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How Reaction Time, Update Time, and Adaptation
Time Influence the Stability of Traffic Flow
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Technische Universität Dresden, Andreas-Schubert-Straße 23, 01062 Dresden, Germany

Abstract: When modeling the acceleration and decel-
eration of drivers, there are three characteristic time con-
stants that influence the dynamics and stability of traffic
flow: The reaction time of the drivers, the velocity adap-
tation time needed to accelerate to a new desired velocity,
and the numerical update time. By means of numerical
simulations with a time-continuous car-following model,
we investigate how these times interplay with each other
and effectively influence the longitudinal instability mech-
anisms for a platoon of vehicles. The long-wavelength
string instability is mainly driven by the velocity adapta-
tion time while short-wavelength local instabilities arise
for sufficiently high reaction and update times. Further-
more, we investigate the relation between large update
time steps and finite reaction times as they both introduce
delays in the reaction to the traffic situation. Remarkably,
the numerical update time is dynamically equivalent to
about half the reaction time, which clarifies the meaning
of the time step in models formulated as iterated maps
such as the Newell and the Gipps model. Furthermore,
with respect to stability, there is an optimal adaptation
time as a function of the reaction time.

1 INTRODUCTION

Traffic dynamics, including the nature of human driv-
ing behavior and their representations in terms of
mathematical models, attracts extensive interest across
various scientific disciplines such as traffic engineering,
physics, mathematics, and psychology (Brackstone and
McDonald, 1999; Chowdhury et al., 2000; Green, 2000;
Helbing, 2001; Kerner, 2004). An essential feature of
human driving is a considerable reaction time, which is
a consequence of the physiological aspects of sensing,
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perceiving, deciding, and performing an action (Shiffrin
and Schneider, 1977). This complex reaction time is of
the order of 1 s and varies strongly between differ-
ent drivers (age, gender), different stimuli, and differ-
ent studies (Green, 2000). Remarkably, adaptive cruise
control (ACC) systems, which control the acceleration
(and deceleration) of a vehicle, typically display time de-
lays on the control path that cannot be neglected either
(Marsden et al., 2001; Kranke et al., 2006). Because ACC
systems are the first driver assistance systems with the po-
tential to influence traffic flow characteristics (Marsden
et al., 2001; VanderWert et al., 2002; Kesting et al.,
2007a,b), a profound understanding of the dynamics and
the instability mechanisms caused by time delay is rele-
vant from the point of view of automated driving as well.

Clearly, reaction times are an essential factor con-
tributing to traffic instabilities and, consequently, are an
essential element in many traffic models (May, 1990).
In the most straightforward case, they are introduced
as time delays into time-continuous car-following mod-
els which result in a coupled set of delay-differential
equations. This approach has been pursued, for exam-
ple, for the Optimal Velocity Model (Bando et al., 1995,
1998), and for the Intelligent Driver Model (Treiber
et al., 2000, 2006a). More commonly, however, micro-
scopic traffic models have been formulated in terms of
an iterated coupled map such as the model of Gipps
(1981), or the model of Newell (1961), or as a cellular au-
tomaton such as the model of Nagel and Schreckenberg
(1992). In this class of models, the update time is con-
sidered as an explicit model parameter rather than an
auxiliary parameter needed for numerical integration.
Moreover, it is often interpreted as “reaction time” as
well.

Even for zero reaction time and negligible update
time, it is well known in the traffic theory for car-
following models (Treiber et al., 1999), and also for
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macroscopic models (Treiber et al., 1999), that collec-
tive instabilities of the traffic flow can occur. This is true
although a pair of vehicles is always locally stable in this
case, cf. Equations (6)–(7) below. The reason is that, in
an extended multi-particle system with many degrees
of freedom, two concepts of linear stability have to be
considered: Local stability is related to the response of
a vehicle following the motion of the vehicle directly in
front, that is, to the dynamics of a pair of vehicles. Asymp-
totic, string or collective stability refers to the damping
of a perturbation initially introduced by the leading ve-
hicle that propagates upstream relative to the vehicle
motion in a platoon of several vehicles following each
other (May, 1990) which is, in general, a more restrictive
criterion than local stability. In traffic flow, the source
of the string instabilities is the finite velocity adaptation
time resulting from limited acceleration capabilities. As
a consequence, perturbations amplify while propagat-
ing upstream in the platoon of vehicles and eventually
lead to oscillating congested traffic (stop-and-go traffic),
which is a commonly observed type of traffic congestion
(Schönhof and Helbing, 2007).

In this article, we carefully distinguish between reac-
tion time, update time, and adaptation time and inves-
tigate the role of each of these times with respect to
instabilities of traffic flow. We identify the local and col-
lective mechanisms for instability and show that reaction
time and update time are mainly responsible for the first
and the adaptation time for the latter.

The article is structured as follows. In the follow-
ing section, the update time (in 2.1), the reaction time
(2.2), and the velocity adaptation time (2.3) will be in-
troduced in a general form applicable to the class of
time-continuous car-following models. For matters of il-
lustration, we will apply these concepts to the Intelligent
Driver Model (Treiber et al., 2000) and the dynamic ef-
fects resulting from the three different times will be dis-
cussed (2.4). In Section 3, the stability of a platoon of
vehicles will be investigated by numerical simulations.
First, we will study how the stability is influenced by the
reaction time and a finite acceleration capability (3.2).
Second, we will investigate the interplay between reac-
tion time and numerical update time (3.3). Finally, our
results will be discussed in Section 4.

2 IMPLEMENTATION AND MODELING
REACTION TIME, UPDATE TIME,

AND ADAPTATION TIME
IN CAR-FOLLOWING MODELS

Microscopic traffic flow models describe the motion of
individual driver-vehicle units α. In this work, we will
focus on the subclass of (single-lane) time-continuous

microscopic models, that is, car-following models, where
the acceleration dvα/dt of vehicle α is of the general form

dvα

dt
= f (sα, vα, �vα) (1)

The acceleration therefore depends on the own velocity
vα , the gap sα , and the velocity difference (approaching
rate) �vα := vα − vα−1 to the leading vehicle α − 1. Here
and in the following, we assume that the vehicle indices
α are ordered such that α − 1 denotes the preceding ve-
hicle. The gap s is defined by the vehicle positions x and
vehicle lengths l by sα(t) := xα−1(t) − xα(t) − lα−1. Notice
that in the model class defined by Equation (1), the accel-
eration only depends on the immediate predecessor and
it is instantaneous in time. The specific model is uniquely
defined by the acceleration function f (·). It is straightfor-
ward to generalize the model to include a look-ahead to
several vehicles (Treiber et al., 2006a), include the vehi-
cle immediately behind the drivers, or include reactions
to decelerations of the front vehicle (braking lights). All
this leads to greater stability but does not change the
main results. So, for the purpose of clarity, we only con-
sider models of the type (1). In the following subsections,
we will describe how the update time, the reaction time,
and the velocity adaptation time are related to models
of type (1).

2.1 Update time

Together with the general equation of motion, dxα/dt =
vα , Equation (1) represents a locally coupled system of
ordinary differential equations (ODEs) for the positions
xα and velocities vα of all vehicles α. As the consid-
ered acceleration functions f (·) are nonlinear, we have
to solve the set of ODEs by means of numerical integra-
tion. In the context of car-following models, it is natural
to use an explicit scheme assuming constant accelera-
tions within each update time interval �t. This leads to
the update rules

vα(t + �t) = vα(t) + v̇α(t)�t :

xα(t + �t) = xα(t) + vα(t)�t + 1
2
v̇α(t)(�t)2 (2)

where v̇α(t) is an abbreviation for the acceleration func-
tion f (sα(t), vα(t), �vα(t)). For �t → 0, this scheme
locally converges to the exact solution of (1) with con-
sistency orders 1 and 2 for the velocities (Euler update),
and positions (modified Euler update), respectively.

Besides the numerical necessity for a finite time dis-
cretization, the update time �t can be interpreted as rep-
resenting finite attention to the traffic: Only at times that
are a multiple of �t, drivers look at the traffic situation
and instantaneously adapt their acceleration to the new
situation. Because of the intuitive meaning of this update



Influence of reaction time, update time, and adaptation time 127

procedure in the context of traffic, the update rules (2),
or similar rules, are sometimes considered as part of the
model itself rather than as a numerical approximation.
Popular examples of such coupled map models include
the model of Newell (1961), and the model of Gipps
(1981).

Finally, it is instructive to eliminate v̇α from the posi-
tional update of (2) by using the velocity update rule. The
resulting positional update xα(t + �t) = xα(t) + (vα(t) +
vα(t + �t))�t/2, referred to as the “trapezoidal rule,” is
commonly applied to close the velocity equation of the
Gipps model (Wilson, 2001).

2.2 Reaction time

A reaction time T ′ is incorporated in a time-continuous
model of the type given by Equation (1) by evaluat-
ing the input on the right-hand side at a previous time
t − T ′. In this way, one obtains a coupled set of delay-
differential equations (DDEs). Although both the delay
T ′ of time-continuous models, and the update time �t of
iterated maps (or numerical integration schemes) have
been interpreted as a reaction time, it is essential to dis-
tinguish between the two concepts. From a mathematical
perspective, the analysis of DDEs is technically more de-
manding than that of iterated maps (Orosz et al., 2004).
Moreover, the iterated map is computationally more ef-
ficient, which was the original motivation to formulate
the Gipps model in this way. However, “it is not at all
clear how the dynamics of the discretization are affected
by the integration rule used” (Wilson, 2001) and, in par-
ticular, how it is related to the dynamics of the DDE.
From a behavioral perspective, the two model classes
represent different aspects of the human reaction. Al-
though the numerical integration scheme (2) (and most
iterated-map traffic models) corresponds to an instanta-
neous adaptation of the acceleration (or deceleration)
v̇α at discrete time instances n�t, the DDE corresponds
to a delayed adaptation of the acceleration which, how-
ever, takes place continuously in time. Consequently, �t
models the typical length of time periods where drivers
are not fully concentrated on the driving task, while T ′

represents the actual reaction time of an ideally attentive
driver.

Because the conceptual distinction between these two
delay mechanisms is a main point of this contribution, we
visualize the corresponding effective delay time τeff(t) as
a function of continuous time t (Figure 1). To compare
the relative effects, both time constants have been set
equal, T′ = �t = T0.

In case of the reaction time (or DDE), the acceler-
ation at any time t is calculated using the information
available at t − T ′, that is, the delay is always given by
τeff(t) = T′ = T0. For the complementary case of a nu-

T0

T́

Delay time

Iterated map

Simulation time t

Fig. 1. Effective delay time as a function of the continuous
simulation time for T′ = T0 and �t = 0 (delay-differential

equation, dashed), and for T′ = 0 and �t = T0 (iterated map,
solid).

merical update rule (2) (or iterated map) with nonneg-
ligible update time �t = T0, the effective delay time
depends on time t. At times t = n�t with integer n, the
acceleration is instantaneously updated according to the
actual positions and velocities. For all other time instants,
the positional and velocity update rules (2) corresponds
to constant accelerations for all vehicles, that is, to no
reactions of the drivers. Consequently, any changes of
the system at time t = n�t − t ′, 0 ≤ t ′ < �t , will be
considered by the drivers at time t = n�t corresponding
to a reaction time τeff(t ′) = t ′, eventually leading to the
saw-tooth function of Figure 1. Consequently, a reaction
time T′ = T0 should have a stronger destabilizing effect
than an update time interval of the same numerical value.
This is consistent with the results presented in Figure 8
of Section 3.3 below.

By introducing the delay T ′ into the numerical inte-
gration according to (2), the reaction time can be varied
independently from the update interval, and the com-
bined effects of distractions and finite reaction times can
be investigated simultaneously. If the reaction time is
considered as a multiple of the update time interval, that
is, T′ = n�t , it is straightforward to generalize the Equa-
tions (2) by calculating all terms on the right-hand sides
with the velocities and positions n time steps in the past.
However, because the reaction time T ′ is a physiological
parameter that is independent from the update time �t
(regardless of whether the latter is interpreted physio-
logically or from the perspective of the numerical inte-
gration), T ′ is generally not a multiple of �t. To allow
for independent values of T ′ and �t, we propose a linear
interpolation according to

x(t − T′) = βxt−n−1 + (1 − β)xt−n (3)

where x denotes any quantity on the right-hand side of
Equation (1) such as sα , vα , or �vα , and xt−n denotes this
quantity taken n time steps before the actual step. Here,
n is the integer part of T ′/�t, and the weight factor of
the linear interpolation is given by β = T′/�t − n. We
emphasize that all input stimuli sα , vα , and �vα are eval-
uated at the delayed time, cf. Figure 3 below. As initial
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conditions, DDEs require values for the dependent vari-
ables for a whole time interval T ′. In the simulations, we
have assumed constant initial values.

2.3 Velocity adaptation time

In contrast to the reaction time and the update time, the
velocity adaptation time is already implicitly contained
in the acceleration function of Equation (1). Because, in
general, this time varies with the traffic situation, its def-
inition is not unique. In this article, we define this time
locally based on a vehicle following a leader that drives
at a constant velocity vlead. In a stationary situation, the
velocity of the considered vehicle is given by vα = vlead,
and the distance to the leader by the equilibrium gap sα =
se related to vlead, which is calculated using the condi-
tion f (se, vlead, 0) = 0 for the acceleration function. We
define the velocity adaptation time based on small de-
viations from stationarity for the system (1) (i.e., setting
T′ = �t = 0) so that a local linear analysis can be applied.
To perform the linearization, we split the velocity vα into
the velocity of the leading vehicle and the approaching
rate uα = u, and the gap sα into the equilibrium gap se,
and a small deviation yα = y,

vα = vlead + u :

sα = se + y
(4)

From the equation dxα

dt = vα defining the velocities, and
Equation (1) we thus obtain

dy
dt

= −u,

du
dt

= f (se + y, ve + u, u)

= ∂ f
∂s

∣∣∣∣
e

y + ∂ f
∂v

∣∣∣∣
e

u + ∂ f
∂�v

∣∣∣∣
e

u + nonlinear terms

(5)

The subscript e denotes that all quantities are taken at
the values for the stationary situation, that is, v = vlead =
ve, s = se, and �v = 0. The linear part can be written as
a single equation for the gap deviation,

d2 y
dt2

+ 2η
dy
dt

+ ω2
0 y = 0 (6)

where the coefficients are given by

η = −1
2

(
∂ f
∂v

+ ∂ f
∂�v

)∣∣∣∣
e

and ω2
0 =

(
∂ f
∂s

)∣∣∣∣
e

(7)

The second order ODE (6) is of the type for a damped
linear oscillator. Using the exponential function y(t) =
exp λt leads to the condition λ2 + 2η λ + ω0 = 0. There-
fore, the velocity adaptation time can be defined by the

decay time of the velocity-dominated eigenmode corre-

sponding to the real part of the root λ2 = −η −
√

η2 − ω2
0

according to

1
τ̃v

= Re(−λ2) = Re
(
η +

√
η2 − ω2

0

)
(8)

We remark that for all meaningful definitions of acceler-
ation functions (1) we have ∂ f

∂v
≤ 0 and ∂ f

∂�v
≤ 0 leading

to a positive value for the relaxation time (8), that is, the
system is locally linearly stable, and τ v is well defined. By
means of simulations in Section 3.2 below, however, we
will show that string instability can emerge as a result of
the collective properties of traffic flow although pairs of
vehicles are locally stable. Furthermore, an explicit time
delay as introduced in Section 2.2 can even lead to local
instability.

While τ v is always nonnegative, that is, well defined, it
depends on the local traffic situation as shown in Figure 2
below for a specific car-following model. To obtain a
definition that is independent of the traffic density, we
propose to evaluate Equation (8) for the limit of zero
vehicle–vehicle interactions, that is, sα → ∞. In this case,
∂ f
∂s = 0, that is, ω2

0 = 0, and the limiting case τ v of the
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general expression τ̃v for the velocity update time is given
by

τv = 1
2η

= −1(
∂ f
∂v

+ ∂ f
∂�v

)∣∣∣
e

(9)

For example, for the Optimal Velocity Model (Bando
et al., 1995) defined by the acceleration v̇α = (ve(sα) −
vα)/τ , we obtain τ v = τ .

Finally, we notice that in iterated maps such as the
models of Newell or Gipps providing the update of the
velocity directly (and not in terms of integrating an ac-
celeration), the velocity adaptation time is equal to the
numerical update time �t. As a consequence, the Newell
model with time step �t is equivalent to the Optimal
Velocity Model with a Euler update if the update time
satisfies �t = τ v .

2.4 Application to the Intelligent Driver Model

For matters of illustration, we will now apply the concept
to the Intelligent Driver Model (IDM) (Treiber et al.,
2000) and discuss the dynamic effects of the three times
introduced in the Sections 2.1–2.3. The IDM acceleration
is a continuous function incorporating different driving
modes for all velocities in freeway traffic as well as city
traffic. Besides the distance to the leading vehicle and
the actual velocity, the IDM also takes into account ve-
locity differences, which play an essential stabilizing role
in real traffic, especially when approaching traffic jams
and avoiding rear-end collisions. The IDM acceleration
function is given by

dvα

dt
= f (sα, vα, �vα)

= a

[
1 −

(
vα

v0

)4

−
(

s∗(vα, �vα)
sα

)2
]

(10)

This expression combines the acceleration strategy
v̇free(v) = a[1 − (v/v0)4] toward a desired velocity v0 on a
free road with the parameter a for the maximum acceler-
ation with a braking strategy v̇brake(s, v, �v) = −a(s∗/s)2

serving as repulsive interaction, when vehicle α comes
too close to the vehicle ahead. If the distance to the
leading vehicle, sα , is large, the interaction term v̇brake

is negligible and the IDM equation reduces to the free-
road acceleration v̇free(v), which is a decreasing function
of the velocity with the maximum value v̇(0) = a and the
minimum value v̇(v0) = 0 at the desired velocity v0. For
denser traffic, the deceleration term becomes relevant.
It depends on the ratio between the effective “desired
minimum gap”

s∗(v, �v) = s0 + vT + v�v

2
√

ab
(11)

and the actual gap sα . The minimum distance s0 in con-
gested traffic is significant for low velocities only. The
main contribution in stationary traffic is the term vT
which corresponds to following the leading vehicle with
a constant desired time gap T. The last term is only active
in nonstationary traffic corresponding to situations with
�v 
= 0 and implements an “intelligent” driving behavior
including a braking strategy that, in nearly all situations,
limits braking decelerations to the comfortable deceler-
ation b. Note, however, that the IDM brakes stronger
than b if the gap becomes too small. This braking strat-
egy makes the IDM collision-free (Treiber et al., 2000).
To implement the physical limits for the braking decel-
erations, we restrict the maximum braking deceleration
to 9 ms−2, which is a typical physical limit on dry roads.
Because we have observed such values only in simula-
tions of extreme parameter combinations leading to ac-
cidents, this limit has a negligible influence on the traffic
dynamics.

All IDM parameters v0, T, s0, a, and b are defined
by positive values. These parameters have a reasonable
interpretation, are known to be relevant, and are em-
pirically measurable. Moreover, the parameters have
realistic values, see Table 1. The IDM has been cali-
brated to empirical data of several German freeways
(Treiber et al., 2000). On a more microscopic level, the
IDM was tested together with other microscopic models
(Brockfeld et al., 2004). While all models showed large
residual errors, the IDM was one of the best. Further-
more, using the same parameters as in Table 1 (apart
from obvious changes for the desired velocity) both the
simulated acceleration behavior from a standstill and de-
celeration behavior to a standstill were remarkably close
to empirical observations (Wang et al., 2004, 2005).

Let us now apply the considered characteristic times
to the IDM. The update time �t is used in the explicit
integration scheme (2) and the reaction time will be

Table 1
Parameters of the Intelligent Driver Model (Treiber et al.,

2000) with the values used in this paper, unless stated
otherwise. The vehicle length is assumed to be 5 m but does
not play a role. The value for the acceleration parameter a is

the reference; it is varied in the simulations of Section 3.2.
The website http://www.traffic-simulation.de provides
interactive simulations and documentation of the Intelligent

Driver Model

Parameter Value

Desired velocity v0 120 km h−1

Desired time gap T 1.5 s
Jam distance s0 2 m
Maximum acceleration a ms−2

Desired deceleration b ms−2
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(independently from �t) implemented by the interpo-
lation (3). According to Equation (9), the velocity adap-
tation time for the IDM is given by

τ IDM
v = v0

4a
(12)

where v0 is the desired velocity and a the maximum ac-
celeration parameter of the IDM. For the purpose of
illustration, Figure 2 shows the actual velocity adapta-
tion time τ̃v as a function of the velocity ve of the leader
for the parameters of Table 1. Notice that, for most sit-
uations, τ̃v is considerably lower than τ v = 8.33 s. This is
plausible because, for ve = v0, there are no constraints
from other vehicles, and the relaxation is governed solely
by the acceleration to the desired velocity, and not by de-
celerations to keep a safe distance from the leader.

The different stabilizing and destabilizing factors of
the driver’s behavior and the vehicle dynamics consti-
tute a nonlinear feedback control system as visualized in
Figure 3. More specifically, the controllers are the drivers,
the quantities to be controlled are the velocity of the own
vehicle and the distance to the leading vehicle, and the
input stimuli are the observed distances and velocities,
respectively (instead of the velocity difference, one can
take the velocity vα−1 of the leading vehicle as equiva-
lent input). The actions to reach desired values for the
velocity and distance consist in accelerating or braking
according to a car-following model, for example, Equa-
tion (10) in this article. In the framework of control the-
ory, this acceleration is represented by a nonlinear gain
function. The control path contains the times discussed
in this article. When interpreting the update time �t to
model a restricted attention to the traffic and not just as

∆t

∆t

∆t

τv

gain function

a
(T)

x

α

α

α

αv

α−1v

α−1x s
T´

T´

T´

gration gration

-

Fig. 3. Elements of the feedback loop for the vehicle
dynamics of car-following models. The quantities to be

controlled are the distance sα and velocity vα . The control is
performed by the acceleration function of the model

representing a nonlinear gain function. The feedback path
from the acceleration to the quantities to be controlled

contains the characteristic times. Besides integrative elements
incorporating the velocity adaptation time τ v , the feedback

contains delay elements representing the update time �t and
the reaction time T ′ needed to calculate the acceleration

function. The whole circuit is perturbed by the leading vehicle
represented by the external inputs xα−1 and vα−1.

a numerical parameter for integrating ODEs, its value
represents the time interval where the drivers are dis-
tracted from observing the traffic. After each interval
�t, the driver looks at the traffic and takes the addi-
tional reaction time T ′ to come to a decision in terms
of a new value for the acceleration function. Finally, it
takes the additional adaptation time τ v to implement this
decision, that is, to approach a new velocity by means
of accelerating the vehicle according to the acceleration
function.

We emphasize that, in general, the parameter T of the
IDM describes a desired “safe” time gap and is therefore
not equivalent to any of the three other times T ′, �t, or
τ v although it has been set equal to each of these times
in the literature (cf. the review of Helbing (2001)). While
the desired time gap T is a characteristic parameter of the
driving style, the reaction time T ′ is essentially a phys-
iological parameter and, consequently, at most weakly
correlated with T. The time gap has, however, a strong
influence on the stability of traffic flow because it de-
termines the upper limit for the cumulative time delays
of the control path from the acceleration to the desired
distance.

3 SIMULATING TRAFFIC INSTABILITY

3.1 Simulation setup

We have simulated a platoon of 100 vehicles on a single
lane following a leader with externally prescribed veloc-
ity vlead(t). As the car-following model, we have used
the IDM with parameters given in Table 1. Initially, and
for the first 1000s of simulation time, the leader drives
constantly at vlead = 25 ms−1. Furthermore, all follow-
ers are in equilibrium, that is, the initial velocities of all
platoon vehicles are equal to vlead and the gaps equal
to se(vlead), such that the initial model accelerations are
equal to zero. To trigger possible instabilities, the ex-
ternally controlled vehicle decelerates from 25 ms−1 to
19 ms−1 during the time interval 1000 s ≤ t ≤ 1003 s,
and drives at v′

lead = 19 ms−1 afterwards. The nonlinear
dynamics resulting from this finite perturbation cannot
be handled by linearization. Furthermore, to our knowl-
edge, there exists no generalized potential for applying
standard methods of nonlinear stability analysis such as
the theorems of Lyapunov or Krasovskii. Therefore, we
will investigate the system numerically. We have also in-
vestigated more realistic scenarios with heterogeneous
driver-vehicle populations by dividing the driver-vehicle
units into two or more groups (e.g., “cars” and “trucks”)
with different values for the desired velocity v0, the time
gap T, the acceleration parameters a and b, and the re-
action times (the update time was always unique). We
found that the global traffic dynamics and the stabil-
ity behavior is essentially equivalent to using identical
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driver-vehicle units with parameters equal to the arith-
metic mean of the population.

3.2 Instability due to reaction time
and finite acceleration

We have investigated the interplay between the reaction
time T ′ and the adaptation time τ v by simulating the pla-
toon using a constant update time of �t = 0.1 s. For this
value, the numerical results represent, to a good approxi-
mation, the exact solution of the set of delay-differential
equations allowing an investigation independent from
the effects of the update time (which will be investigated
in the following section). According to Equation (12),
the velocity adaptation time for the IDM is mainly in-
fluenced by the parameter for the maximum accelera-
tion a and the desired velocity v0. For sufficiently low
values of a, that is, sufficiently high values for τ v , the
resulting time delay leads to the well-known collective
instabilities, even for zero reaction time (cf. Section 1).
Clearly, additional delay caused by a finite reaction time
T ′ contributes to traffic instabilities as well. Furthermore,
it is expected that stability always decreases when T ′

increases.
We have simulated the system without reaction time

(T′ = 0 s) and for a fixed reaction time of T′ = 0.9 s,
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Fig. 4. Time series of the acceleration for selected platoon vehicles for zero reaction time T′ = 0 s (a), and T′ = 0.9 s (b). The IDM
acceleration parameter is set to a = 1.0 ms−2. The first vehicle induces a perturbation due to the braking maneuver at t = 1000 s.

The initial perturbation dissipates while propagating through the platoon of vehicles, that is, the system is string stable.

and three values for the acceleration parameter a. The
results are the following:

(1) For a = 1.0 ms−2, the system is string stable, that
is, the initial perturbation of 2.0 m/s−2 dissipates
quickly as shown in the acceleration time series
for several vehicles of Figure 4 both for T′ = 0 s
and T′ = 0.9 s.

(2) After lowering the acceleration parameter to a =
0.3 ms−2, the initial perturbation leads to a small
temporary acceleration response for the immedi-
ate follower (the system is locally stable) and also
for the next followers up to vehicle 10, but the ac-
celerations increase again for the subsequent ve-
hicles, and finally lead to a traffic breakdown in
the neighborhood of vehicle 100 at a simulated
time t ≈ 1250 s, that is, the system is string un-
stable as shown in Figure 5(a). After the first traf-
fic breakdown, further stop-and-go waves develop
(not shown here).

(3) Remarkably, after increasing the acceleration
from the reference value 1.0 ms−2 to a =
2.5 ms−2, the system becomes string unstable as
well, cf. Figure 5(b). Again, further stop-and-
go waves develop in the course of time further
upstream.
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Fig. 5. Time series of the acceleration for the same scenario as in Figure 4(b) with T′ = 0.9 s, except for the IDM parameter for
the maximum acceleration being reduced to a = 0.3 ms−2 (a) or increased to a = 2.5 ms−2 (b). The system is unstable in both cases

displaying long-wavelength collective instability and short-wavelength local instability for a = 0.3 ms−2 and a = 2.5 ms−2,
respectively. In both scenarios, more stop-and-go waves are triggered further upstream.

When varying the maximum acceleration capability,
we come to the remarkable result that stability reaches
its maximum for a certain range of values for a that
depends on the reaction time T ′. Traffic flow becomes
more unstable if the value of the maximum acceleration
is higher or lower than this value. We checked if these

results are robust with respect to parameter changes and
found no qualitative difference for other parameter sets
within a reasonable range. More specifically, by scaling
the IDM equations (10) and (11) with the delay con-
ditions (2) and (3) according to the Buckingham theo-
rem, conditions for an invariant dynamic and stability
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behavior can be derived analytically. Here, it is appro-
priate to scale time in units of the desired time gap T,
and space in units of v0T. The resulting scaled equa-
tions have the same form as the original expressions
when setting the scaled parameters for the desired ve-
locity and time gap to unity, ṽ0 = T̃ = 1, and replacing
the remaining IDM parameters by the scaled quantities
ã = Ta/v0, b̃ = Tb/v0, s̃0 = s0/(v0T), and the delay pa-
rameters by T̃′ = T′/T, and �t̃ = �t/T. For example,
when changing the desired time gap parameter from T =
1.5 s to T = 0.75 s, the stability remains unchanged if
T ′, �t, and s0 are divided by a factor of two, while the
accelerations a and b are multiplied by this factor.

In any case, the results are markedly different from
the case of zero reaction time where higher values for a
(lower values for τ v) always increase the stability. This
can be understood by recognizing that there are two dif-
ferent types of instabilities. The “classical” collective in-
stability mechanism of the IDM is caused by the time
delay due to finite accelerations that is described by
the velocity adaptation time τ v . This instability mech-
anism becomes active for sufficiently low accelerations
(high values of τ v) and depends only weakly on the reac-
tion time T ′. As suggested by the simulation results, we
will call this type of instability the long-wavelength string
instability.

For finite reaction times, an additional instability
mechanism becomes active for sufficiently high accel-
erations, that is, low values of τ v . Based on the sim-
ulation results, we will call this type of instability the
short-wavelength instability. The two instability types are
qualitatively different from each other in the following
respects:

� The short-wavelength instability requires finite values
for at least one of the times T ′ or �t, while the long-
wavelength instability hardly depends on these times.

� The short-wavelength instability can appear as a lo-
cal instability while the long-wavelength instability
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always has the nature of a string instability. Partic-
ularly, for T ′ → 0 and �t → 0 (where only the long-
wavelength instability is possible), the system is al-
ways locally stable, that is, the time constant defined
by Equation (8) is positive.

� The short-wavelength instability is favored by an agile
driving style (high accelerations) while a more “slug-
gish” style favors the long-wavelength instability.

Figure 5a shows the emergence of the long-wavelength
instability in the plots for the cars 10, and 20. Secondary
instabilities of shorter wavelengths appear only in the
nonlinear regime (car 50) before a complete breakdown
is observed (car 80).

In contrast, the dominating modes of the second in-
stability mechanism have a shorter wavelength as can be
seen from Figure 5b for the vehicle sequence 1, 4, and
10. The range for the parameters T′ and τ v for the sec-
ond mechanism is plausible when recognizing that the
initial local instability is of the same type as that for sim-
ple feedback loops with delay-time elements, that is, the
velocity adaptation time in our context. Such systems be-
come unstable if the ratio T′/τ v exceeds a certain value
of the order of unity depending on the specific model,
that is, the system becomes more susceptible to this type
of instability if τ v decreases. In contrast, the system be-
comes more susceptible to the classical long-wavelength
instability for increasing values of τ v since the velocity
adaptation time is the main source for this type of in-
stability. Notice that these considerations are valid for a
wide class of car-following models.

We have investigated this observation more system-
atically by calculating the instability of the system as a
function of the reaction time and the acceleration param-
eter. To obtain a continuous measure for the instability,
we have calculated the variance of the accelerations for
the 20 cars 5, 10, 15, . . . , 100 based on the time series for
t > 1000 s, that is, after having applied the perturbation.
Figure 6a shows this instability measure as a function
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of T ′ for several fixed values of a. We get the following
results:
� For a ≥ 1 ms−2, the system is stable for sufficiently

small reaction times and the instability threshold
T ′

c(a) decreases with increasing a, which is a signa-
ture of the short-wavelength instability mechanism.

� For a = 0.5 ms−2, the system becomes unstable regard-
less of the value of T ′, and the instability measure has
only a weak dependence on T ′. This is a signature of
the long-wavelength mechanism.

Obviously, for a given reaction time T ′, there is a cer-
tain optimal value for a, or a range of values, where the
system has maximum stability. This is depicted in Fig-
ure 6b where the stability is plotted as a function of a for
several fixed values of T ′:
� For T ′ ≤ 0.9 s, the two mechanisms of instability

are separated by an optimal range of the parame-
ter a where the system is completely stable. While,
in the long-wavelength instability range a � 0.6 ms−2,
the instability measure depends only weakly on T ′,
the critical acceleration ac at the threshold of the
short-wavelength instability decreases strongly with
increasing T ′. For T ′ < 0.6 s, this instability mecha-
nism is no longer observed for realistic values of a.

� For T′ = 1.0 s, there is no longer a range of a for
complete stability. Instead, both mechanisms seem to
be effective simultaneously in the range of the ac-
celerations that represented the optimal range for
T′ = 0.9 s.

These findings are summarized in the phase diagram
shown in Figure 7 spanned in parameter space by the
parameters T ′ and a. Because the initial perturbation
leads to a finite acceleration variance for stable traffic as
well, the stable phase has been identified by values for
the acceleration variance below 0.003 (ms−2)2.

3.3 Relation between reaction time and numerical
update time

In the simulations of Section 3.2, the update time step
was so small (�t = 0.1 s) that it did not have a signifi-
cant influence as confirmed by simulations with a smaller
update time step of, for example, �t = 0.01 s. Investigat-
ing much larger update time steps is interesting because
both finite reaction times T ′ and update time steps �t
introduce delays in the reaction to the traffic situation,
while, a priori, it is not clear if both effects are dynami-
cally equivalent and, if so, for which pair of values. More-
over, such an equivalence is essential for interpreting the
update time steps of coupled-map models as a reaction
time. Finally, for large �t, car-following models become
numerically very efficient.
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Fig. 7. Phase diagram of stable and unstable traffic flow
spanned by the reaction time T ′ and the acceleration

parameter a. The initial perturbation leads to the
long-wavelength collective instability for small values of a.

For higher settings of a, the finite reaction time causes
short-wavelength local instabilities. For a broad range of

combinations of (T ′, a), the traffic dynamics of the vehicle
platoon is stable. Interestingly, for higher reaction times, an

effectively lower setting of a is able to reduce the instability of
the system due to delayed response to the input stimuli.

We have systematically investigated the effects of var-
ious combinations of T ′ and �t for the system presented
above. Figure 8 shows the results in the form of a dynami-
cal phase diagram spanned by both times for two settings
of the IDM acceleration parameter a, while keeping all
other parameters constant (see Table 1). The three dy-
namic phases are characterized by (1) no instabilities,
(2) instabilities, which may be of the short-wavelength
or the collective long-wavelength type but do not lead
to crashes, and (3) instabilities that eventually lead to
crashes.

Interestingly, for a given value T0 of either T ′ or �t,
the combination (T′ = T0, �t ≈ 0) leads to a stronger
destabilizing effect than the combination (T′ = 0, �t =
T0). To explain this finding, it is essential to distinguish
between the reaction time T ′ and the update time �t
conceptually:

(i) The limiting case �t → 0 for finite values T′ =
T0 corresponds to the exact solution of the time-
continuous model for a finite reaction time, that
is, to the delay-differential equation (3).

(ii) The case �t = T0 and T′ = 0 corresponds to the
numerical solution according to the used integra-
tion scheme for zero reaction time, that is, to a
coupled iterated map.

Because the two limiting cases lead to qualitatively
different mathematical models they are obviously not
equivalent. Consequently, the phase boundaries of Fig-
ure 8 are not symmetric with respect to the axes. For ex-
ample, the parameter combination (�t = 1 s, T′ = 0.5 s)
corresponds to stable traffic while (�t = 0.5 s, T′ = 1 s)
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Fig. 8. Phase diagrams of the three dynamic phases for a platoon size of 100 vehicles as a function of reaction time T ′ and
numerical time discretization �t. Besides the numerical necessity for a finite �t, the value of �t can be interpreted as “attention

span,” that is, as a typical length of time period where drivers do not draw their attention to the driving task.

leads to crashes. Therefore, for the same numerical
values, the reaction time introduces stronger destabiliz-
ing effects than the update time.

Remarkably, the borderline between stable and oscil-
latory platoons is approximately given by �t + 2T′ =
C with, for example, C = 2 s in Figure 8a. This means,
the destabilizing effect of a finite reaction time is about
twice that of a finite update time interval of the same
numerical value, or, cum grano salis, the effective reac-
tion time introduced by a finite update time interval is
about T′

eff ≈ �t/2. This is consistent with the considera-
tions summarized in Figure 1.

This interchangeability between update time and re-
action time allows for an important conclusion regarding
the numerical efficiency of the models: Because in con-
trast to simulating DDEs, large numerical update times
are numerically efficient, one can simulate a given re-
action time T ′ by iterated maps or by time-continuous
models of the type (1) together with the trapezoidal nu-
merical update scheme (2) by choosing an update time
�t = 2T′. Modeling reaction times in this way, however,
is restricted to identical reaction times for all drivers.

4 DISCUSSION AND CONCLUSIONS

We have investigated the three characteristic time con-
stants that influence the dynamics and stability of traffic
flow: (1) The delay caused by the finite reaction time of
the drivers, (2) the time lag due to a finite velocity adap-
tation time needed to accelerate to a new desired ve-
locity, and (3) the numerical update time. We presented
a general microscopic modeling approach for the inde-
pendent implementation of these three times for time-
continuous car-following models, that is, models that are
represented by ordinary differential equations. Apart

from the IDM (Treiber et al., 2000), examples include
the Optimal Velocity Model (Bando et al., 1995), or the
Velocity Difference Model (Jiang et al., 2001).

Introducing reaction times to this class of traffic mod-
els lead to time-delayed differential equations. On the
other hand, simulating such models with zero reaction
time and using an explicit integration scheme with com-
paratively large update time is equivalent to simulat-
ing iterated maps such as the model of Gipps (1981),
or the model of Newell (1961). Often, the update time
of these models is interpreted as reaction time as well,
although, iterated maps are qualitatively different from
delay-differential equations. Moreover, in the absence
of these two times, traffic instabilities can also be caused
by the finite time needed to adapt the velocity to a new
desired value (as demonstrated, e.g., by the IDM), and
also this time is sometimes called “reaction time.”

In this article, we have clarified the role of each of these
times by simulating the local and string stability of a pla-
toon of vehicles based on the Intelligent Driver Model
(IDM) for various combinations of the three times. We
used the IDM just as an example. The results are valid for
other time-continuous and coupled-map car-following
models as well. We found that, in fact, the reaction time
and the update time have a similar dynamic effect be-
cause both introduce instabilities via “short-wavelength
mechanisms” that can be both local or collective in na-
ture, while the velocity adaptation time triggers instabil-
ities exclusively via collective long-wavelength instabili-
ties. Moreover, we have shown that the instability effect
of finite update times of numerical integration schemes is
comparable to that of delay-differential equations when
the value of the reaction time is half that of the update
time. This is consistent with the considerations summa-
rized in Figure 1 and the fact that the update rule (2) is
equivalent to the trapezoidal rule, that is, updating the
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positions by using the average of the “old” and “new”
velocities. Because this rule is applied in most iterated
maps such as the Newell model, the “reaction time” �t
of such models corresponds, in fact, only to about half
the actual reaction time delay.

Furthermore, it is more plausible to interpret the value
of �t as a typical length of time period where drivers do
not draw their attention to the driving task and, con-
sequently, do not perform actions such as adapting the
acceleration to the actual situation. Therefore, finite up-
date times �t can be used to model distractions and a
“restricted attention span” that, in addition to reaction
times, may play an important role in the driving behavior
of humans (Boer, 1999).

When comparing the reaction time with the velocity
adaptation time, we obtain the interesting result that
the optimal acceleration (and deceleration) to obtain a
maximum of stability depends on the reaction time: The
higher the reaction time, the lower the optimal accel-
erations. Therefore, a finite reaction time of 1 s can be
partially compensated by an optimal, that is, effectively
lowered acceleration capability. This is consistent with
the observation that people with comparatively long re-
action times typically drive less aggressively than the av-
erage. Note, however, that, for T ′ ≤ 0.8 s, the minimum
is rather flat.

With the advent of driver-assistance systems for
(partly) automated driving such as autonomous accel-
erating and braking by means of adaptive cruise control
(ACC), an understanding of the different mechanisms
leading to traffic instabilities and their implementation
in terms of mathematical models becomes even more
relevant. It is crucial to understand the effects of ACC
systems on the capacity and stability of traffic flow at
an early stage so that their design can be adjusted be-
fore adverse traffic effects will be widely manifested.
Both human drivers and ACC systems show finite de-
lay times although the origins are fundamentally differ-
ent. In real ACC systems, they are the result of a com-
plex control path involving the motor control unit and
the braking control system (Kranke et al., 2006). While
the human reaction times generally are higher, human
drivers compensate for the destabilizing effects of reac-
tion time by anticipation, for example, by looking several
vehicles ahead, anticipating the future traffic situation,
and adapting to the traffic environment (Treiber et al.,
2006a, 2006b). It is a current research topic to introduce
at least temporal anticipation to ACC systems.
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