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Abstract: Transportation engineers are commonly
faced with the question of how to extract information from
expensive and scarce field data. Modeling the distribution
of trips between zones is complex and dependent on the
quality and availability of field data. This research ex-
plores the performance of neural networks in trip distri-
bution modeling and compares the results with commonly
used doubly constrained gravity models. The approach
differs from other research in several respects; the study
is based on both synthetic data, varying in complexity,
as well as real-world data. Furthermore, neural networks
and gravity models are calibrated using different percent-
ages of hold out data. Extensive statistical analyses are
conducted to obtain necessary sample sizes for significant
results. The results show that neural networks outperform
gravity models when data are scarce in both synthesized
as well as real-world cases. Sample size for statistically sig-
nificant results is forty times lower for neural networks.

1 INTRODUCTION

Transportation engineers are commonly faced with the
question of how to extract information from expensive
and scarce field or survey data. A common approach is
to create a statistical or gravity model that describes the
behavior of the phenomenon observed in which the data
are used for calibration/validation. Ideally, such an ap-
proach leads to a model with the desirable high accuracy.
Unfortunately, there is often a discrepancy between this
desire and the obtained accuracy; estimating a model,
based on scarce data is not an easy job and can lead to
results with high deviations. Furthermore, it is not always
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easy to construct a statistical model from the data, due
to the fact that many phenomena are nonlinear, and/or
collinear (Huisken and Coffa, 2000).

Classical transport planning, described in the classical
4-step model (Ortuzar and Willumsen, 2001), is char-
acterized by dependency on data. Spatial interaction
patterns, for example, person-trips between zones, and
the trip distribution, are highly complex and difficult to
model without adequate amounts of data. Errors that are
generated during the trip distribution estimation process
propagate through till the assignment phase. This causes
difficulties for good transport planning. Currently used
techniques, like the classical gravity models (GM), try to
use limited amounts of data. The question arises, whether
these techniques are able to give good trip distribution
estimations.

Since the beginning of the nineties, neural net-
work models were introduced as alternatives for tra-
ditional (statistical) modeling approaches. Recent liter-
ature gives an insight into the opportunities of using
neural networks to model spatial interactions. Open-
shaw and Openshaw (1992) give their opinion on the
advantages of using neural networks in geographi-
cal/transportation analysis. An eye-catching conclusion
is the better performance of these models compared to
more traditional models.

Research conducted by Miller et al. (1995), Dougherty
(1995), Collins et al. (2001), Pijanowski et al. (in press),
Raju et al. (1998), Huisken and Coffa (2000), Currit
(2002), and Faghri and Sandeep (1998) supports this no-
tion. These studies carefully reveal the opportunities of
applying neural networks in a land-use and traffic and
transport context. In addition, Rodrique (1997), Tillema
et al. (2002), and Tillema (2004) give an insight into the
possibilities of both parallel computing and using neu-
ral networks for integrated land-use/transport systems.
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Based on the assumption that most spatial systems are
parallel, a conceptual model using neural networks is de-
veloped. So far, these ideas have not surpassed the level
of conceptual models.

Several studies have explored the usefulness of neu-
ral networks in the context of trip distribution model-
ing. However, the empirical results leave questions open
about whether neural networks give better results than
traditional trip distribution methods. Black (1995) asks
the question if the basic purpose of neural networks,
identifying patterns in data, and to replicate those pat-
terns for new data, can be utilized in a spatial context. He
makes a comparison between a gravity model and neural
networks. Black uses two case studies: (i) a three-region
flow problem; and (ii) a commodity flow problem. The
first problem is a very simple three-region flow problem.
Both doubly constrained GM as well as a neural network
model give excellent results. Black emphasizes that one
should not lose sight of the fact that the matrices have
only nine flow values. The commodity flow problem gives
similar results, ranking the scores of artificial neural net-
works (ANN) above the scores of GM. Finally, Black
concludes that neural networks are capable of high lev-
els of accuracy based on their use in other fields and are
suitable for future flow forecasting.

Fischer and Gopal (1994), Gopal and Fischer (1996),
and Fischer (1998) compare the forecasting results of
neural networks to those of a traditional gravity model.
Research is done into the distribution of interregional
telecommunication flows. Although the test case is not
a traffic- and transport-related problem, the problem
is to a large extent comparable with a trip distribution
problem. The basic conclusion is that the neural network
models outperform the conventional gravity model.

Mozolin et al. (2000) compare the performances of
neural networks and maximum likelihood doubly con-
strained models for commuter trip distribution. The au-
thors state that their approach differs drastically from
others in several respects: (i) the models are used in
a predictive mode and calibration is done on observed
data, while testing is conducted on data for a projection
year; (ii) the baseline problem is a doubly constrained
model estimated by maximum likelihood; (iii) the mod-
els are evaluated on origin-destination matrices of
different sizes to be able to test the sensitivity of the con-
clusions to the size of the interaction system; and (iv) the
model applies an adjustment factor to flows predicted
by the neural network output to satisfy constraints. It
is concluded that neural networks exhibit good to very
good ability to predict future commuter flows. Yet, none
of the tested neural networks outperforms the corre-
sponding doubly constrained model. The authors find
this fact puzzling and unexpected. After further data
analysis the following results are formulated: (i) due to

over-fitting the ability to generalize is rather poor and the
prediction accuracy is low particularly where training
data are scarce; (ii) networks fail to extrapolate around
and beyond the limits of the training sample; (iii) net-
works with less hidden nodes are less prone to over-
fitting; (iv) the ability to approximate data structures
with great accuracy is also their weakness.

So, ANN are increasingly used as data analyzing tech-
niques in a spatial interaction, trip distribution context.
Yet, the conclusions whether neural networks outper-
form more traditional models are still under discussion.
The aim of this study is to explore the performance of
neural networks in trip distribution modeling and to
compare the results to more commonly used doubly con-
strained GM. In addition, the aim is to explore the use-
fulness of neural networks when field data are scarce.

The approach differs from other research in several
respects. Firstly, the evaluation is done based on large
synthetic data sets, as well as a real-world data set. Sec-
ondly, synthetic data (OD matrices) are used to explore
neural network performances under circumstances of
increasing complexity. The well-defined differences be-
tween OD matrices increase the controllability of the
test; differences in results can easily be attributed to the
buildup of the data. Thirdly, statistical analysis is con-
ducted to find minimum necessary sample sizes for both
models. Fourthly, like Thill and Mozolin (2000) men-
tioned, the neural network output is enforced on the
production and attraction constraints, in this case by us-
ing the Furness method (Orthuzar and Willumsun, 2001).
Finally, the neural networks and GM are calibrated us-
ing different percentages of hold out data. In this way
one of the biggest advantages of neural networks, ex-
trapolating/forecasting of missing data (patterns), can
be examined.

A complete OD matrix is generated using a gravity
model. This results in a completely known OD matrix,
without noise and measurement errors. The basic test is
a synthetic spatial network of 15 regions, combined with
synthetic impedances and attraction/production values.
The second test is a comparison of different estimation
methods on observed trip patterns in a real-world net-
work, Rotterdam Rijnmond (National Regional model,
NRM). The known data from the generated OD matrix
are split up into calibration and test data. The calibration
percentage is varied between 10 and 90. A complete OD
matrix will be estimated, using limited (observed) data
and trip attraction and production totals.

The article is organized as follows. The first section
gives an introduction into spatial interaction modeling
and trip distribution modeling. The following section
of this article presents the organization of the test. Fi-
nally, the third and most important section discusses the
performance of a trip distribution model using neural
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networks. Preprocessing is conducted to find a good
neural network topology and configuration. Compar-
isons are made between the performances of both tradi-
tional doubly constrained GM and neural networks. In
addition, answers are given to the question of whether
performances increase or decrease when real-world data
are used instead of synthetic data and if the problem of
separable matrices deteriorates the results.

2 SPATIAL INTERACTION MODELING

Spatial interaction may be defined in general terms as
any flow of commodity, people, capital, or information
over space resulting from some explicit or implicit de-
cision process (Fotheringham and O’Kelly, 1989). Pro-
ductions and attractions provide an idea of the level
of trip making in a study area, but this is often not
enough for modeling and making decisions (Ortuzar and
Willumnsen, 2001). What is needed is a better idea of the
pattern of trip making, from where to where do trips take
place (trip distribution), the modes of transport chosen
(model split), and the routes taken (assignment). A high-
quality trip distribution model is a necessary prerequi-
site for an accurate and usable travel demand model. But
how is trip distribution modeled?

An interesting problem is generated when informa-
tion is available on the number of trips originating and
ending in each zone. The sum of all trips in a row, the
trip production, should equal the total interaction flows
exiting a particular zone.∑

j

Ti j = Oi , ∀i (trip attraction constrained) (1)

The total number of all trips in a column, the trip
attraction, should equal the total interaction flows en-
tering a particular zone.∑

i

Ti j = Dj , ∀ j (trip production constrained) (2)

When both Equations 1 and 2 hold, the model is called
a doubly constrained gravity model:

Ti j = Ai Oi Bj Dj f (ci j ) (3)

where Ai and Bj are balancing factors, cij is the travel
impedance, f (cij) is the distribution function.

Trip distribution can be modeled with any number of
constraints. It has been shown that estimating spatial in-
teraction with a doubly constrained gravity model yields
the most accurate results (Ortuzar and Willumnsen,
2001). So, the doubly constrained model is used as the
benchmark in this article.

Problems arise in trip distribution modeling when data
are scarce. Unfortunately, field data are often scarce due
to the fact that it is difficult and furthermore expensive
to obtain. This influences the quality of trip distribution
modeling strongly.

3 ORGANIZATION OF THE TEST

The focus of this research is on comparing the per-
formances of neural networks and GM in well-defined
basic and real-world cases (Figure 1). Firstly, synthetic
input data are generated: (i) synthetic network; (ii) syn-
thetic skim matrix (impedance); and (iii) synthetic input
data of different complexities (OD matrices). Synthetic
data give the opportunity to play with complexity. This
approach gives an insight into the impact of complex-
ity, without modeling noise or unclear relations between
variables. Neural networks and GM are calibrated on dif-
ferent percentages of the input data. GM are calibrated
using the Hyman (1969) algorithm. Finally, conclusions
are drawn on overall performances and the impact of
different percentages of hold out data with respect to
the model performances. Neural networks are trained
and tested with Matlab 5.3 (The Math Works, Inc. 1996,
1998).

3.1 Synthetic network

A synthetic network combined with synthesized
impedances (schematized in a skim matrix) and synthe-
sized trip attraction and production values define trip
distribution modeling inputs. The choice for 15 regions
results in a 225 cell origin-destination (OD) data set. The
use of a simple synthetic 15-region network gives us the
opportunity to carefully explore neural networks use-
fulness in trip distribution modeling. The regions are lo-
cated on a straight line and distances in between regions
are equally distributed. Spatial impedance between re-
gions is mostly measured by the Euclidean distance. Nor-
mally the use of the Euclidean distance, instead of the
average travel time, enhances the results of neural net-
works and vice versa for a gravity model (Mozolin et al.,
2000). The impedance of the synthetic network is defined
as nondimensional.

The logistics of spatial interaction modeling requires
clearly defined regions with no, or small, flows across
the borders. In the case of the synthetic network, this
assumption is not violated. Setting intrazone distance
to zero is known to generate systematic measurement
errors. Therefore spatial separation within the regions,
an interzone distance greater than zero, is introduced
within the network.
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Fig. 1. Organization of the test.

3.2 Synthetic OD matrices

Trip distribution estimation requires input values for the
distances between regions as well as trip generation and
attraction values. Trip generation and attraction have
been synthesized. A total of 15,000 trips is distributed
among the zones as schematized in Figure 2.

Each cell in Figure 2 is a synthetic OD matrix. The
icons on the edge of the figure (rectangular, triangular,
or a combination of these two) show the distribution
of the 15,000 trips divided over origins, respectively, the
“destinations.” From 1 to 16, the matrices’ complexity in-
creases: for example, matrix 1, cell 1, is built with evenly
distributed origins/destinations; matrix 3, cell 3, is built
with evenly distributed origins and a descending pattern
for destinations. The well-defined differences between
OD matrices increase the controllability of the test. Dif-
ferences in results can easily be attributed to the buildup
of the matrices. Cells in the figure indicated by lines are
duplicates; configurations of these matrices are already
tested in one of the matrices, matrix 1–16.

The complexity of the matrices is shown in Figure 2 be-
tween brackets. The complexity is based on the patterns
for destination and origins and the interactions within
the matrix.

3.3 Input data format

Consider the flows between the regions as given in matrix
1–16. The distances are given in the skim matrix. Input

data are set up as productions, attractions, and distances.
All network inputs are scaled by dividing the value
observed for each example by the input’s maximum
value in the set. Scaling of the output is required
and is done by dividing by the maximum output
value.

3.4 Comparison measure

To compare the performances the error definition that
was used is the root mean square error (RMSE). The
RMSE is mathematically described by:

RMSE =
√√√√(

1
N

N∑
i=1

(
xobserved

i − xpredicted
i

)2

)
(4)

with:
N = number of samples per matrix (15 × 15 = 225).
A model is said to outperform the other if its goodness-

of-fit is superior, as measured by the RMSE and the stan-
dard deviation. A good fit on the trip production and
attraction totals and a low RMSE are no guarantee for
good estimates. So, extra analyses have to reveal new
information on the fit on the OD-cell level. Therefore
comparisons are made between both methods on the
average trip length and length distribution. Trip length
frequencies give insights into the results of both methods
on all trip length categories.
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Fig. 2. Synthetic OD matrices.

3.5 Neural network: Input/output

The first step in using a neural network model is the
choice for a network topology. The right topology is
dependent on the number of relevant inputs and out-
puts. In the trip distribution problem, topology seems
quite clear: (i) three inputs (trip attraction/production
and impedance); and (ii) one output (trip distribution).
Although all matrices are built around trip attraction
and production values and a skim matrix, not all ma-
trices have the same network topology. Input variables
that are constant factors cannot be used for the fact that
they contain no discriminating information. Dependent
on the fact of whether the trip production or attraction
can be discriminated upon, the matrices have one (only
impedance), two, or three inputs. For example, matrix
one is built around evenly distributed destinations and
origins, with a value of 1,000. In that case, the only dis-
criminating data on which trip distribution can be es-
timated are the impedance values. The neural network
topology of matrix 1 will be: (i) one input (impedance)
and (ii) one output (trip distribution). The topologies
are:

− 1 input, 1 output → matrix 1;
− 2 inputs, 1 output → matrix 2, 3, 4, 5, and 6;
− 3 inputs, 1 output → 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,

and Rotterdam Rijnmond.

3.6 Real-world matrix: Rotterdam Rijnmond region

Rotterdam, famous for its harbor, is the second city of
The Netherlands with a population of 0.6 million inhabi-
tants. Rotterdam Rijnmond (Figure 3) is the whole area
of Rotterdam including the harbor and suburbs. Using
the NRM zoning method, Rijnmond is divided into 15
zones. A total number of nearly 1.9 million car trips per
24 hours is made, calculated over all motives. Spatial
impedance between counties is simply measured as time
between the zone centroids.

4 PREPROCESSING

4.1 Reasons for preprocessing

The next step is selecting a NN configuration and param-
eters. This is difficult and often based upon only a limited
number of criteria. It is common practice to proceed by
trial and error to select the number of hidden nodes, and
to test networks with layers of varying size.

Preprocessing was conducted for several reasons.
Firstly, both neural network performance and computer
time are strongly related to the network configuration.
Preprocessing gives an indication of what the best num-
ber of hidden neurons is. So computer and analysis time
can be decreased. Secondly, computer time is dependent
on the number of training epochs. Preprocessing gives an
indication of the minimum necessary number of epochs.



Comparison of neural networks and gravity models 109

Fig. 3. Rotterdam Rijnmond area (dots).

Thirdly, we search for statistically significant conclusions.
Because of the random aspect of the calibration process
of both neural networks and GM, we need an indication
for the minimum sample size for statistically significant
conclusions. Finally, preprocessing gives preliminary re-
sults on performances of neural networks and GM and
helps to draw conclusions in the end.

4.2 Preprocessing setup

Preprocessing was conducted using 6 of the available 16
synthetic OD matrices, varying in complexity and rep-
resentative of other matrices. The neural networks were
calibrated using both 30% and 70% of the data set; 68
and 158 data vectors, respectively. Epochs are varied be-
tween 20 and 220, with a step size of 40. A total num-
ber of 200 random draws of 68 and 158 data vectors are
performed. This results in 200 random input data sets
per configuration. These are used to determine the av-
erage performance of neural networks. In addition, tests
are done to determine the average necessary number of
calculations/draws for statistically significant conclu-
sions. To streamline the preprocess and to get a first
impression of a suitable network configuration, a rule
of thumb for the number of hidden nodes was used:

Number of hidden nodes =
√

(m ∗ n) (5)

With:

1. m = the number of output neurons (always 1 in this
case); and

2. n = the number of input neurons (1–3).

According to this rule, the number of hidden neurons
would vary between 1 and 3. However, preliminary ex-
perimentation leads to the conclusion that this rule of
thumb is not generally applicable: the optimum number
of hidden nodes varies per matrix and test percentage.
Therefore the total number of hidden nodes was varied
between 1 and 20. Matrices 1, 5, 7, 9, 11, and 14 were used
in preprocessing. The setup was organized as follows:

(i) Data percentage → 30/70%;
(ii) Epochs → 20–220;

(iii) Hidden neurons → 1–20;
(iv) Number of samples per configuration → 200.

4.3 Results preprocessing

Epochs. The conclusions on the number of epochs
are based on a Kruskal-Wallis analysis of variance
(ANOVA) and median test. Networks trained on 100–
220 epochs do not show significantly different results.
Besides that, networks trained on less than 100 epochs
show significant differences in results with networks
trained on more than 100 epochs. The performance
(RMSE) of networks trained on less than 100 epochs
showed to be significantly worse than networks trained
with more than 100 epochs. It is therefore concluded that
in further and future research, networks can be safely
trained with only one epoch configuration: 100 epochs.

Hidden neurons. Training and testing the different ma-
trices revealed interesting results. Figure 4 gives infor-
mation on mean RMSE per network configuration (ma-
trices 1, 5, 7, 9, 11, 14).

Although at first sight all figures give different results,
three general preprocessing conclusions can be drawn.
Firstly, neural networks trained on 70% of the train
set give better results on the RMSE, as expected. Sec-
ondly, neural networks trained on 30% give good results
when the number of hidden nodes is between 3 and 5.
Finally, contrary to the former conclusion, neural net-
works trained on 70% perform, in general, better when
the number of hidden nodes increases. However, results
do not significantly improve when more than 10 hidden
nodes are used. In general, no conclusions can be drawn
on one “generic” best network configuration. Taking into
account the computer time that increases with increasing
number of hidden nodes, the following network config-
urations will be used in the comparison with the gravity
model:

(i) 10–30% data → 5 hidden nodes;
(ii) 40–70% data → 8 hidden nodes;

(iii) 80–90% data → 10 hidden nodes.
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Fig. 4. RMSE when hidden neurons are varied between 1 and 20 (matrices 1, 5, 7, 9, 11, 14).

4.4 Number of calculations per OD matrix

Research is done into the average necessary number of
calculations for statistically significant conclusions. Due
to the random initialization process of neural networks
and the randomly selected draw from the full data set for
both neural networks and GM, only an average result out
of a number of calibration runs can give comparable re-
sults. To determine the necessary number of calculations
it was assumed, although not statistically proven, that
both neural networks and GM outcome are distributed
normally. This results in the following definition of the
necessary number of calculations (or sample size):

n >
Z2

d2
σ 2 (6)

With:

1. n = minimum number of samples;
2. Z = distribution value, dependent on statistical con-

fidence and distribution;

3. d = desired accuracy;
4. σ = standard deviation.

For consistency reasons, d is related to an absolute
value because of the different values, from 2 to 40, of
the calculated RMSEs. As a fixed value we calculated
the RMSE when the total number of trips (15,000) is
equally distributed amongst the 225 OD pairs; the so-
called best guess. Conclusions are drawn on the number
of calculations for statistically significant results for neu-
ral networks and doubly constrained GM:

(i) 10–30% data → 200 neural network, 8,000 gravity
model;

(ii) 40–70% data → 100 neural network, 2,500 gravity
model;

(iii) 80–90% data → 25 neural network, 1,500 gravity
model.

4.5 Data management after training

Contrary to the doubly constrained gravity model, neu-
ral network models have no internal constraints. This
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Fig. 5. RMSE of artificial neural networks (ANN) and gravity models (GM) (matrices 1, 6, 7, 8, 15, 16).

means that trained networks are not capable of enforcing
the origin and destination constraints. As a consequence,
totals of origins and destinations as well as total number
of trips in an OD matrix usually differ from the actual in-
put values. So, to enforce the constraints, the first step is
to multiply the estimated matrix total (neural network)
by the division of input matrix total and estimated matrix
total. Secondly, the trip attraction and production totals
are enforced using the Furness method.

4.6 Importance of other neural network characteristics

Besides the number of epochs and the number of hid-
den neurons, other factors determine the quality of
the neural networks and consequently the estimations
with neural networks. These factors are a.o. neural
network charateristics, the activation function, learn-
ing method, momentum, and stop criteria. No exten-
sive research is conducted into the optimal values of
these factors. Does this limit the conclusions in this re-
search? The answer is twofold. On one hand, it does.

We may find a neural network configuration that is not
optimal.

On the other hand, not having the optimal neural net-
work structure does not necessarily weaken the conclu-
sions. In a situation where a neural network performs
better than a traditional method in (almost) all cases, one
can conclude that a neural network performs better. The
results might be even better when the network is really
optimized. It means that the cases in which the neural
networks are compared to traditional methods should
be as diverse as possible. In this research, the use of syn-
thetic data helps in providing diverse cases. So, when the
results of the study are in favor of neural networks we
can conclude that the results might even be better than
the shown results.

5 COMPARISON OF MODEL PERFORMANCES

The performance of both ANN and GM are presented
in Figure 5. The neural network models outperform



112 Tillema, van Zuilekom & van Maarseveen

calibrated gravity models especially at low percentages
of data. Gravity models outperform neural network
models only when sufficient data are at hand to perform
a good calibration. Figure 5 shows that most neural net-
work models on average outperform the gravity models
when the total percentage of data is under 50%.

In general, the RMSE results are strongly influenced
by the percentage of calibration data. At low percent-
ages the results of both methods are less accurate than at
high percentages, as expected. Furthermore, the gravity
model results are far more influenced by data percentage
as are the neural networks.

So, neural networks do not outperform gravity models
on the whole scale. When the calibration data set per-
centage is higher than 80–90%, on average gravity mod-
els give better results. This is not surprising, because of
the fact that gravity models estimate to a high extent their
own creations; at 100%, gravity models always replicate
the complete matrix that was created before the result
comparison.

Matrix 8 shows strange results. The buildup of the ma-
trix strongly determines the bad results of the gravity
model. The trip attraction and production values differ
strongly from the theoretical standard distribution func-
tion. This standard function gives high trip rates at low
distances and low trip rates at high distances. Matrix 8
shows quite the opposite. At low distances people make
far less trips than at high distances. Here the advantages
of neural networks are shown. Without presuming a cer-
tain distance decay function (like the gravity models),
the neural network is better capable of estimating the
trip distribution. This is a big advantage!

Looking at the Rotterdam Rijnmond matrix, the same
observations can be made (Figure 6). Two facts have to be
stressed. Firstly, the ANN results are fractionally worse
than in the case of the synthetic matrices. Yet, the same
pattern is still visible. Secondly, the RMSE values are
higher due to the fact that the total number of trips is ap-
proximately 130 times higher. However, when the num-
ber of trips is related to the RMSE values, the RMSE
values are still two times higher.

A good fit on the trip production and attraction to-
tals and a low RMSE are no guarantee for good esti-
mates. So, extra analyses have to reveal new informa-
tion on the fit on the OD-cell level. Therefore the results
of neural network and gravity models trip length fre-
quencies can be studied. Figure 7 gives insights into the
trip length frequencies of both methods using 10–50%
of the available data. Only results of matrices 1 and 6 are
shown. In addition, the data of the Rotterdam Rijnmond
case are shown. The remaining matrices show similar
results.

Figure 7 gives an insight into three facts. Firstly, for
both gravity models and ANN, the performance on the

Rotterdam Rijnmond

0

5000

10000

15000

20000

10 20 30 40 50 60 70 80 90

% data

R
M

S
E

ANN

GM

Fig. 6. RMSE of artificial neural networks (ANN) and
gravity models (GM) (Rotterdam Rijnmond).

trip length frequency goes up when data percentage go
up. Secondly, gravity models seem to have difficulties
estimating both the high and the low number of trips.
Neural networks only seem to have problems with long
distance trips. Finally, the performance at low percent-
ages is much better when neural networks are used, as
shown by the smaller range of results. The results per-
fectly illustrate the conclusions based on Figure 5; when
data are scarce (low percentages), the ANN outperforms
the GM. When the input data increase, differences in
performance decrease.

The results of the Rotterdam Rijnmond case show
roughly the same pattern; at low percentages, the ANN
outperforms the GM. When the input data increase, dif-
ferences in performance decrease. Neural networks have
more difficulties in estimating extreme values.

6 MORE INSIGHTS IN THE RESULTS

6.1 Matrix complexity

Is there an explanation for these results? Firstly, all ma-
trices show roughly the same pattern; at low percentages
neural networks outperform gravity models, at high per-
centages gravity models outperform neural networks.
Neural networks show their ability of extrapolation of
data; they can very well cope with small data sets. The
performance of gravity models, when calibration data
percentage is high, is related to the buildup of the matri-
ces; the matrices were built using gravity models.

So, when the calibration data set nears 100%, the only
matrix the gravity model estimates is its own creation.
Therefore, the conclusion that gravity models outper-
form neural networks, when high percentages of data
are used, is not very strong. This could favor the use
of neural networks, even when data sets are large. Due
to the data management after training, neural networks
were able to estimate both high and low trip values, also
beyond the limits of the training sample.



Comparison of neural networks and gravity models 113

TLF-ANN 1.

1

10

100

1000

10000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Trip length category

# 
tr

ip
s

10%

20%

30%

40%

50%

TLF-OD

TLF-GM 1.

1

10

100

1000

10000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Trip length category

# 
tr

ip
s

10%

20%

30%

40%

50%

TLF-OD

TLF-ANN 6.

1

10

100

1000

10000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Trip length category

# 
tr

ip
s

10%

20%

30%

40%

50%

TLF-OD

TLF-GM 6.

1

10

100

1000

10000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Trip length category

# 
tr

ip
s

10%

20%

30%

40%

50%

TLF-OD

TLF-ANN Rotterdam Rijnmond

1

10

100

1000

10000

100000

1000000

0 5 10 15

Trip length category

# 
tr

ip
s

10%

20%

30%

40%

50%

TLF-OD

TLF-GM Rotterdam Rijnmond

1

10

100

1000

10000

100000

1000000

0 5 10 15

Trip length category

# 
tr

ip
s

10%

20%

30%

40%

50%

TLF-OD

Fig. 7. Trip length frequencies for ANN and GM compared to trip length frequency of the full data set (TLF-OD).

Secondly, there seems to be a difference in perfor-
mances when matrices vary in complexity. Figure 8 shows
the average RMSE per OD matrix versus the complex-
ity of the matrix. The average RMSE value is calculated
as the average of all results at percentages 10–90%. So,
Figure 8 shows aggregated values, and therefore shows
less detail than Figure 5.

In the first instance it seems that no general conclu-
sion can be drawn upon the relationship between com-
plexity and results; no clear relationship is shown for
either of the models. The differences in RMSE results
between the simplest matrix and the most complex ma-
trix are smaller for gravity models. The gravity mod-
els results lie within a smaller range than the neural
networks results and therefore appear to be less sensi-
tive to complexity and more stable. The following three
conclusions can be drawn: (i) when complexity is min-
imal, 2, data are most structured and neural network
performance is best. This stresses one of the qualities
of neural networks: pattern recognition; (ii) contrary

to this point, when complexity is at its maximum, 10,
average neural network performance over all data set
percentages is less good. The complex matrix reveals
the least order and therefore the fewest patterns. This
results in an RMSE increase; and (iii) the differences
in results between neural network models and gravity
models are not stable, especially when the difference be-
tween both models in matrix 16 is small. This stresses
the fact that neural networks perform best in situa-
tions where data are most structured; matrix 1, complex-
ity 2, shows the highest difference in (average) RMSE
values.

The results shown have to be looked at closely. First
of all, the results do not give absolute answers on the
estimating abilities of both methods. Figure 8 only gives
an answer when the results of all data set percentages
are averaged. So, no hard conclusions can be drawn
on specific percentages. Furthermore, every calculation
for both neural networks and gravity models is based
on different random pulls (and calculations) of an x
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Fig. 8. Average RMSE versus complexity of the matrices.

percentage out of the total data set, as shown before.
These results were averaged, and therefore should be
seen as relative results. To judge these relative results,
we look at the average standard deviation and the distri-
bution of the RMSE. Figure 9 shows that neural network
estimations show less variance in performance overall.
This favors the use of neural networks.

6.2 Separable matrices

Both neural networks and gravity models use limited
data to calibrate. This study shows that calibrating these
models, using only limited or incomplete data, is ac-
tually possible. However, results show also that there
are a number of peaks where results are worse than
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in other cases. It is interesting to explore whether
these results are brought about by a problem called
separability of calibration data. Separability of matri-
ces deals with the fact that limited data are used to
estimate missing data. Kirby (1979) has shown that
there are two basic conditions required for the estima-
tion of missing data. The focus will be on the second
condition.

1. The gravity model must fit both the available data
and the data that are not available, that is, the model
must be a good model for the two regions of the
matrix: the observed and unobserved.

2. The two regions of the matrix should not be sepa-
rable, that is, it should not be possible to split the
matrix into two or more independent matrices.
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Fig. 10. Matrix separability (Ortuzar and Willumsen, 2001).

Figure 10 schematizes the problem of matrix separa-
bility. In the case of doubly constrained gravity mod-
els, each separate area has two degrees of indetermina-
tion and therefore the balancing factors cannot produce
unique estimates, nonidentifiability of unique products
for unobserved cell entries. In other words, a matrix can
be divided into separate independent parts with few or
no interactions to other parts.

Research is conducted into this phenomenon to ex-
plain the peak RMSE values in the results. The random
selection of calibration data was adjusted. Contrary to
the first research part, random matrices instead of ran-
dom cells are used as inputs. The procedure is simple.
Matrices of 25 (5 × 5, 10%), 49 (7 × 7, 20%), and 64 (8 ×
8, 30%) are randomly selected as input for calibration.
It is only thought useful to research calibration percent-
ages up to 30%. Figure 11 shows the ANN results of the
RMSE of matrices 1, 6, and the Rotterdam Rijnmond
matrix.

Figure 11 also shows that the effect of separability is
large for matrix 1. Matrix 6 and the Rijnmond matrix
show different results. The trend in the standard devi-
ations is clear. As expected, the more random the cali-
bration data, the less variance in the results; the chances
of picking less suitable data are higher for the separable
data cases. Yet, the results in average RMSE show dif-
ferent results. Where matrix 1 shows big disadvantages
for separable input, matrix 6 and the Rotterdam case
show somewhat distinct results. Regularities in matrix
1 are not that large in small separate parts of the ma-
trix. Therefore, the separable matrices consist of only
a small part of the data in the input range, resulting in
worse results. Matrix 6 and the Rotterdam matrix show
results that are in some cases better than the earlier
results.

The statistical results of matrix 1 show that the results
of 10 and 20% are significantly different and that the
nonseparable input data end in better results. At 30%

no differences are found. Matrix 6 shows statistical dif-
ferences at percentages 20 and 30. So, the results of the
separable matrix input even seem better. At 10% no dif-
ferences were found. The Rijnmond matrix shows the
same results as matrix 6. So, no hard conclusions can be
drawn on the fact of whether separable input can cast
clouds on the results by causing peaks. Separability does
not seem to influence the average RMSE of an ANN
model in this research.

How about the results for the gravity model? The first
striking and most important difference is that gravity
models do not give answers with all input data. Cer-
tain combinations of data, separable matrices, give no or
meaningless results. The used calibration process proba-
bly causes this. This was also observed in earlier results.
Calibration of the gravity model is done using the av-
erage trip length of the calibration set, as a calibration
target. To calculate the average trip length, firstly all trips
are classified in matching trip length classes. However,
when the input data is built up with trips in only a limited
number of trip length classes, calculation of the average
trip length is very difficult. As a consequence, estimat-
ing the whole OD matrix will be difficult. The results are
shown in Figure 12.

Examination of the results shows that in this case grav-
ity models show better results with separable inputs.
Regularities in matrix 1 are not that large in small sep-
arate parts of the matrix. Contrary to neural networks,
gravity models seem to give better results when matri-
ces are more irregular. This explains the better results. In
general, it can be said that the use of separable matrices
does not disturb the results negatively. So, peaks cannot
be explained by separable inputs in this research.

7 DISCUSSION AND CONCLUSIONS

This research shows that neural networks outperform
gravity models in both synthetic and real situations when
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Fig. 11. RMSE results of ANN separable and nonseparable inputs.

data are scarce. These results are promising for future
trip distribution modeling, which is an important step
for good transport planning. The results were obtained
using both synthetic and real-world data sets. This gives
the opportunity to control the test. This is a major differ-
ence compared to other studies, for example, the study by
Mozolin et al. (2000). This article gives more insights into
the performance of neural networks in different com-
plexity cases. It is shown that in cases that are quite
unusual, as shown by matrix 8 in Figure 5, neural net-
works perform much better. This can only be concluded
if one uses synthetic test cases. The use of a real-world
case strengthens these conclusions. Mozolin et al. (2000)
for example do not use both real-world data and syn-
thetic data in varying complexity. In addition to other
research, this research shows the results of a statistical
analysis, which reveals that gravity models need more
training samples than neural networks.

The results have to be looked at closely. First of all,
they do not give absolute answers on the estimating abil-
ities of both methods. As shown before, each of the cal-
ibrated samples for both models is based on different
random pulls (calculations) of a predefined percentage
out of the total data set. These results are averaged, and
therefore can only be used for comparisons.

As seen in the different figures, neural network per-
formance, compared to gravity models, is best when data
are scarce. As stated before, the synthetic matrix data
were generated using a gravity model. This creates a sit-
uation in which gravity models should give good results.
However, the gravity model only gives the best results
when calibration percentage is high; gravity models only
reproduce their own results. In situations close to real-
ity, with only limited amounts of data, neural networks
show their abilities. This strengthens the results of neural
networks.
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The investigation into the trip length frequencies and
the standard deviations gives an insight into the abso-
lute performances of both methods. Neural networks
show better performance on standard deviations and trip
length frequencies when data are scarce. Due to the data
management after training, neural networks were able
to estimate both high and low trip values, also beyond
the limits of the training sample.

The behavior of both methods changes when com-
plexity increases. The data sets are complex enough, es-
pecially the random matrices, to come close to reality.
Results show that neural networks perform better un-
der conditions in which data are structured. But, results
show also that even the performance of the random ma-
trix and real-world matrix are good. Due to the large
number of trips in the Rijnmond case, the RMSE values
were higher than in the synthetic cases.

There is not one best neural network topology and
configuration for all proportions of available data. In

addition, neural network performance is dependent on
factors like the activation function, learning method, and
corresponding momentum stop criteria for learning, and
software to run neural networks. During this research
no extensive extra work has been conducted to investi-
gate the influence of these parameters on neural network
performance. Preprocessing showed that no general con-
clusion was drawn on one best network configuration for
all types of data. However, results show that smaller hid-
den layers, less than 5 neurons, are not preferred. Net-
works with more than 10 hidden neurons should not be
used because of over-fitting problems (Bishop, 1995);
the ability to generalize decreases when training data
are scarce and too large a number of hidden neurons is
used.

The performance of neural networks is promising. The
research shows that the trip distribution problem is a
complicated one, but also an important step in transport
planning. Many errors generated during this distribution
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phase are passed on to the next steps. Often, real-world
problems have only limited data. And contrary to this
research, real-world problems have only one sample of
that data. Scarce data can give difficulties during calibra-
tion of models and results have high standard deviations.
The extent to which the available data suits a calibra-
tion process determines the performance. However, if
only 20% or less data are available, the calibration pro-
cess can lead to a large number of different matrices. In
this study, the total data set are available as a reference
for determining the quality of the estimated data: the
RMSE.

Contrary to this situation, real-world data sets are
never complete and so no RMSE can be calculated. This
is why the quality of the estimated matrix cannot be de-
termined. Ortuzar and Willumsen (2001) conclude that
observed trip matrices are almost always scarce; they
have a large number of empty cells. If the sampling rate
is 20% (1 in 5), then the chances of making no obser-
vations on a particular OD pair are very high. Matrix
expansion methods can be used to seed empty cells. In
addition, it is important to realize that observed trip ma-
trices normally contain a large number of errors and that
these are amplified by the expansion process. This pleads
for more research into the conditions under which grav-
ity models and neural networks work well.

It is difficult to obtain a good estimation for the total
number of samples necessary to be sure about the results.
In addition, it can be concluded that a large number of
calculations are necessary due to, among others, the ran-
dom initialization process of neural networks. Further-
more, the calibration process used for gravity models
needs 40 times more calculations than the neural net-
work. It shows that the use of gravity models can be
dangerous. The chances that small sets of data “fit” a
gravity model is smaller than chances for a neural net-
work.

It was expected that the method of neural networks
can even be improved. In this research only the trip pro-
duction and attraction constraints are used. One of the
calibration factors for gravity models is the average trip
length of the calibration sample. Up to the present time
this piece of extra information has not been used for
neural networks. To investigate whether the average trip
length could be useful for neural networks, an extra con-
straint can be added. The total number of constraints
will be three (tri-proportional): constraints on produc-
tion and attraction totals and the average trip length.
Preliminary research shows that adding a third constraint
might not lead to better results.

So, what are the implications of these findings for
travel planning agencies? First of all, the research shows
that performing a good trip distribution is very difficult,
even with traditional methods. One should be aware of

the influence that the amount and quality of data have on
the quality of the actual trip distribution. In cases where
data are scarce, these neural networks are very suitable
for planning agencies to be used. In addition, neural net-
works are less sensitive to small errors in the data, which
is a general characteristic of a neural network. There
is, however, one major drawback. Neural networks are
black boxes. This makes it difficult to understand what is
happening inside the networks. Especially in cases where
policy is made and clear reasoning is asked for, the results
of neural networks are difficult to sell. In these cases tra-
ditional methods are more understandable, yet not more
accurate.

Finally, this study compared the performances of neu-
ral networks and doubly constrained gravity models in
a trip distribution context. The study shows that neu-
ral networks outperform gravity models when data are
scarce. The conclusion that gravity models outperform
neural networks when a lot of data are available seems
less certain, due to the research method and the gener-
ation of the synthetic data. This article adds new inputs
to the discussion of trip distribution modeling with neu-
ral networks. Neural networks can improve trip distri-
bution; however, the black box character of the models
makes understanding the models more difficult.
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