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A Genetic Algorithm Approach for 

Optimising Traffic Control Signals Considering Routing 

  
F. Teklu, A. Sumalee, and D. Watling 

Institute for Transport Studies, University of Leeds 

 

Abstract 

It is well-known that co-ordinated, area-wide traffic signal control provides great potential for 

improvements in delays, safety and environmental measures. However, an aspect of this 

problem that is commonly neglected in practice is the potentially confounding effect of 

drivers re-routing in response to changes in travel times on competing routes, brought about 

by the changes to the signal timings. This paper considers the problem of optimising signal 

green and cycle timings over an urban network, in such a way that the optimisation anticipates 

the impact on traffic routing patterns. This is achieved by including a network equilibrium 

model as a constraint to the optimisation. A Genetic Algorithm (GA) is devised for solving 

the resulting problem, using total travel time across the network as an illustrative fitness 

function, and with a widely-used traffic simulation-assignment model providing the 

equilibrium flows. The procedure is applied to a case-study of the city of Chester in the UK, 

and the performance of the algorithms is analysed with respect to the parameters of the GA 

method. The results show a better performance of the signal-timing as optimised by the GA 

method as compared to the other method which does not consider re-routing. This 

improvement is found to be more significant with a more congested network whereas under a 

relatively mild congestion situation the improvement is not very clear.  

1 Introduction 

In an urban transportation network, traffic signals have been used to control vehicle 

movements so as to reduce congestion, improve safety, and enable specific strategies such as 

minimizing delays, prioritizing public transport, and improving environmental pollution (IHT, 
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1997).  Through the years, procedures for determining optimum signal timings have been 

developed and continuously improved. Early methods such as that of Webster (1958) only 

considered a single signalised junction in isolation. Later, fixed time strategies were 

developed that optimised a group of signalised junctions using historical flow data (e.g. 

TRANSYT: Robertson, 1969). In some cities, real time traffic flow data has also been used 

for optimisation in methods commonly referred to as demand-responsive strategies (e.g. 

SCOOT: Hunt et. al., 1981). The focus of this research is on fixed time signal plans.  

 

As mentioned earlier, fixed time plans use historical flows observed on links (through traffic 

counts) to optimise signal timings. One shortcoming of such optimisation procedures is the 

assumption that the flows for which the optimal timings are calculated will remain unchanged 

after the new timings are implemented. This may not be a valid assumption if the 

implementation of such timings substantially improves the journey time on a certain route, 

since the users of alternative routes may divert to the improved route as a result. Such effects 

have been observed as a consequence of area wide traffic control schemes (e.g. Almond and 

Lott, 1968). 

 

From a modelling viewpoint, the impact of signal time changes on changes in link flows 

could also be explained from the perspective of traffic assignment theory. In a transportation 

network, where traffic signals are explicitly modelled, drivers’ route choices in a network 

could be assumed to a follow Wardrop User Equilibrium (UE) condition (Wardrop, 1952). 

From such a perspective, a change in traffic signal timings will cause a change in the 

equilibrium route choice behaviour of drivers through the link and route travel times, thus 

altering the equilibrium link flow pattern over the network. Such an equilibrium model may 

thus be used as a part of the signal optimisation procedure (formally, as a constraint to the 
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problem), to reflect the anticipated impact of changes to the timings on the flow patterns – i.e. 

the flows are determined endogenously, inside the optimisation process. 

 

Such a problem of determining optimum signal timings while anticipating the equilibrium 

response of drivers is an instance of the Network Design Problem, NDP. A NDP is concerned 

with improving an existing network so that some total network measure is optimised with 

respect to some discrete or continuous design variables, while considering users’ response to 

the improvement. Some examples of NDPs include the capacity enhancement problem 

(Abdulaal and LeBlanc, 1979), the signal-setting problem (Chiou, 1999; Ceylan and Bell, 

2004), toll pricing (Shepherd and Sumalee, 2004) and the charging cordon design problem 

(Sumalee, 2004).  

 

NDPs are characterized by the so called bi-level structure. On the upper level, a transport 

planner is assumed to ‘design the network’, by selecting values for the design parameters so 

as to optimise some measure of total social cost (e.g. total delay, pollution, social welfare). 

Road users respond to that design in the lower level by altering their travel choices so as to 

minimise their own travel costs, which may not agree with the planner’s view of the most 

appropriate costs* . Formally, the planner’s optimisation in the upper level is constrained by 

the lower level equilibrium problem. Such problems are known to be one of the most 

challenging mathematical problems in the optimisation field, due to the non-smoothness of 

the objective function (not differentiable everywhere), coupled with the non-convexity of the 

feasible region. These properties imply the potential existence of multiple optima, as well as 

great difficulty in devising robust and efficient methods for even finding local optima (see, 

Luo et al, 1996 for more details). 

                                                 
* This may be contrasted with the case in which both the routing pattern and the signal settings are optimised 
with respect to a common system objective, which Varia and Dhingra (2004) solved with the use of a Genetic 
Algorithm. While such a system optimal allocation of the flows is a useful theoretical benchmark, it is not 
intended as a prediction of flows that could actually arise in practice. 
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A wide range of solution methods have been applied in an attempt to devise an efficient 

technique to solve NDPs, ranging over heuristic iterative methods (Steenbrink, 1974; Allsop, 

1974; Suwansirikul et al, 1987), linearization methods (LeBlanc and Boyce, 1986); Ben-Ayed 

et al, 1988), sensitivity-based methods (Friesz et al, 1990; Yang, 1997), Karush-Kuhn-Tucker 

based methods (Marcotte, 1986; Verhoef, 2002), methods developed from the system optimal 

solution (Dantzig et al. 1979; Marcotte, 1981; Bergendorff et al, 1997; Hearn and Ramana, 

1998), marginal function method (Meng et al, 2001), cutting plane method (Lawphongpanich 

and Hearn, 2004), and stochastic search methods (Friesz et al, 1992; Cree et al, 1998; Ceylan 

and Bell, 2004). 

 

This paper presents a solution method for solving a signal timing based NDP using a 

metaheuristic optimisation method, namely a Genetic Algorithm (GA). GA is an evolutionary 

optimization technique, formulated on the basis of the mechanics of natural selection and 

evolution. It offers great flexibility in solving such optimization problems as it does not 

require any information on the gradient of the objective function and has the ability to move 

out of local optima. An additional motivation for using GA for this problem is the simulation 

based framework (as opposed to an analytic one) commonly employed in signal setting 

methods (e.g. TRANSYT and SATURN) that do not use explicit mathematical relations  

which negates the use of derivative based optimisation methods. GA has been used widely in 

the transportation field, for problems such as generating zoning (Balling et al, 2004) or 

activity plans (Charypar and Nagel, 2005), transit network design (Bielli et al, 2002; 

Chakroborty, 2003), transit scheduling (Chakroborty et al, 1998), traffic parameter estimation 

(Sharma et al, 2004), dynamic traffic management (Lo et al, 2001; Abu-Lebdeh and 

Benekohal, 2003), and traffic incident detection (Srinivasan et al., 2000). 
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In signal timing design, GA has been used to optimise cycle time, green time, offsets, and 

stage sequences (e.g. Foy et al., 1992; Park et al., 2000; Park and Yun, 2005). These 

applications, however, are limited to problems in which no account is taken of re-routing in 

the optimisation, andwith the possible exception of Park and Yun who consider a twelve 

intersection networkare limited to small networks with few signalised intersections. In the 

network design context, Lee (1998), Taale and Van Zuylen (2003) and Ceylan and Bell 

(2004) used GA in optimising signal timings, while anticipatingre-routing impacts. For stage 

length and cycle time optimisation (without considering offsets) to minimize total travel time, 

Lee (1998) presented a comparison of GA and simulated annealing with iterative and local 

search algorithms and showed the different algorithms perform better for different network 

supply and demand scenarios. Van Zuylen and Taale (2003) reported promising results from 

applying a GA to optimise green times within a NDP context, albeit on small artificial 

networks. In their approach to the NDP, Ceylan and Bell (2004) used the inverse of a system 

performance index, defined as the weighed sum of delays and stops for all traffic streams in 

the network, to optimise a common cycle time, green times and offsets. Flows were 

constrained to a Stochastic User Equilibrium solution (Daganzo and Sheffi, 1977). Using a 

small network, they showed that a bi-level framework with GA gives more efficient results 

than an iterative algorithm in terms of system-wide travel costs. Although with a different 

application in mind, GA has also been proposed for addressing a number of problems with a 

similar bi-level structure, such as the analyses of Kim et al (2001) and Stathopoulos and 

Tsekeris (2004) on the equilibrium-based OD matrix estimation problem; and those of Yin 

(2000) and Sumalee (2004) on bi-level NDPs.  

  

Building on Ceylan and Bell’s work we aim in the current paper to present a GA based signal 

timings optimisation method that considers drivers rerouting and its application on a large 

scale network. The optimum timings obtained are compared with those obtained from a 
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method that does not consider rerouting. The impact of the choice of GA parameters on the 

performance of the algorithm is also presented.   An illustrative objective function of total 

network-wide travel time will be adopted, though clearly many alternative objectives could be 

incorporated. . A simulation-assignment model provides the junction delays based on which 

travel costs are calculated. Besides delays at signalised junctions, the model also enables the 

consideration of delays at non-signalised junctions.   

 

The next section presents the problem formulation and defines signal control design 

parameters. The methodology description is given in section 3. The performance of the 

program is analysed in Section 4, with conclusions given in the final section. 

2 The Problem of Optimising Signals with Equilibrium Constraints 

The NDP of optimising signal timings while anticipating drivers’ re-routing is defined in the 

present section, and is hereafter referred to as ‘The Problem’.  

2.1 Problem Formulation 

The Problem is formulated as a Mathematical Program with Equilibrium Constraints (MPEC). 

The planner’s upper level objective of minimizing total travel time† (TT) by altering signal 

timings is constrained so that the associated flows are at User Equilibrium based on the travel 

times resulting from the given signal timings. Additional signal setting feasibility constraints 

are also applied. The notation used is given in TABLE 1. 

[INSERT TABLE 1 HERE] 

TT is defined as the sum of the product of the link flows and travel times over the whole 

network. At junctions each turning movement is represented by a separate link of zero-length, 

which has the associated delay put as travel time and included in the calculation of TT. TT is 

                                                 
† It should be noted that the method described in this paper could readily accommodate alternative objectives 
such as environmental pollution. 



7 

influenced by the signal timings,, and link flow pattern * ( )q in the network; see Section 

2.2.  

Mathematically the problem is defined as: 
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and subject to the constraint that for a given  , the UE flow vector * ( )q  is given by the 

variational inequality (Smith, 1979), 

( , *) ( *) 0t q q q q          (7) 

where t and q are the vectors of travel time function and link flow respectively; and   is the 

feasible space of the link flow vector.  

 

In this paper, the traffic equilibrium problem is solved by use of the simulation-assignment 

modelling software package SATURN (Van Vliet, 1982). In contrast to conventional traffic 

assignnment models, SATURN places great emphasis on the detailed representation 

intersections, turning movements, and associated junction conflicts. Based on the principles of 

cyclic flow profiles (Robertson, 1969), its simulation sub-model determines junction delays at 

a number of flow states, based on junction turning demands estimated by the assignment sub-

model. It uses this information to estimate marginal relationships between the travel time on 

each link/turn and the flow on that link/turn, and these functions are then passed back to the 

assignment sub-model for a re-computation of the route traffic demands, in the spirit of a 
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‘diagonalisation’ algorithm. The assignment sub-model uses the well-known Frank-Wolfe 

convex combinations method to determine the equilibrium flow pattern. Although for given 

travel-time/flow functions the assignment sub-model has guaranteed convergence to an 

equilibrium solution, the process by which the assignment and simulation sub-models are 

alternately solved is a heuristic one. Nevertheless, the widespread use of this heuristic in 

practice has provided strong numerical evidence that good convergence can be assured 

through experimentation with the heuristic process.  

 

2.2 Signal timing design variables and feasibility constraints 

For a junction, FIGURE 1 shows the signal design variables: cycle time, offset, and the green 

time for the different stages. A phase is the set of movements which can take place 

simultaneously or the sequence of signal indicators received by such movements. The portion 

of the cycle over which a given combination of phases is given green is called a stage. For all 

signalised junctions, the offset – the difference in time of the start of the green between 

adjacent junctions – is defined from a common reference time for one (randomly chosen) 

stage. At a junction, the start of the green times for successive stages is defined by the inter-

green period, measured from the end of the green of the preceding stage. For the problem 

formulated in Section 2.1, the technical feasibility of the design variables, which is ensured by 

equations (3) to (6), is explained briefly in the following paragraphs. 

 [INSERT FIGURE 1 HERE] 

To maintain signal coordination from cycle to cycle each junction in the area considered must 

operate with a common cycle time or a simple multiple of it (IHT, 1997). The common 

network cycle time,C , is constrained to a minimum,minC , and a maximum,maxC , as shown in 

(3). minC  is determined by identifying that node which needs the longest duration just to 
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accommodate the inter-green times and the minimum green times as shown in (8). In the 

numerical tests reported later,maxC is constrained to 120 seconds. 


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For any junction, h, the offset could only vary between zero and the cycle time minus one – 

see (4). 

 

For the numerical tests reported later in this study, a green time duration of 7 seconds is used 

as a minimum for all stages in the network (9). The maximum green time for a stage,max,,rh , is 

obtained by assuming all the other stages at the junction just need the minimum green time. It 

is given by (10), taking the lost time per cycle (calculated as the sum of the inter-green 

periods) and the minimum green times into account. Equation (10) ensures that the sum of the 

green times at a node together with the lost time in that cycle equals the total cycle time.  

rhrh ,sec7min,        (9) 
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3 Solution Methodology and Implementation 

In order to solve the signal-setting NDP defined in Section 2, the problem will be cast in the 

form of a Genetic Algorithm (GA), whereby the GA aims to minimise the upper level 

objective TT with respect to the signal setting parameters, while maintaining flows at 

equilibrium for those signal settings (achieved through SATURN). Thus each time the 

objective function is evaluated at a particular choice of signal settings, a fully convergent run 

of SATURN is required in order to determine the flows that would arise under the given 

signal settings. While the basic idea is straightforward, there are important issues concerned 

with the precise definition of the GA parameters and operators, and these are described in the 
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sections below. As a pre-cursor to these details, a brief description of the GA method and its 

terminology is provided..  

 

GA is inspired by the theory of evolution. Initially, a population of chromosomes, each of 

which are potential solutions, are generated.  GA evaluates each chromosome against an 

objective (fitness) function and, through a probabilistic selection process, selects some 

chromosomes to form what is known as an intermediate population. Mimicking the 

evolutionary strife for survival, the fitter chromosomes have higher probabilities of selection. 

Chromosomes from the intermediate population are then randomly paired to exchange genetic 

materials, and produce offspring in the crossover process. Lastly, in the mutation process, 

genes, on some probabilistically selected chromosomes, are made to mutate and form the next 

population. The process of going from one population to the next represents one generation in 

the execution of the GA. This evolutionary process goes on improving the fitness of the 

solutions through subsequent generations. 

 

In this study, GA generates and improves on candidate signal timings for the network, for 

which the SATURN model determines the UE flow pattern and the respective total travel 

time, which is used for evaluating the sampled signal timings and improving the next batch of 

candidate timings. This is done repetitively until a ‘converged’ solution is arrived at, or 

maximum number of generations is reached. GA-FITSUM (Genetic Algorithm based 

Formulation of Integrated Traffic Signal and User equilibrium Model) is the name given to 

the computer program that solves this problem. A flow chart describing the implementation of 

the program is given in FIGURE 2.  

[INSERT FIGURE 2 HERE] 

In the sections below, the details of the steps in the flow chart are described in greater depth. 
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3.1 Chromosome Design  

In the signal-setting NDP, the total number of decision variables, , is given by (11). These 

are a common cycle time, N offsets (one for each junction), and Sm green times at each 

junction, giving a total of: 





N

m
mSN

1

)(1         (11) 

In the GA, each of these variablea is represented by a splice of 8 bits – each bit taken from the 

binary set: {0, 1}. For example, considering a network with just two signalised junctions, each 

having two stages, the number of splices ( ) is 7. These splices will be combined to form a 

chromosome representing a vector of feasible signal setting parameters for the network. For 

the example mentioned above, the corresponding chromosome, splices, and represented 

variables are given in FIGURE 3. The general form of such a chromosome is shown in 

FIGURE 4 for a network with N signalised junctions. 

[INSERT FIGURE 3 HERE] 

 [INSERT FIGURE 4 HERE] 

3.2 Chromosome encoding and constraint representation 

This section describes how the chromosome decoding is carried out, and how the constraints 

given by (3) to (6) are handled in GA-FITSUM. The decoding scheme is based on Ceylan and 

Bell (2004).  

a. Cycle time: is the proportion of the difference max minC C  as defined by the first splice 

on the chromosome, plus minC . 

 
)(

12 minmax8min CCCC m 






  1m     (12) 
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where:  ( m) = base 10 equivalent of splice m ( m )‡ 

Cmax = 120 seconds and  

Cmin is calculated using (8)  

b. Offset: for a stage at a junction h, it is the proportion of the cycle time as defined by 

splice m on the chromosome. 
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  where: 1 mh ;  

c. Green times: are defined as the sum of  the minimum stage length and the proportion of 

the remaining green time , ,max , ,minh r h r  as follows:  
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3.3 Initialization 

The initial set of chromosomes (size ofP ) is randomly generated after network specific 

information such as the numbers of signalised junctions (N) and stages at each junction (Sh) 

have been extracted to determine   (see (11)).  

                                                 
‡ For a base 2 number, B, of 8 digits  8 7 6 1 2

...b b b b  where  0,1 , 1,2,...,8kb k  , the base 10 equivalent 

is given by,
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k
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3.4 Evaluation/fitness 

Each chromosome is decoded and sent to the assignment model to obtain corresponding UE 

link flows and the associated total travel time, TT. GA-FITSUM then uses TT as the fitness 

function for the selection process. 

3.5 Selection 

In the Selection stage, GA-FITSUM uses the linear ranking approach proposed by Whitley 

(1989) for sampling the intermediate population which will then be modified by GA operators 

(Sections 3.6 and 3.7). The chromosomes are firstly ranked in an ascending TT order and a 

“stochastic sampling with replacement” (Goldberg, 1989) is then carried out using a roulette 

wheel that uses probabilities, pk, based on the rank, k, of each chromosome in a generation – 

see (15). That is to say, 















 )

1
(*)22(2

1

P

kP
cc

P
p wwk      (15)  

where cw  [1,2] is the “selection bias”– higher values favour the better fit chromosomes 

during sampling.  

 

As part of the selection procedure, elitism is applied which ensures the best performing 

chromosomes from the preceding generation are always included in the next generation 

without any alteration. The parameter Elite controls the number of such chromosomes which 

are passed to the next generation.  

3.6 Crossover 

During crossover, the elite chromosomes are made present in the breeding pool to share their 

good performing genes. Each chromosome in the intermediate population is assigned a 

probability of Pc to exchange its genetic materials. Those selected are randomly paired for 

which GA-FITSUM uses uniform crossover (Syswerda, 1989). Accordingly a mask 

chromosome with a random sequence of 0s and 1s is generated for each pair.  The value of the 
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mask chromosome determines which parent chromosome supplies the bit for a certain 

position in the chromosomes of their two offspring. The unselected chromosomes will be 

passed directly to the mutation process. 

 

3.7 Mutation 

The probability of mutation, Pm, determines the likelihood of mutation occurring on a certain 

chromosome.  For those selected, the mutation is implemented by selecting a random point 

(bit) on the offspring’s chromosome length and then changing the value of the that bit to 0 if it 

was 1, or vice versa.  

 

4 Case Study Application 

GA-FITSUM’s performance is considered here, both in terms of the GA search process and in 

terms of the optimality of the solution obtained in comparison with a traffic signal 

optimisation process that does not anticipate re-routing. The evidence for this study arises 

from applications to the road network for the city of Chester in the UK, as illustrated in  

FIGURE 5. This network has 75 signalised junctions, 18 roundabouts, and 86 priority 

junctions, forming parts of the routes of the various trips in the network. It caters for a total 

demand of 22060 pcu/hour, generated from 132 zones.  

[INSERT FIGURE 5 HERE] 

 

4.1 GA Parameters and Performance 

According to Whitley (1989), population diversity and selective bias are the two important 

issues influencing genetic search. As selective bias is increased – which could be 

implemented in GA-FITSUM by increasing the Elite and cw parameters in the selection 
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process – the search focuses on the top individuals to exploit their best performing genes and 

leads to a fast convergence. A very high selective bias may result in a premature convergence. 

Low selective pressure, on the other hand, focuses on diversity and explorative search 

behaviour. In GA-FITSUM such an effect could be implemented by higher values ofP , Pm, 

and Pc. A higher G  would increase the number of chances GA gets to improve on the 

solution. Several researchers in the field of evolutionary optimisation have tried to investigate 

the effect of the GA parameters so as to define these parameters optimally (see for example 

Goldberg, 2002). Unfortunately, the most advanced result on optimal adjustment of GA 

parameters has been limited to very simple problems. 

 

In this paper the performance of GA is presented using the so called “Evolution of Best 

Solution” (e.g. FIGURE 6a) and “Population Diversity” (e.g. FIGURE 6b) charts. The former 

shows the total travel time resulting from the best solution, in the vertical axis, against the 

generation that solution comes from on the horizontal axis. It indicates the speed of solution 

convergence. As the Elitism parameter is applied, the solution is observed to improve in 

successive generations. Charts of the latter kind show plots of the variance of the total travel 

time due to each solution in a generation, smoothed by averaging over a large number of (in 

this case 20) generations. It is chosen to indicate the possibility the search has to improve its 

solution by incorporating different genes.  

 [INSERT FIGURE 6 HERE] 

FIGURE 6 presents the comparison of different values of the population and generation 

number on the search process. The total number of chromosomes (solutions) evaluated has 

been constrained to about 4500 so as to see whether it is better to have a larger population size 

and thus compromising the generation size, or vice versa. The other parameters were fixed as 

follows: Pc=0.5, Pm=0.15, cw=1.2, and Elite=1. The population diversity is seen to decrease 



16 

with lower values ofP  in Figure 6b. The relationship between diversity and improvement in 

the best solution is clearly evident from the figure. For example, for (P =30) lower genetic 

diversity has limited the search process to fewer improvements after the 60th generation, 

whereas a high improvement rate is observed for P =70 in the first few generations. High 

and sustained speed of convergence and a better solution are obtained with (P , G ) equal to 

(50, 90).  

 

The next parameter tested is the crossover parameter; see FIGURE 7. The values tested are: 

0.8, 0.7, 0.6, 0.5, and 0.4. The values ofP , G and Pm are fixed at 70, 70 and 0.15, 

respectively. The test with Pc=0.6 is shown to provide a better solution than the others. 

Similar patterns between solution improvement and diversity are also observed. The high 

population diversity up to the 30th generation is associated with faster best-solution 

improvement for Pc=0.5.  As shown in (c), the diversity decreases with GA evolution except 

for Pc=0.4 for which diversity remains about constant after 40 generations.  

 [INSERT FIGURE 7 HERE] 

[INSERT FIGURE 8 HERE] 

Similarly, the effect of the Pm parameter is presented in FIGURE 8(a-c); values ofP , G and 

Pc are fixed at 70, 70 and 0.6 respectively. The best solution is found for  Pm =0.25. For the 

case of Pm,; the effect of different Pm on the diversity of the solutions and the optimal solution 

found is, however, rather complex.  

 

4.2 Local Delay Minimising Signal Timings 

For comparison, a SATURN based signal optimisation procedure, which will be referred to as 

SATOPT, was used. SATOPT optimises stage lengths and offsets such that the total vehicle 
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delay is minimized at each intersection using the SATURN simulation model. The method 

neither optimises cycle time, nor considers the rerouting effect. After optimum SATOPT 

signal times are obtained, traffic is reassigned to take account of drivers’ response to the new 

timings. The resulting total travel time is compared with that resulting from GA-FITSUM 

timings. In addition, to account for SATOPT not optimising cycle times, and to check how 

stage timings and offset optimisations of GA-FITSUM compare with SATOPT, the best 

performing common cycle times from GA-FITSUM are also input and compared.   

 

4.3 Results 

The results from using GA-FITSUM for 3 demand scenarios are presented in Figure 9. The 

scenarios are defined by the matrix multiplication factors, MMF, applied on the current year 

OD matrix. To account for the effect of different initial random number generating seeds, 

GA-FITSUM was run 10 times for each scenario. The mean TT and error bars representing 

one standard deviation above and below the mean are plotted in Figure 9. The inset table also 

shows the minimum TT obtained from GA-FITSUM. The TT from SATOPT optimised signal 

timings with and without the common cycle times are also presented. For benchmarking 

purposes, the TT from the un-optimised signal timings are also presented in Figure 9. 

 

As shown in the figure, there does not seem to be much difference between GA-FITSUM and 

SATOPT for the first demand scenario. In fact, although the best solution from the 10 runs of 

the former gave the smallest TT of 46.5 million pcu-sec, the mean TT from GA-FITSUM 

timings is bigger than that resulting from SATOPT timings. For higher levels of demand, 

however, it can be seen that GA-FITSUM gives better results than SATOPT does.  

 

[INSERT FIGURE 9 HERE] 
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SATOPT performs better when the common cycle time from the best performing GA-

FITSUM timings are used, than when the initial node-specific signal timings are in operation. 

When compared with GA-FITSUM’s best performing timings, SATOPT results in marginal 

increases in TT which get bigger for higher levels of network congestion. This is because it 

does not consider the response of the traffic to the changed times. 

 

To see the effect of not anticipating rerouting when optimising signal times, the best 

performing signal times and, implicitly, link flows for the first demand scenario is given as 

input. For the optimum cycle time determined by GA-FITSUM, SATOPT calculated 

optimum stage lengths and offsets after which the traffic was reassigned. FIGURE 10 shows 

the difference in link flows as a result of the (new) SATOPT timings, which is unaccounted 

for in the conventional optimisation calculations which do not anticipate rerouting. For the 

case tested, the associated increase in TT is 0.5 million pcu-sec per hour (which is around 

25,000 pcu-hr of delay annually). 

 

5 Conclusions 

In this paper, a GA based method was presented for optimising traffic signals in a way that 

anticipates re-rerouting of traffic, and its application on the city of Chester was presented. The 

GA based method has given promising results in finding optimum signal timings with stable 

flows.  

 

When compared to a local delay minimizing timings, the process by which routing is 

anticipated has given better results for the network considered in this paper. The 

improvements after considering rerouting are relatively bigger when there is a higher level of 

congestion in the network. Future research should consider several traffic networks with 
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varying levels of congestion, to explore the improvements associated with considering routing 

in optimising signal timings. 

 

A GA based method should be run several times using different initial random seeds to better 

handle solution convergence issues. This will significantly increase the relatively long 

computing time associated with the use of GA. The combination of population size, 

probabilities of crossover and mutation as well as the chromosome design contributes to how 

GA performs. The question of how to find optimum values of the GA parameters is still a 

difficult issue and requires further research.  
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FIGURE 2 GA-FITSUM Flow Chart 
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FIGURE 3: Splices, Chromosome, and represented variables – an illustrative example 
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FIGURE 4: Chromosome Structure 
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FIGURE 5: Layout of the Chester network 
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FIGURE 6: Comparison of different ( P , G ) values 

 (a) profile of improvement of best solution (b) moving average (per 20 generations) of the 

variance in the total travel times of solutions in each generation 
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Sensitivity of Solution Optimality to Pc  
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(a) Optimality of final solution 
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(b) Profile of improvement of best solution 
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(c) Moving average (per 20 generations) of the variance in the fitness values of 

solutions in each generation 

FIGURE 7: Comparison of different Pc values with P =70 , G =70 and Pm=0.15 
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Sensitivity of Solution Optimality to Pm  
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(a) Optimality of final solution 
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(b) Profile of improvement of best solution 
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(c) Moving average (per 20 generations) of the variance in the fitness values of 

solutions in each generation 

FIGURE 8: Comparison of different Pm values with P =70 , G =70 and Pc=0.6 
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GAFITSUM - SATOPT comparisons for three demand scenarios
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Figure 9 Total travel time comparison of SATOPT and GA-FITSUM 

Note: The error bars on mean TT from GA-FITSUM timings are for one standard deviation 

above and below the mean. 
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FIGURE 10: Difference in link flows as a result of SATOPT timings (pcu/hour) 

Note: The bands on the links show differences in hourly flows (positive or negative) due to 

SATOPT timings relative to those due to GA-FITSUM timings. The band width is 

proportional to the magnitude of the difference. 
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TABLE 1 Notation 

L Number of links 
qa flow on link a (a = 1,2,…,L) 

Tij total demand for travel between origin i and destination j  

C common cycle time 

h offset at junction h, element of the vector of offsets  
hr duration of the green time for stage r at junction h, element of green time vector 


 (C, , ) a vector of signal setting parameters (i.e. cycle time, offsets, and stage lengths) 

q*() the vector of user equilibrium link flows gjven signal setting parameters  
fijp flow between origin i and destination j on route p 

ta (, q*() ) travel time on link a 

tijp total travel time on route p from origin i to destination j 

TT  total network travel time 

Sh total number of stages at junction h 

Ih,r for junction h, the intergreen between the end of the green time for stage r and 

the start of the next green 

G generation counter 

 base 2 to base 10 converting function  

 total number of signal setting variables in a network.  

m the mth splice in a chromosome (e.g. 1 = the first 8 bits); see Section 3.1.  

P  population size 

G  generation number 

cw selection bias  

Elite number of elite chromosomes 

 
 


