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Abstract
We develop a novel isotropic remeshing method based on constrained centroidal Delaunay mesh (CCDM), a gen-
eralization of centroidal patch triangulation from 2D to mesh surface. Our method starts with resampling an input
mesh with a vertex distribution according to a user-defined density function. The initial remeshing result is then
progressively optimized by alternatively recovering the Delaunay mesh and moving each vertex to the centroid
of its 1-ring neighborhood. The key to making such simple iterations work is an efficient optimization framework
that combines both local and global optimization methods. Our method is parameterization-free, thus avoiding
the metric distortion introduced by parameterization, and generating more well-shaped triangles. Our method
guarantees that the topology of surface is preserved without requiring geodesic information. We conduct various
experiments to demonstrate the simplicity, efficacy, and robustness of the presented method.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Geometric algorithms, languages, and systems

1. Introduction

In computer graphics applications, the triangular mesh is one
of the most commonly used shape representations to approx-
imately describe the geometric shape. Many of these mesh-
es acquired by scanning devices or by isosurfacing implicit
representations are often highly redundant or/and noisy, and
are not suitable for practical applications in rending, editing,
animation, compression and simulation, etc. Therefore, it is
oftentimes desired to remesh the existing triangular meshes
in advance to reduce the complexity and improve the mesh
quality.

The requirement of the remeshing approach may vary ac-
cording to the targeted goal or application. Nonetheless, it
is commonly agreed that a good remeshing algorithm is im-
perative to have the following fundamental properties [AU-
GA08, FAKG10]: 1) It generates a high-quality mesh that
represents the input mesh accurately and preserves the sharp
features; 2) It is computationally efficient for handling large
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meshes; 3) It is general and robust to handle meshes of arbi-
trary genus; 4) It is simple to practical implement. However,
most existing remeshing methods are designed by relaxing
some of the mentioned properties, as we will find later in
our discussion. Therefore, a new remeshing approach pos-
sessing all desirable properties is required.

In this paper, we develop a novel approach to remesh a trian-
gular mesh with arbitrary topology based on a generalized
concept of centroidal patch triangulation (CPT) [CH11].
We named our algorithm constrained centroidal Delaunay
mesh, or CCDM for short. Compared with existing remesh-
ing algorithms, our algorithm has several desirable advan-
tages. First, it does not rely on any parameterization, thus
avoiding the distortions and instabilities caused by the pa-
rameterization. Second, we do not need to compute the ex-
act or approximated geodesic distance on the mesh surface,
which makes our algorithm very efficient. Specifically, it
takes O(n) time for each iteration of our algorithm, where
n is the vertex number of the remeshed surface. Third, it is
accurate because it always refers to the original mesh dur-
ing the remeshing, and the topology of the original surface
is preserved after remeshing.
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To summarize, our main contributions are as following:

• We introduce the constrained centroidal Delaunay mesh
which is a generalization of the centroidal patch triangu-
lation from 2D to surfaces, and is easy to be constructed
by a simple iterative algorithm (Section 2 and 3).

• We present an efficient optimization framework combin-
ing both local and global optimization methods that re-
sults in high-quality and topologically faithful remeshing
results (Section 3 and 4).

1.1. Related Work

Since remeshing is a critical step in a number of geometry
processing techniques, it has been received a lot of attention
in recent years. We restrict our description to unstructured
isotropic remeshing methods, and refer the interested read-
ers to [AUGA08] for a comprehensive survey of remeshing
technologies. According to whether they rely on a local or
global parameterization to decide the correspondence of the
new points and the input mesh, the remeshing techniques fal-
l into two categories, i.e., parameterization-based methods
and parameterization-free methods.

In the parameterization-based remeshing techniques, the
input mesh may globally [AMD02, AdVDI03] or local-
ly [SAG03, SG03, VRS03, FZ08, FAKG10] be mapped on-
to a 2D domain, the remeshing operation is performed on
the 2D parametric domain and then the results are mapped
back to the 3D surface. For parameterization-based remesh-
ing methods, a high-quality remeshing result heavily relies
on a good surface parameterization, as it is the basis for
building a “good” correspondence between the new vertex
and the original mesh. On one hand, a good parameteri-
zation in terms of minimizing certain distortion measures,
such as area and angle distortion, usually requires an input
mesh with high-quality. On the other hand, the reason for
remeshing is that the input “raw” mesh quality is need to be
improved in terms of vertex sampling, regularity and trian-
gle quality. This dilemma between the parameterization and
remeshing is faced by all parameterization-based remeshing
methods and unfortunately is not well solved by most.

The parameterization-free remeshing methods perform the
vertex inserting, removing or relocation operation direct-
ly on the surface. Some of the most important paradigms
include farthest point sampling method [PC06], advancing
front method [SSG03], Delaunay refinement method [DR10,
DLS10], and relaxation-based method [Tur92, DGJ02,
BK04, VCP08, YLL∗09]. The relaxation-based methods
have become one of the main tools for generating high-
quality remeshing surfaces. In particular, the centroidal
Voronoi tessellation (CVT) based methods have been effec-
tive for surface remeshing. Valette et al. [VCP08] compute
approximated Voronoi cells on surface by clustering mesh
vertices. This method is fast but the remeshing result may
be poor when the input mesh contains degenerate triangles.

Figure 1: The 1-ring neighbor patch Ωi (gray region) of xi
and its centroid ci (orange point).

Yan et al. [YLL∗09] compute the exact restricted Voronoi
diagram, and optimize the CVT energy function by using an
efficient quasi-Newton method. This method is capable of
producing high-quality meshes, but the computation of exact
restricted Voronoi diagram in each iteration is computation-
ally expensive. Furthermore, it may fail to build a correct re-
stricted Voronoi diagram for mesh with small features, such
as two parallel planes that are close to each other, due to the
poor approximation of geodesic distance on surface with the
Euclidean distance. Botsch and Kobbelt [BK04] propose a
simple but highly efficient method for uniform remeshing.
Conceptually, this method is very similar to our approach
as they apply the local vertex relocation steps directly on the
mesh surface without any reference to global or local param-
eterization. However, our approach can produce remeshing
results with higher qualities due to the global optimization
framework.

2. Background

Mesh optimization by means of minimizing some energy is a
popular strategy to generate high-quality meshes. There are
many energies proposed in the literatures for generating tri-
angular meshes or tetrahedral meshes, e.g., [DGJ02, CX04,
TWAD09, CH11] and references therein. Among them, the
centroidal patch triangulation (CPT) based mesh smoothing
method is a computationally efficient method lastly intro-
duced in [CH11]. In this section, we first briefly recall the
concept and corresponding energy function of CPT, and then
introduce the so called Delaunay mesh, which is an exten-
sion of the Delaunay triangulation to 2D manifold.

2.1. Centroidal Patch Triangulation

Consider a set of points in RN denoted by X = {xi}n
i=1 ⊂

RN . Let T be a triangulation of X. For any vertex xi ∈ X,
the set of all incident faces, denote by Ωi, is called the 1-ring
neighbor patch of xi (see Figure 1). The centroid of Ωi with
respect to a density function ρ(x)> 0 is defined as

ci =

∫
Ωi

ρ(x)xdσ∫
Ωi

ρ(x)dσ
.

A triangulation T of X is called a centroidal patch triangu-
lation (CPT), if any inner vertex xi ∈ T coincides with the
centroid ci of patch Ωi.

The Delaunay triangulation has been widely used for mesh
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generation, due to its many optimal properties, such as max-
imum minimum angle property. A Delaunay-based objective
function for generating CPT, which is proposed in [CH11],
is defined as

F(X,T ) =
n

∑
i=1

∫
Ωi

ρ(x)‖x−xi‖2dσ, (1)

where T is the Delaunay triangulation of X. The minimiza-
tion ofF(X,T ) is performed through minimizing the energy
defined over each patch Ωi, say,

min
xi

∫
Ωi

ρ(x)‖x−xi‖2dσ. (2)

Based on the fact that the centroid of Ωi is the minimizer of
Equation (2), a two-step iterative algorithm was designed to
generate the centroidal patch triangulation [CH11]. Begin-
ning with a set of points, the following two steps are iterated
until some stopping criterion is met:

1. (connectivity update) generate the Delaunay triangulation
of X;

2. (vertex relocation) move each vertex xi to the centroid ci
of the corresponding patch Ωi ⊂ T , ie,

x∗i = ci. (3)

Note that, the definition of CPT is similar to the defini-
tion of centroidal Voronoi tessellation (CVT) [DFG99], for
which each generator coincides with the centroid of the cor-
responding Voronoi region. Also, the CPT algorithm and
CVT algorithm have comparable performance on 2D and 3D
mesh generation [CH11]. In this paper, we exploit the po-
tential of CPT algorithm in surface remeshing. A CPT-based
surface remeshing method is proposed, which is shown to
outperform the existing CVT-based methods in both mesh
quality improvement and computational cost.

2.2. Delaunay Mesh

In order to generalize the CPT algorithm to surface remesh-
ing, we first need a generalization of the concept of Delau-
nay triangulation. There exist several methods to define a
Delaunay triangulation of a set of points on a Riemannian
manifold, e.g., the restricted Delaunay triangulation [ES94]
and the intrinsic Delaunay triangulation [BS07]. In this pa-
per, we adopt the Delaunay mesh [DZM07b] because of its
simplicity and fast construction.

A Delaunay mesh is a manifold triangular mesh whose
edges form an intrinsic Delaunay triangulation of its ver-
tices [DZM07b]. Intuitively, a mesh is a Delaunay mesh
when all its edges are locally Delaunay, where an edge is
locally Delaunay if the sum of the two angles opposite to it
does not exceed π. Deyer et al. [DZM07a] propose an effi-
cient iterative algorithm to generate Delaunay mesh from an
arbitrary triangle mesh by edge flipping, and prove that such
iterative process terminates in finite steps.

Figure 2: The pipeline of CCDM-based remeshing frame-
work.

3. Algorithm of Constrained Centroidal Delaunay Mesh

For a compact surface S ⊂ R3 and a set of points X =
{xi}n

i=1 ⊂ S, the Delaunay mesh of the point set X is de-
noted byM. We define the constrained centroidal Delaunay
meshes (CCDMs) as the solutions of the following optimiza-
tion problem:

min
X,M
F(X,M) subject to xi ∈ S, i = 1, ...,n,

where F(·) is the function defined in Equation (1), and the
points X are constrained on S.

The algorithm for optimizing a mesh of surface S by mini-
mizing F(X,M) is given in Algorithm 1. Note that Algo-
rithm 1 differs from CPT iteration only in step 2, where the
updated vertices are needed to be projected back onto the
surface S. However, the direct application of Algorithm 1
to mesh optimization hardly succeeds in producing high-
quality meshes, since Algorithm 1 is a local search method
which usually leads to a local minimizer of F(X,M) cor-
responding to a mesh with poor quality. Therefore, we pro-
pose a complete remeshing framework which uses global op-
timization method to minimize the CCDM energy function.

3.1. Algorithm Overview

Our remeshing algorithm takes as input an orientable 2-
manifold triangular mesh MI of arbitrary topology, which
may contain boundaries and sharp features. Our output is a
high-quality mesh MO with a desired number of vertices,
and a vertex distribution according to a specified density
function. The basic idea is to start with an initial mesh with
the same topology as MI , and then to improve the mesh
quality by using CCDM-based optimization. A overview of
our algorithm pipeline is given in Figure 2.

The optimization framework consists of an inner loop and an
outer loop, which are called as local optimization and global
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optimization respectively. These two loops are iterated until
the specified maximum iteration numbers NL and NG are
achieved respectively. We will elaborate each component of
the CCDM algorithm in the following sections.

3.2. Initial Mesh Construction

Adaptive Sampling: In many practical applications in
computer graphics, the distribution of the sites is expected
to adapt to some given probability density function φ(x) de-
fined onMI . To achieve this goal, a user-specified number
of points are initially sampled on MI with a distribution
complying with φ(x). However, simply choosing the prob-
ability density function φ(x) as the density function ρ(x) in
CCDM energy function can not ensure a consistent distribu-
tion of the vertices in the subsequent optimization. Instead,

5
√

φ(x) is empirically demonstrated as a more sophisticated
choice for ρ(x). In our experiments, we find that there is no
obvious global drift of the vertices during the optimization
when ρ(x) = 5

√
φ(x). Hence, the result mesh is apt to have

a consistent vertex distribution adapted to φ(x). The proba-
bility density function φ(x) can be any positive function giv-
en by the user. Generally, we want more sampling points in
the regions with high curvature. Thus we consider both the
Gaussian curvature K and the mean curvature H of the input
surface, and set φ(x) to

√
|K|+H2.

Feature Preservation: The features of the input meshMI ,
including sharp edges, boundary edges, and corners may be
either specified by the user or extracted automatically. We
simply mark the edges with small dihedral angles as the fea-
ture edges, but other more sophisticated feature extracting
methods can also be applied. Some sampling points are then
placed on the feature curves and corners to preserve the fea-
tures. We use the formula from [AdVDI03] to allocate an
appropriate number of points to each feature curve.

Building the Mesh: There are several surface reconstruc-
tion methods that can be used to connect the sampling points
to obtain a valid triangle mesh. For the purpose of remesh-
ing, the reconstructed mesh should have a topology which
is consistent with the reference mesh MI . Certainly, we
can obtain such a mesh by computing the dual triangula-
tion of the geodesic-metric-based Voronoi diagram [LCT11]
of X on MI . However, this strategy is computationally
costly. Therefore, we follow a more efficient method used
in [FZ08, FAKG10]. A mutual tessellation [Tur92] is first
created by inserting the sampling points to the mesh MI ,
and then is cleaned by deleting the original vertices ofMI .
The feature edges connecting feature points are preserved
during these operations. Neither insertion nor deletion of
vertices is allowed to change the topology of the surface,
thus the topology is preserved.

3.3. Local Optimization

Algorithm 1 Local optimization of CCDM algorithm

Input: the inpute meshMI , and an initial remeshMO
Output: an optimized remeshMO

(1) (connectivity update) makeMO a Delaunay mesh by
edge flipping;

(2) (vertex relocation) move each vertex xi ofMO to the
centroid ci of the corresponding patch Ωi ⊂ MO, and
project the updated vertex back ontoMI ;

(3) if the number of iterations exceeds NL, then return
MO; otherwise return to step 1.

The local optimization of CCDM algorithm has been giv-
en in Algorithm 1 (see also Figure 2). The algorithm starts
with an initial remesh of the reference mesh surface, and op-
timizes its connectivity and geometry alternately.

Building Delaunay Mesh: The edge-flipping algorithm for
the Delaunay mesh construction proposed by [DZM07a]
takes any manifold triangular mesh as input. An edge is lo-
cally Delaunay if the sum of the two angles opposite to it
does not exceed π. Any edge that is not locally Delaunay,
called NLD edge for short, is flipped. Each NLD edge is as-
signed a priority value, computed as the sum of the opposite
angles at the edge minus π. A priority queue is built to main-
tain the ordering of edge flipping. The feature edges, if any,
are not flipped.

Since the sequence of meshes to be made Delaunay in our
optimization process evolves gradually, only a few edges of
the intermediate meshes are NLD. The edge flip algorithm
works quite fast in our experiments. It is known that a planar
triangulation can be made Delaunay in O(n2) edge flips in
the worst case. Recently, Cheng and Jin [CJ11] prove that
any planar triangulation with a constant angle lower bound
can be made Delaunay in O(n) time. This also helps to ex-
plain why flip algorithms often run fast in practice.

Vertex Relocation: All the vertices of the evolving mesh
MO are constrained on the reference mesh MI . The posi-
tion of the vertex xi ∈ MO is coded by barycentric coor-
dinates with respect to a triangle τ in MI . And τ is called
the reference triangle of xi. A density is assigned to each xi
according to the density function defined on the reference
mesh MI . Then, the centroid of the 1-ring neighbor patch
Ωi ⊂MO is computed by summing up the centroids of the
individual triangles, weighted with the triangle mass. This
obtains a new position of xi which needs to be projected on-
toMI .

A brute force method to find the foot point of xi onMI by
traversing all triangles is inefficient. Actually, the foot point
of xi should be located at some triangle covered by Ωi for
preventing any triangle flips. Any vertex with new position
outside Ωi will be pulled back to its original position. Fur-
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(a) (b) (c) (d)

Figure 3: Local optimization of CCDM method. (a) The original mesh (10k vert.) with visualized density function; (b) initial
adaptive sampling and meshing (10k vert.); (c) the remeshing result with 50 iterations of local optimization; (d) average
minimum angle graph.

(a) (b) (c) (d)

Figure 4: Global optimization of CCDM method, where NL and NG represent the numbers of local iteration and global iter-
ation, respectively. (a) The remeshing result with 100 global iterations; (b) the remeshing result in (a) with visualized density
function; (c) optimization with different λ’s (NL = 50 and NG=100); (d) optimization with different NL’s (λ = 0.2, NG = 100).
Due to the stochastic factor in the optimization, we run the global optimization 10 times for each setting, and plot the average
graphes.

thermore, based on the fact that the position deviation of a
vertex in each iteration is usually small, only local search in
its reference triangle and the triangles incident it is neces-
sary. Thus, the projection operation can be finished in con-
stant time.

The vertices on feature curves are only allowed to move a-
long the feature curves , while the corners will be fixed dur-
ing the optimization. We still apply the position update for-
mula (3) to the feature vertices, despite the incomplete 1-ring
neighbor patches of the boundary vertices. This will lead
to consistent vertex distributions on the surface and feature
curves.

Example: In Figure 3, the Plank model is resampled to 10k
vertices and optimized with 50 iterations of local optimiza-
tion in 1.78 seconds. From Figure 3(d), we can see that the
local optimization method converges very soon, and the av-
erage minimum angle increases little after the first 5 itera-
tions.

3.4. Global Optimization

The example in Figure 3 shows that the local optimization
method tends to get stuck at a poor local minimum very
soon. In order to get high-quality remeshing results, we ap-
ply the simulated annealing method [KGJV83](SA method
for short), a stochastic global optimization algorithm.

The SA method, like other global optimization methods, is
generally computationally expensive. It starts from an initial
state, and then repeatedly move to a randomly chosen neigh-
bor of the current state. The SA method usually need to test
thousands of states before it reaches the global minimum.

To accelerate the global search of SA method, we propose
an efficient method for generating candidates of neighboring
states, by combining the local optimization method (see Fig-
ure 2). The modified SA method only searches in the space
of local minimizers. At each iteration, it moves to another
local minimizer, only when it reaches a better state.

We use the operation “perturb-optimize” to find the neigh-
bors of the current local minimizers. Operation “perturb” to
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each vertex is specified by the following equation:

x∗i = xi +λli(ucos2πv,usin2πv)[t1, t2]
T (4)

where li is the average length of the edges adjacent to vertex
xi, u and v are two random numbers in [0,1], and t1, t2 are
two mutually orthogonal unit vectors in the tangent plane of
xi. Here λ indicates the magnitude of the perturbation.

As a matter of fact, the effectiveness of SA method on a
given problem heavily depends on the choices of the param-
eters in the algorithm. Unfortunately, there is no general rule
for choosing these parameters properly; they depend on the
nature of problem. In particular, λ is the only parameter to
be set in the SA algorithm in this paper, which is indepen-
dent on the size of input mesh. If λ is too small, the search
will very likely reach the same minimizer, and the computa-
tion effort will be wasted. If λ is too large, it would amount
to re-starting optimization all over with a random initializa-
tion. From plenty of experiments, we find that λ = 0.2 is
a good choice that makes the SA algorithm efficient for all
the test models in this paper. As an illustration, we test our
global optimization method on Plank model with differen-
t λ’s and show the results in Figure 4. The local iteration
number in these tests is set to 50 (NL = 50) to guarantee
that a local minimizer is reached in each global iteration,
although in the later discussion we will show that NL can
be set to a much smaller number. We plot the average min-
imum angle graphs in Figure 4(c), from which we can ob-
serve that λ = 0.2 works well. The average minimum angle
of the mesh is greater than 54o after 100 global iterations,
and the remeshed surface as shown in Figure 4(a) is visu-
ally much more regular than the local optimization result in
Figure 3(c).

Note that, the local optimization method converges very
quickly as shown in Figure 3(d). On the other hand, the local
minimizer obtained from each inner loop is just an interme-
diate result used as the input of the next iteration step of
the outer loop. Therefore, a highly accurate local minimizer
would not be necessary. To illustrate this point, we again ap-
ply our algorithm on the Plank model by running 100 global
iterations (i.e., NG = 100 and λ = 0.2) and setting NL to 1,
2, 3, 4 and 50, respectively. As shown in Figure 4(d), the
global optimization method can still achieve the compara-
ble performance when NL ≥ 2. Therefore, we can stop the
inner loop in few steps instead of running it to exhaustion
to make the global optimization more efficient. To reach a
good balance between the quality of the remeshing results
and efficiency, we set NL = 3,NG = 40, and λ = 0.2 in all
the examples in the rest of this paper.

4. Experimental Results

We implement the presented CCDM-based remeshing
framework in C++. All the experiments are conducted on
a laptop with a 2.66 GHz Intel processor and 4GB memory.

Figure 5: The Joint model with sharp features (left)
remeshed with 6k vertices (right).

Figure 6: The noisy Venus model (left) and the remeshed
surface with 20k vertices (right).

We have extensively tested the proposed algorithm on mod-
els with diverse characteristics. Our first example shown in
Figure 5 is a uniform remeshing of a CAD model with sharp
features and nearly degenerate triangles. The sharp features
are simply detected according to each edge’s dihedral an-
gle, and are preserved in the resulting model by our algo-
rithm. In fact, remeshing models with many nearly degener-
ate triangles is in general a challenge for parameterization-
based remeshing methods [SAG03, FAKG10], since severe
distortions will unavoidably be introduced by the parameter-
ization. With the Joint model, which contains many nearly
degenerate triangles, we demonstrate the robustness of our
method.

Figure 6 demonstrates the efficacy of our remeshing method
on the second model corrupted with synthetic noise. The re-
sult reveals the ability of our method in remeshing even in
the presence of extreme amounts of noise. Figure 7 shows
an adaptive remeshing of the third model with multiple
boundaries. As can be seen in the remeshing result in Fig-
ure 7(right), the distribution of vertices on the mesh sur-
face is consistent with that on the boundaries, owing to
that we apply the same position update rule for all vertices.
Input models with self-intersections would be problemat-
ic for CVT-based remeshing method [YLL∗09], which ap-
proximates the geodesic distance on surface with the Eu-
clidean distance. The fourth model in Figure 8 is a self-
intersecting mesh – the Klein bottle, and the remeshing re-
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Figure 7: The adaptive remeshing of the Pig model with
multiple boundaries.

Figure 8: The Klein bottle model with self-intersection (left),
and the remeshing result (right), homeomorphic to the input
mesh.

sult shows that our method works well on input meshes with
self-intersections.

Evaluation and Comparison: A statistical analysis of the
remeshing results and the runtime of each tested method are
given in Table 1. The analyses of the remeshing qualities in-
clude the angles and aspect ratio of each triangle, and the ap-
proximation error of mesh, which are most commonly used
in the remeshing literature. As we can see in Table 1, our
remeshing method is capable of generating meshes efficient-
ly with well-shaped triangles (∠Avg≈ 53o).

In Figure 9, the remeshing results from our method, the
relaxation-based method [BK04], and the three CVT-type
methods (the vertex clustering based method [VCP08], the
exact RVD computation based method [YLL∗09] and the
local parameterization based method [FAKG10]) are com-
pared on the Moai model. The performance statistics of these
five algorithms are given in Table 1. All timings of the com-
peting methods are obtained from running the code pro-
vided by the authors of the related work on the same ma-
chine. And the parameters for each method are also set to
the values suggested in the related paper. Specifically, for
the method in [BK04], we performed the relaxation itera-
tion 20 times; for the method in [VCP08], we subdivided
the input mesh until its vertex number is 50 times the ver-
tex budget; for methods in [YLL∗09, FAKG10], we always
applied 100 Lloyd or L-BFGS iterations. We can see that
our algorithm runs in comparable times to the fast clustering
method in [VCP08], and achieves comparable mesh quality
to the method in [YLL∗09]. The method in [BK04] com-

bines vertex relocation with topological operations in each
iteration, which is very similar to our local optimization
method. By incorporating global perturbation, our method
generates meshes with higher qualities at the cost of relative-
ly long running times as compared to the method in [BK04].

In Figure 10, we show more remeshing results by our
method, and the statistics of mesh qualities are given in Ta-
ble 2.

Limitation: Despite the fast convergence of the two-step it-
eration of the local optimization process in practice, it is not
theoretically guaranteed. We have shown that our method is
capable of generating meshes efficiently with well-shape tri-
angles, but a certified minimum angle is not given. The ver-
tex relocation operations in our method improve the quali-
ty of the remeshed surface progressively with no regard for
reducing the approximation error between the original mesh
and the result mesh. Therefore, theoretically there is no guar-
antee that our method can capture all the small features on
meshes. And it sometimes leads to relatively large approx-
imation errors (see Table 1&2). A possibility to overcome
this limitation can be to take into consideration the quadric
error metrics [GH97] when evaluating the ‘optimal’ vertex
position. We leave this as a future research. Also, further
studies on the relation between the user-specified probabili-
ty density function and the density function used in CCDM
energy function are required to ensure the precise density
adaptation.

5. Conclusion

We described a relaxation-based algorithm for remeshing an
input mesh according to a given density function. This algo-
rithm depends on the concept of the constrained centroidal
Delaunay mesh, which can be constructed by alternating De-
launay mesh construction and relocation of the vertices to
the centroids of their respective 1-ring neighbor patch. We
then embed this simple iterative process in an efficient lo-
cal/global optimization framework, leading to high-quality
meshes with the same topology as the original meshes.

Future Work: In our remeshing framework, we have on-
ly considered the vertex relocation rule in Equation (3), but
the general algorithm is applicable to other relocation strate-
gies, such as the position update rule from optimal Delau-
nay triangulation method [CX04]. A systematic comparison
between different relocation rules will be useful to under-
stand different mesh configurations and their respective en-
ergy functions. Although our algorithm is efficient, it can be
further accelerated by parallelizing computation framework,
especially the construction of Delaunay mesh. In another
perspective, the extension of our framework to anisotropic
remeshing problem is also an interesting direction.

c© 2012 The Author(s)
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Figure 9: Comparison of remeshing results of the Moai model between different methods. From left to right: original model, the
results from our method, [BK04], [VCP08], [YLL∗09], and [FAKG10]. The statistics for the resulting meshes are summarized
in Table 1.

Model Method Time ∠ (deg) < 30o Aspect Ratio Error
(#vert) (sec) Avg Min (%) Avg Min (10−3)

Joint Ours 3.64 53.41 29.89 2.71×10−2 0.923 0.609 1.34
(221 – 6,000) [YLL∗09] 66.12 53.51 24.95 6.38×10−2 0.920 0.566 1.56

Venus Ours 17.61 53.39 24.41 4.16×10−3 0.924 0.552 5.39
(134,359 – 20,000) [VCP08] 10.52 49.09 22.84 4.17×10−3 0.861 0.409 4.05

Pig Ours 7.17 52.95 28.65 5.57×10−2 0.919 0.559 3.87
(8,000 – 10,000) [FAKG10] 73.35 52.23 20.24 9.73×10−2 0.903 0.387 3.09

[VCP08] 5.55 45.79 13.76 0.15 0.871 0.254 2.34
Klein Bottle Ours 3.97 53.19 32.65 0 0.921 0.642 4.60
(25,800 – 5000)
Moai Ours 21.35 54.21 38.22 0 0.934 0.645 3.72
(10,002 – 30,000) [BK04] 4.12 51.93 33.16 0 0.907 0.632 3.21

[VCP08] 15.99 50.98 31.51 0 0.886 0.538 2.94
[YLL∗09] 263.16 54.80 38.79 0 0.939 0.636 2.80
[FAKG10] 157.09 53.62 38.02 0 0.922 0.638 3.21

Table 1: Comparison of running times and meshing qualities. The vertex numbers before and after remeshing are listed below
the model names. ∠Avg is the average of the minimum angle in each triangle. ∠Min is the smallest angle in the mesh. < 30o is
the percentage of angles smaller than 30o. The measurement of the aspect ratio of a triangle is from [FB99]. The error is the
Hausdorff distance between the original model and the remeshed model with respect to the bounding box diagonal.
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