depends on the problem setting, i.e., the number of
unknowns, number and type of constraints, and the specific
convergence criteria. For parametrization, a model of about
35 thousand vertices is parametrized by our method in 3.5
seconds and performance scales approximately linearly with
the number of vertices. For interactive shape exploration and
deformation of medium sized models (< 30K constraints
and < 30K unknowns), 10-20 iterations are usually suffi-
cient when initializing the optimization with the previous
frame. At 3-6ms per iteration, this enables interactive edit-
ing (10-30fps) on a Mac Pro 2 x 2.26GHz Quad-Core Intel
Xeon with 16GB of memory (see also accompanying video).
When the meshes grow in number of elements, more itera-
tions are needed until convergence with a higher cost per
iteration. The necessary performance improvements could
be achieved by multi-resolution methods as demonstrated in
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[Liu et al. 2006]

Figure 11: Circular mesh optimization. Comparison of our
method with [LPW∗06] using the same fairness and smooth-
ness weights at the same circular error ec (sum of squared
distances from the vertices to the fitted circle). Our method
finds a better local minimum due to its numerical stability in
the case of collapsing edges. The bounding sphere diameter
of the object is 10.

several previous works, e.g. [SYBF06, BPGK06]. We also
plan to explore a GPU implementation as future work.

We have shown that most shape projections can be imple-
mented efficiently using least-squares fitting. Certain shapes,
however, can be difficult to fit, e.g. an ellipse, and may need
an additional (non-linear) optimization step, which can be
expensive. One alternative solution is to use fast, approx-
imate least-squares fitting algorithms, as we have demon-
strated with the circle fitting method of Section 3.1.

Implementation details. The complete framework pre-
sented in this paper is implemented in C++. We use the
eigs function of MATLAB to solve the sparse eigen-
value problem for the parametrization. The Eigen library
(eigen.tuxfamily.org) is employed for dense and sparse
linear algebra computations and for the implementation
of [Ume91]. The closest point search required for the com-
putation of the closeness energy of Equation 11 is accel-
erated using a k-d tree. In our implementation we solve
the optimization independently for each coordinate. We pre-
factorize QT Q using sparse Cholesky factorization and per-
form three times back-substitution. Note that without any
closeness term in Efinal the matrix QT Q is singular as it has
translational degrees of freedom. Fixing one vertex is suffi-
cient to remove this degeneracy.

Our algorithm is dependent on the choice of vertices in-
volved in each constraint. Slightly different choices, i.e. ex-

changing two vertices between constraints, might lead to dif-
ferent results. The current implementation does not detect or
avoid self-intersections and keeps a fixed mesh topology dur-
ing the optimization. Certain applications might require dy-
namic modifications of vertex connectivity to achieve better
results. In such cases our method could be combined with
remeshing algorithms, which we plan to explore in the fu-
ture.

6. Conclusion

We have presented a framework for processing discrete ge-
ometric data sets based on shape constraints. Our new for-
mulation provides a simple, but effective recipe for geom-
etry optimization suitable for numerous different applica-
tion domains. Plug-and-play design of optimization meth-
ods becomes feasible by simply selecting or implementing
suitable projection operators. Our experiments show that
these solvers reproduce or outperform existing algorithms,
often with the additional benefit of improved robustness and
generalization to arbitrary degree polygons. Beyond the ex-
amples on mesh optimization, interactive deformation, and
shape space exploration that we show, we believe that our
framework can be applied to many other geometry pro-
cessing tasks, including non-rigid registration [LAGP09],
symmetrization [MGP07] and deformation transfer [SP04].
More importantly, it provides a simple and effective recipe to
build new optimization solvers, thus enabling scientists and
practitioners in different domains to easily integrate geome-
try processing tools into their applications.
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Appendix A: Gradient of the Proximity Function

The gradient of the proximity function φ(x) = ||x−P(x)||22
can be computed as

∇φ(x) = (I− J(P(x)))T 2(x−P(x))

= 2(x−P(x))− J(P(x))T 2(x−P(x))
= 2(x−P(x)),

where J(P(x)) is the Jacobian of P(x) and I is the identity
matrix. For the partial derivatives of P(x) (i.e. the columns of
the Jacobian), the component in the direction of (x−P(x))
is zero, because P(x) does not change when x is moving
towards P(x). The other components are orthogonal to (x−
P(x)) and therefore J(P(x))T (x−P(x)) evaluates to 0.
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