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A Study on the Effects of Damage Models and Wavelet Bases for 

Damage Identification and Calibration in Beams 

Vikram Pakrashi, Alan O’ Connor
*
 and Biswajit Basu

 

Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, Ireland 

 

Abstract: Damage detection and calibration in beams by wavelet analysis involve some 

key factors such as the damage model, the choice of the wavelet function, the effects of 

windowing and the effects of masking due to the presence of noise during measurement. 

A numerical study has been performed in this paper addressing these issues for single 

and multispan beams with an open crack. The first natural modeshapes of single and 

multispan beams with an open crack have been simulated considering damage models of 

different levels of complexity and analyzed for different crack depth ratios and crack 

positions. Gaussian white noise has been synthetically introduced to the simulated 

modeshape and the effects of varying signal to noise ratio have been studied. The wavelet 

based damage identification technique has been found to be simple, efficient and 

independent of damage models and wavelet basis functions, once certain conditions 

regarding the modeshape and the wavelet bases are satisfied. The wavelet based damage 

calibration is found to be dependant on a number of factors including damage models 

and the basis function used in the analysis. A calibration based on curvatures is more 

sensitive than a modeshape based calibration of the extent of damage. 
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1. INTRODUCTION 

The importance of structural health monitoring and damage detection of structures has 

increased significantly in recent times. A major focus in this field is the successful 

detection of the presence, location and the extent of damage present in a structure through 

new methodologies. Identification of damage in a freely vibrating beam with an open 

crack by observing the changes in natural frequencies is considered to be a popular 

method in the time domain (Christides and Barr,1984; Narkis,1994; Shen and 

Pierre,1994; Chondros et.al.,1998;  Carneiro and Inman, 2002).  These changes are often 

quite small, the damage location is not detected and the performance is poor in the 

presence of noise.   

Damage detection using spatial data in conjunction with wavelet analysis has 

found considerable importance of late. The principles behind such wavelet based damage 

detection relate to the detection of singularities in a function or in any of its derivatives. 

The locations of the singularities are related to the local extrema of the wavelet 

coefficients propagating at finer scales in the neighbourhood of the same singularities. 

The magnitude of the local extrema at the singularity locations relate to the extent of the 

sudden change in the signal or its derivatives due to the presence of a singularity (Mallat, 

2001). Mallat emphasized that although a wavelet transform is able to locate singularities 

in a signal, there is no certainty of the absence of a rupture of the propagation of maxima 

at finest scales. In the case of Gaussian wavelets however the non-existence of a rupture 
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can be guaranteed. Gentile and Messina (2003) carried out a study on wavelet based 

damage detection focussing mainly on a number of wavelet basis functions including the 

derivatives of a Gaussian and Symlets. The damage was modelled as an equivalent sub 

beam having a modified Young’s modulus to cater for the sudden change at the damage 

location. Loutridis et. al. (2004) used Symlet basis function to identify damage in a 

cracked cantilever beam using a rotational spring damage model. Chang and Chen (2003) 

and Okafor and Dutta (2000) have considered similar problems concentrating on a single 

wavelet basis function. Spatial response data from beam structures have been 

successfully analysed by wavelets to detect damage by Wang and Deng (1999). 

Advantages of wavelet analysis over the usual eigenvalue analysis for a simply supported 

beam with non-propagating open crack were shown by Liew and Wang (1998).  

It is observed that although the effectiveness of wavelet analysis in damage 

detection is comparatively well dealt with, most of the works deal with the identification 

of the location of crack using a single basis function. Very few studies exist on the 

comparative performance of the wavelet basis functions, windowing and the effects of 

noise to detect the presence, identify the location and subsequently calibrate the damage. 

The effects of damage models have not been widely studied either. It is thus felt that 

there is a necessity of comparing the performance of different wavelet basis functions and 

damage models for damage detection and calibration in structures incorporating 

windowing and different levels of presence of noise. 

This paper considers a simply supported Euler Bernoulli beam with an open crack. 

Three damage models of different levels of complexity and details have been considered 

to simulate the modeshape data. Subsequent analysis of the modeshape using different 



wavelet basis functions is performed and the effects of windowing and presence of noise 

are studied in details. Cracks of different sizes and locations have been used in the 

examples. An extension of the damage identification for multispan beams is also 

presented. The effectiveness of a wavelet based damage identification and calibration has 

been shown considering the variations of the factors stated above. 

 

2. DAMAGE MODELS 

2.1 Lumped Crack Model 

The lumped crack model is popular among several researchers (Narkis,1994; Okafor and 

Dutta, 1998; Chang and Chen, 2003; Tian et.al.,2003; Loutridis et.al.,2004; Lam et.al., 

2005) looking at the problem of identification of the location of an open crack through 

wavelet based techniques. The beam with an open crack is modelled as two uncracked 

beams connected through a rotational spring at the location of crack by assuming that the 

effects of the crack are applicable in the immediate neighbourhood of the crack location. 

The length of the beam is L with the damage located at a distance of ‘a’ from the left 

hand support of the beam. The crack depth is taken as ‘c’ and the overall depth of the 

beam is ‘h’. The governing free vibration equation is 

4 2

4 2

y y
EI ρA 0

x t

 
 

 
           (1) 

where E, I, A and  are the Young’s modulus, the moment of inertia, the cross sectional 

area and the density of the material of the beam on either side of the crack. The 

displacement of the beam from its static equilibrium position is y(x,t), at a distance of x 

from the left hand support along the length of the beam at any time t. Continuity in 



displacement, moment and shear are assumed at the location of crack. A slope 

discontinuity present at the location of the crack and is modelled as 

R L R(a) (a) L (a)                  (2) 

where term  is the non-dimensional crack section flexibility dependent on the crack 

depth ratio,(=a/h). As per Narkis [1], the term  is considered to be a polynomial of  as 

                   2 2 3 46 (h / L)(0.5033 0.9022 3.412 3.181 5.793 )                           (3)            

 

2.2 Continuous Crack Model 

A more detailed and complex continuous crack model is considered following Carneiro 

and Inman (2002). The model is derived from the stationarity of the Hu-Washizu-Barr 

functional (Christides and Barr, 1984) and is a refined version of the proposed model by 

Shen and Pierre (1994) ensuring the self-adjointness of the differential operator for a 

symmetric matrix representation after the discretization of the free vibration equation. For 

a rectangular cross section, the stress-strain and the displacement functions are assumed 

to be locally disturbed in the vicinity of the crack. The effect of the crack is considered 

maximum at the crack tip and decays exponentially away from it. The stress/strain 

disturbance function and the displacement disturbance function are  

1

|x a|

h / 2
1 1f (x,z) [z m (z c / 2)H(h / 2 c z)]e



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and 
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

                 (5) 

respectively. The term m1 is a factor computed considering the continuity of bending 

moment in the cracked section and and 1 are the stress and displacement decay 



parameters respectively. The term H(.) is the Heaviside step function. The Cartesian 

coordinates x , y and z are along the length, breadth and depth of the beam respectively 

with the origin being at the midpoint of the extreme left hand section. The equation of 

motion for the free vibration of the beam considering these kinematic assumptions is 

given as 

                          2 1E[p (x) (x, t) ] E[p (x) (x, t) ] A (x, t) 0                                        (6) 

where (x,t) is the vertical displacement of the beam and the primes and overdots 

represent differentiation with respect to the space and time respectively. The terms p1(x) 

and p2(x) are given in Appendix1. 

 

2.3 Smeared Crack Model 

The smeared crack model is relatively simple and considers an open crack reducing the 

moment of inertia over an affected width. The governing free vibration equation is the 

same as in equation 1. The damaged beam is analysed as an assembly of three sub-beams, 

the damaged sub-beam being positioned in between the two undamaged ones. Continuity 

in deflection, slope, moment and shear are assumed on both left and right ends of the 

damaged zone. The width of the crack is computed according to the formula by 

Bovsunovsky and Matveev (2000) as 

                               6 2

2 1 3

0.3675h(1 )
x x x [(1 ) 3(1 ) 2]

1 (1 )


       

 
                      (7) 

A discontinuity in the modeshape or in any of its derivatives is present in a 

damaged beam for any model of crack. The first modeshape of the beam with an open 

crack is simulated as it is convenient to measure the fundamental modeshape for real 

structures. 



 

3. WAVELET ANALYSIS 

The continuous wavelet transform of a square integrable function f(x) can be represented 

as 

      *1 x b
Wf (b,s) f (x) ( )dx

ss







                                            (8) 

 

where the wavelet basis function (x)  is a zero average function  [6] and s and is the b 

are the scale and the translation parameters respectively. The function (x) also ensures 

a weak admissibility condition                                                      

2
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                                                  (9) 

The identification of a discontinuity in a function or any of its derivatives can be 

linked with the number of vanishing moments of the wavelet basis function chosen for 

analysis. For a wavelet with no more than m number of vanishing moments, it can be 

shown that for very small values of s in the domain of interest, the continuous wavelet 

transform of a function f(x) can be related to the m
th

 derivative of the signal (Mallat, 

2001). The relationship between the continuous wavelet transform of f(x) and its m
th

 

derivative can be expressed as 

 
m

s 0 m 1/ 2 m

Wf (b,s) d f (x)
lim K

s dx
 

                                           (10) 

where 
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and (x)  is a function satisfying 

m
m

m

d (x)
(x) ( 1)

dx


                                             (12) 

Since the simulated first modeshape of a beam with an open crack contains 

discontinuity in the derivative/s independent of a physically admissible damage model at 

the location of damage, it is possible to identify the location of the damage through 

wavelet transform by incorporating a basis function having an appropriate number of 

vanishing moments (Gentile and Messina, 2003; Pakrashi et.al., 2005). 

 

4. DAMAGE IDENTIFICATION 

Damaged modeshape data is simulated and Gaussian white noise is synthetically 

introduced for a beam of length 1 m. The cross sectional area (A), depth (h) and the 

moment of inertia (I) of the square beam are taken as 0.0001 m
2
, 0.01 m and 8.33x10

-10
 

m
4
 respectively. The Young’s modulus (E) and the density of the beam () are assumed 

to be 190x10
9
 N/m

2
 and 7900 kg/m

3
 respectively.  

 

4.1 Basis Independence 

 The first modeshape was simulated from the lumped crack model for an open 

crack (=0.35) situated at 0.4m from the left hand support and was analyzed using 

wavelet transform for different wavelet basis functions. Figure 1 shows the results of the 

analysis for some selected bases. It is observed that as long as the bases satisfy the 

criterion of the required number of vanishing moments, they can successfully detect the 

presence and the location of the damage consistently at both fine and coarse scales. Since 

Haar has only one vanishing moment, a jump of the wavelet coefficients at the location of 



the crack is observed instead of a local extremum, as seen incorporating other wavelets 

with more than one vanishing moment. An analytical expression of the jump size of 

wavelet coefficients for the current problem using Haar basis has been provided by 

Pakrashi et al (2005) considering a lumped crack model.  

 

4.2 Model Independence 

 Figure 2 shows the results of analyzing the same damage using Coif4 wavelet 

basis function using different damage models. The location of the damage is found 

irrespective of the model chosen. However, it is observed that the magnitude of the local 

extremum at the damage location is different for different damage models.  

 

4.3 Windowing 

Windowing of the modeshape data and subsequent wavelet analysis improves the 

damage detection process. Bartlett, Hamming, Hanning, Gaussian and Bohman windows 

were considered for different damage models and crack depth ratios. The Haar basis is 

seen to be compatible best with a Bartlett window, while the smoother functions showed 

very good performance with Hanning window (Figures 3a-3b). The Bartlett window itself 

has a discontinuity in its first derivative at the midpoint and this leads to a problem of 

possible non-detection when the damage is near the midpoint. It is not possible to detect a 

damage if its position is exactly at the midpoint since it is not possible to distinguish 

between jumps resulting from the presence of a singularity in the window from a 

singularity present in the signal (Figure 3c).  

 



4.4 Masking 

The presence of noise in the modeshape function to be analyzed presents a major 

difficulty for the damage identification problem. Since the nature of the damage present 

in the modeshape is similar to that of the noise in terms of singularities present, it is quite 

difficult to identify the damage in the presence of high noise. The local extremum formed 

in the wavelet coefficient plot due to the presence of an open crack can get masked 

partially or completely (Figures 4a-4b). A partial masking is present considering Coif4 

basis and Hanning Window in Figure 4a with an edge crack (=0.35) situated at 0.1m 

from the left hand support for a signal to noise ratio (SNR) 95 dB, while a complete 

masking can be observed for the same crack at 75 dB. Finer scales are affected by 

masking at a lower SNR than coarser scales.  

 

4.5 Multispan Beams 

The effectiveness of a wavelet transform based damage detection problem was extended 

to asymmetric, multi-span beam structures for a lumped crack model. Selected results 

from the simulations and subsequent wavelet analysis of two span beams are presented. 

The cross sectional area and the moment of inertia of the square beam are 1m
2
 and 

0.0833m
4
 respectively. The Young’s modulus and the density of the beam are assumed to 

be 23x10
9
 N/m

2
 and 2300 kg/m

3
 respectively. Coif4 wavelet basis function and Hanning 

window have been employed for the analysis of the first modeshape.  

It is observed that an edge crack situated near the intermediate support is 

structurally more important than the ones near the two ends of a two span simply 

supported beam and it is necessary for the wavelet based methodology to identify the 



crack near the intermediate support more effectively. Figures 5a-5b consider the first 

modeshape of a beam with two equal span lengths of 10m. Figure 5a shows successful 

damage detection for a beam with a crack (=0.35) situated 0.5m away from the 

intermediate support at 75 dB,  while in Figure 5b the damage is masked for the same 

crack situated 0.5m from the left support for the same SNR. A slope discontinuity near 

the intermediate support affects the modeshape much more than a similar discontinuity 

near the two ends. As a result, a damage near the intermediate support is detected more 

efficiently. However, the intermediate support itself also renders a local extremum at its 

location after wavelet analysis of the modeshape and the magnitude of the extremum can 

be high enough to undermine the actual damage and lead to a problem of non-detection. 

A possible solution to this is to window each span separately and perform a wavelet 

analysis to each partially windowed section. 

The possibility of reduced efficiency of damage identification to a considerable 

extent due to asymmetry in span lengths is studied. The length of the damaged left span is 

reduced to 5m. Both large and small cracks are considered at a distance of 0.5m from the 

intermediate support at 90 dB SNR. Crack depth ratios 0.05 and 0.35 are considered and 

it is observed from Figure 6a-6b that the effect of asymmetric span length does not 

contribute significantly in terms of damage identification. 

 

5. DAMAGE CALIBRATION 

The extent of a local extremum of the wavelet coefficients at the location of damage is an 

indicator of the extent of damage. However, the calibration does depend on the basis 



function, the damage model and the SNR. Examples are presented in this section for the 

single span beam considered before in this paper.  

5.1 Basis Function Dependence and Effects of Noise 

A lumped crack is considered at a distance of 0.4m and 0.1m respectively from the left 

hand side of the simply supported beam. The first windowed (Hanning) modeshape is 

analyzed using different wavelet basis functions at scale 4 and the crack depth ratios are 

calibrated against the wavelet coefficient maxima values at the damage location in the 

presence of noise (Figure 7). The calibration curves for different bases are significantly 

different and the consistency is affected for small edge cracks in the presence of higher 

levels of noise because of masking. 

 

5.2 Damage Model Dependence 

The same crack with =0.35 is identified using Coif4 basis function and Hanning 

windowing for the crack models presented in this paper for scale 32 (Figures 8.1-8.2). 

The SNR is considered to be 120dB. The extent of the wavelet coefficient extrema near 

the damage location is significantly different. The extremum for the smeared crack model 

is found to be nearly an order lower. The lumped crack model is found to be numerically 

more efficient and conforms best to the detailed, but numerically most expensive 

continuous crack beam model.  

 

5.3 Curvature Based Calibration 

An alternative way of calibrating damage is by transforming the curvature, rather than the 

modeshape of the vibrating beam with an open crack. The curvature was numerically 



computed from the lumped crack model and a calibration was performed considering 

scales 4 and 16 with the SNR being at 120 dB for cracks located at 0.1m and 0.4m from 

the left edge. It is observed that the absolute value and the relative change for a curvature 

based calibration are better than a calibration based on the modeshape, as shown in 

Figure 9.  

 

6. CONCLUSION 

A wavelet based methodology for detection and calibration of an open crack in beams has 

been studied in detail numerically. Damage models of various levels of complexity have 

been considered to model an open crack and the first natural modeshape has been 

simulated for both single span and multi span beams.  It is observed that a wavelet based 

identification of the location of damage is independent of damage models and basis 

functions so long as the damage introduces a singularity in the damaged modeshape or in 

any of its derivatives at the location of the damage and the wavelet bases have a certain 

number of vanishing moments. Windowing is seen to improve both the identification and 

calibration of damage location. A case of non-detection due to Bartlett windowing in 

conjunction with Haar basis function has been identified. The presence of noise in the 

modeshape data is seen to mask the identification of damage and the finer scales are 

affected at a higher value of SNR as compared to coarser scales. Structurally important 

edge crack for multispan beams has been detected successfully. The damage detection 

using wavelet analysis is seen to be chiefly affected by the position, SNR and the extent 

of damage. On the other hand, a wavelet based calibration is seen to be additionally 

dependent on the basis function, scale and the damage models apart from SNR, position 



of crack and the extent of crack.  Finally, a damage calibration based on curvature values 

is seen to be more sensitive in comparison with that based on modeshape. This study on 

wavelet based damage detection and calibration can be helpful for any general open crack 

problem in structures and provides a guideline for the choice of basis functions and 

windows. The study also provides a quantitative idea for a reliable and successful 

calibration due to the presence of noise.  
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APPENDIX 1. COEFFICIENTS p1(X) AND p2(X) FOR THE CONTINUOUS  

 

CRACKED MODEL 

 

 

1 2 2
A A

1 1 2 1 2 2A A A
1 1

A A

1 2 2
A A

2 1 1
A A

f (x, z)f (x, z)dA) ( zf (x, z)dA)
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