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ABSTRACT 

This paper proposes a cell-based multi-class dynamic traffic assignment problem that 
considers the random evolution of traffic states. Travelers are assumed to select routes based 
on perceived effective travel time, where effective travel time is the sum of mean travel time 
and safety margin. The proposed problem is formulated as a fixed point problem, which 
includes a Monte-Carlo-based stochastic cell transmission model to capture the effect of 
physical queues and the random evolution of traffic states during flow propagation. The fixed 
point problem is solved by the self-regulated averaging method. Numerical examples are set 
up to illustrate the properties of the problem and the effectiveness of the solution method. The 
key findings include the following: i) Reducing perception errors on traffic conditions may 
not be able to reduce the uncertainty of estimating system performance, ii) Using the self-
regulated averaging method can give a much faster rate of convergence in most test cases 
compared with using the method of successive averages, iii) The combination of the values of 
the step size parameters highly affects the speed of convergence,  iv) A higher demand, a 
better information quality, or a higher degree of the risk aversion can lead to a higher 
computation time, v) More driver classes do not necessary results in a longer computation 
time, and vi) Computation time can be significantly reduced by using small sample sizes in 
the early stage of solution processes. 
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1.  INTRODUCTION 

Dynamic traffic assignment (DTA) is one of important and hot research topics nowadays 

because of its wide applications in transport planning and management. DTA consists of two 

components: travel choice principle and traffic flow component (Szeto and Lo, 2006).   

The travel choice principle describes the travel choice behavior of the trip makers, 

especially their route choice. The commonly used route choice principles in DTA include: the 

dynamic user equilibrium principle (e.g., Lo and Szeto, 2002a,b), the dynamic stochastic user 

equilibrium principle (e.g., Szeto and Lo, 2005), the bounded rationality principle (e.g., Peeta 

and Zhou, 2006) and the tolerance-based principle (e.g., Szeto and Lo, 2006). These 

principles can be used in single and multiple user class DTA problems. However, these 

principles only consider the “mean” travel time and ignore the variability of travel time. In 

fact, Jackson and Jucker (1982) and Abdel-Aty et al. (1997) show that the variability of travel 

times is one of key factors in route choice. It is therefore important to capture the variability 

in the travel choice component. Many efforts (e.g., Chen et al., 2002a; Lo et al., 2006; Shao 

et al., 2006, 2008; Lam et al., 2008; Siu and Lo, 2008; Zhou and Chen, 2008; Connors and 

Sumalee, 2010; Szeto et al., 2011)  focus on incorporating the variability in the route choice 

component of static trip assignment models. However, to our best knowledge, very limited 

studies (e.g., Boyce et al., 1999; Liu et al., 2002; Yin et al., 2004) consider travel time 

variability in DTA. 

Traffic flow component depicts how traffic flow propagates within a traffic network and 

determines the travel time. Early efforts develop the traffic flow component in DTA based on 

point queue models (e.g., Carey and McCartney, 2004), exit flow models (e.g., Nie and 

Zhang, 2005a) and dynamic travel time functions (e.g., Nie and Zhang, 2005b). To capture 

the effect of spatial queues such as queue spillback and junction blockage, physical queue 

models (e.g., Daganzo, 1994, 1995, 1999; Muñoz et al., 2003; Szeto, 2008) are developed 
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later. These models are often “macroscopic” and are derived from the hydrodynamic theory. 

They assume a steady-state speed-density relationship which adopts a number of 

deterministic parameters (e.g., free-flow speed, jam-density, capacity, etc.), and does not 

allow fluctuations around the equilibrium (nominal) fundamental flow-density diagram (FD). 

However, research and empirical studies on the FD have revealed that the FD admits large 

variations (see Figure 1) due to the variabilities in driving behavior and the characteristics 

(e.g., acceleration and deceleration abilities) of vehicles, the changing weather conditions, 

estimation error, and others (Chen et al., 2001; Boel and Mihaylova, 2006; Kim and Zhang, 

2008; Chiabaut et al., 2009; Geistefeldt and Brilon, 2009; Ngoduy, 2009). Therefore, 

macroscopic “stochastic” traffic flow models (e.g., Boel and Mihaylova, 2006; Sumalee et al., 

2010) are developed to capture the random evolution of traffic states for freeways with on-

ramps and off-ramps. Nevertheless, these models have not been extended for general network 

applications. 

 

Figure 1 A fundamental flow density diagram of traffic flow with the 24-hour traffic 
flow data of Interstate 210 West in Los Angeles collected on April 22, 2008.  
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To address the effect of travel time variability on route choice, the random evolution of 

traffic states, and the effect of spatial queues simultaneously, this paper proposes a new DTA 

problem called the multi-class doubly stochastic dynamic user equilibrium problem (MDS-

DUE-P). The MDS-DUE-P is to determine the temporal flow pattern in a stochastic traffic 

network given a fixed demand at each departure time period, where different classes of 

travelers are assumed to have imperfect information about the network conditions and 

different attitudes towards risks. The route choice component of the proposed DTA problem 

is described by the dynamic extension of the travel time budget or effective travel time 

concept in Lo et al. (2006) and Shao et al. (2006), which considers the standard deviation 

(SD) of travel time instead of its variance as in Yin et al. (2004). The traffic flow component 

is depicted by the proposed Monte-Carlo based stochastic cell transmission model (MC-

SCTM). Free flow speed, backward wave speed, saturation flow rate, and jam density are 

modeled as random variables, which can be defined by any distributions. The effect of spatial 

queues can also be captured. 

The MDS-DUE-P is formulated as a fixed point problem and solved by the self-regulated 

averaging method (SAM) proposed by Liu et al. (2006). The SAM works well for solving the 

deterministic network stochastic user equilibrium problem. However, to our best knowledge, 

the SAM has not been used to solve stochastic network assignment problems including ours, 

and hence the performance of the SAM for solving these problems has not been known yet. 

Hence, numerical examples are set up to the performance the solution method. Examples are 

also set up to illustrate the properties of the MDS-DUE-P. The main contribution of this 

paper is to propose a methodology to formulate and solve the problem that considers the 

random evolution of traffic states in a “macroscopic” traffic flow modeling framework while 

the effect of variability on route choice behavior is simultaneously taken into account. 

The rest of the paper is organized as follows: Section 2 formulates the problem. Section 3 
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describes the MC-SCTM. Section 4 depicts the SAM. Section 5 presents the numerical 

studies. Section 6 discusses the implementation issues of the proposed model and the solution 

method to realistic networks. Finally, Section 7 gives some concluding remarks. 

 

2. PROBLEM FORMULATION  

Consider a transportation network with multiple origin-destination (OD) pairs and multiple 

driver classes. The road segments are represented by a series of cells that have physical 

length, while the links are there merely to delineate connectivity between cells. Traffic begins 

at an origin cell (denoted as r ) and terminates at a destination cell (denoted as s ). The study 

horizon is discretized into many equal length intervals. The evolution of traffic states is 

assumed to be random so that capacity and travel time are uncertain. 

All drivers in the same class have the same attitude towards the risk of late arrivals and 

have imperfect information on traffic network conditions such as the mean and SD of the 

travel time of each route. They are assumed to select routes based on the dynamic extension 

of the reliability-based stochastic user equilibrium principle (Shao et al., 2006) called the 

reliability-based stochastic-dynamic–user-equilibrium (RSDUE) principle. This RSDUE 

principle states that for each class of drivers departing at any time, they select routes with the 

minimum perceived effective travel time at the time of departure. 

The perceived effective travel time at the time of departure is defined as the sum of the 

modified effective route travel time at that departure time and the associated perception error:   

      , , ,
rs rs rs
p i p i p iU t V t t  , (1) 

where      , , ,,  ,  and rs rs rs
p i p i p iU t V t t  denote the perceived effective travel time, the modified 

effective travel time, and the perception error on route p  between OD pair rs  for class-i 

drivers departing at time t , respectively. There are many alternatives to model  ,
rs
p i t , 

namely the Multinomial Logit model, the C-Logit model, the Path Size Logit model, the 
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Probit model and others (see Ben-Akiva and Bierlaire, 1994). The C-logit model is selected 

for this framework due to its tractability, simplicity, and the ability to handle path correlation. 

The modified effective route travel time in (1) is the sum of the commonality factor and 

actual effective route travel time: 

    , ,
ˆrs rs rs

p i p p iV t CF t  ,  (2) 

where rs
pCF

 
is the commonality factor of route p , and  ,ˆ rs

p i t  denotes the actual effective 

travel time on route p  between OD pair rs  for class-i drivers departing at time t .  

The commonality factor in (2) is used to capture the degree of similarity between paths as 

in Cascetta et al. (1996). It is expressed as follows: 

 
1/ 2 1/ 2

ln ( )
rs

hprs
p

h R h p

L
CF

L L




 
 , (3) 

where  hpL
 
is the “length” of links or free flow travel time on links common to both paths h  

and k . hL
 
and pL  are, respectively, the free flow travel times on paths h  and p  belonging to 

the same OD pair.   and   are parameters. rsR  is the set of paths connecting OD pair rs . 

The actual effective route travel time in (2) is the sum of the mean route travel time and 

the safety margin: 

      , ,
ˆ rs rs rs

p i p p it t s t   ,  (4) 

where  rs
p t  is the mean travel time of all drivers on route p  between OD pair rs  departing 

at t .  ,
rs
p is t  denotes the safety margin of route rsp R  for class-i drivers departing at time t , 

which is the additional time reserved to counter the travel time variation to avoid late arrivals. 

The safety margin  ,
rs
p is t  in (4) is a linear function of the SD,  rs

p t , of the travel time 

on route rsp R  as in Lo et al. (2006) and Shao et al. (2006): 

    ,
rs rs
p i i ps t Z t ,   (5) 
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where iZ  is the parameter representing the degree of the risk aversion of class-i drivers. The 

larger is the value of iZ , the greater is the degree of the risk aversion of class-i drivers. In 

particular, 0iZ   if class-i drivers are risk-averse and tend to depart earlier to avoid late 

arrivals;  0iZ   if class-i drivers are risk-neutral and ignore  rs
p t  when selecting routes. Of 

course, iZ  can also be related to the importance of the trip, i.e., by trip purpose (higher iZ  

for more important trip and vice versa). The value of iZ  can be calibrated using the survey 

data. The details of the survey setting and calibration procedure can be found in Jackson and 

Jucker (1982) but the SD is considered instead of the variance in this paper.  

The motivation of (5) is that a higher degree of risk aversion implies a larger safety margin, 

and a traveler reserves more additional time for a more uncertain route, where the uncertainty 

is reflected by the SD of the route travel time. 

The parameter iZ  in (5) is related to the probability i  that the actual travel time is not 

greater than the actual effective route travel time:  

        ,ˆ{ = } = ,rs rs rs rs
p p i p i p iP C t t t Z t      (6) 

where ( )rs
pC t  is the actual travel time on route p between OD pair rs when the traveler 

departs at time t. The probability i  can be regarded as the within budget time reliability, 

where the budget is defined by the actual effective travel time. Then, a higher value of iZ  

implies that the passenger is willing to have a higher probability of arriving on time or 

equivalently the actual travel time not being greater than the actual effective travel time. 

 rs
p t  in (4) and rs

p  in (5) are functions of all the route flows  ,
rs
p if t   f : 

 
 
 

 
rs
p

rs
p

t

t





 
 

  
Φ f ,  (7) 

where Φ  represents a unique mapping yielding the means and SDs of route travel times from 
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route flows. This mapping is defined by the stochastic traffic flow model and the travel time 

determination procedure. In this study, Φ  is modeled by the proposed MC-SCTM, which 

will be described in the next section. 

Assume the perception errors in (1) follow the identical and independent Gumbel 

distributions with mean zero and identical SD. The RSDUE route flow pattern can then be 

formulated as: 

      , , , , , ,rs rs rs
p i p i if t w t q t rs p t i   , and (8) 

 ,
,

,

ˆexp( ( ( ) ))
( ) , , , ,

ˆexp( ( ( ) ))

rs rs
i p i prs

p i rs rs
i k i k

k

t CF
w t rs p t i

t CF

 
 

  
 

  
, (9) 

where  ,
rs

p if t  and  ,
rs
p iw t  are, respectively, the flow and proportion of class-i drivers on 

route p  between OD pair rs  departing at time t ;  rs
iq t  is the demand of class-i drivers 

between OD pair rs  at time t , which is assumed to be fixed; i  is the dispersion parameter 

representing the effective travel time perception variation of class-i drivers. A higher value of 

i  represents a better information quality received by the drivers. When i  tends to infinity, 

the flow pattern tends to be the reliability-based user equilibrium flow pattern. If iZ  = 0, the 

flow pattern becomes the dynamic stochastic user equilibrium flow pattern. If i  tends to 

infinity and iZ  = 0, the flow pattern tends to be the dynamic user equilibrium flow pattern.  

The MDS-SDUE-P is to find f  to satisfy (3)-(9). Since  ,
rs
p iw t

 
is a function of the path 

flow  ,
rs
p if t , this problem can be formulated as a fixed point problem: 

       ,[ ]rs rs
p i iw t q t  f Y f , (10) 

where  ,
rs
p iw t  is defined by

 
(3)-(5), (7), and (9). As (10) can be reformulated as a variational 

inequality (VI), the existence and uniqueness of solutions for the proposed problem can be 

analyzed by using the existence and uniqueness theorems for VIs. If the means and SDs of 
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route travel times are continuous of f , a solution exists to the proposed problem. The 

uniqueness of the solution further requires        , ,
rs rs rs

p i p i if t w t q t    F f  to be strongly 

monotone, which is almost unlikely in general cases. 

 

3. THE MONTE-CARLO-BASED STOCHASTIC CELL TRANSMISSION MODEL  

The proposed Monte-Carlo-based stochastic cell transmission model (MC-SCTM) is 

developed from the cell transmission model (CTM) proposed by Daganzo (1994). The CTM 

is a convergent numerical approximation scheme to the hydrodynamic model of Lighthill and 

Whitham (1955) and Richards (1956). Daganzo’s CTM (1994) is originally developed for a 

simple highway based on a trapezoidal flow-density relation, which includes the triangular 

one as a special case. However, the CTM can be extended to consider general networks 

(Daganzo, 1995a), general flow-density relations (Daganzo, 1995b), priority vehicles and 

special lanes (Daganzo, 1997 and Daganzo et al., 1997) and lane-changing behavior (Laval 

and Daganzo, 2006). In terms of formulation representation, the CTM can use either cell 

occupancy (e.g., Daganzo, 1995a,b) or cell density (Daganzo, 1999; Muñoz et al., 2003) as 

the state variable, where the cell occupancy is defined as the number of vehicles in a cell, and 

the cell density is defined as the average number of vehicles in a cell per unit distance.  

The CTM can capture traffic dynamics such as shockwaves, queues formation, queue 

dissipation, and dynamic traffic interactions across multiple links (Lo and Szeto, 2002a, b). 

However, the CTM requires dividing a link into many cells with equal lengths, leading to a 

high computation burden. To reduce computation time, various modifications to the CTM 

have been proposed. These modifications allow variable cell lengths (Ziliaskopoulos and Lee, 

1997; Daganzo, 1999; Muñoz et al., 2003; Ishak et al., 2006; Szeto, 2008), and hence require 

few cells and can reduce the computation burden. Nevertheless, their developments are based 

on deterministic flow-density relations. The random evolution of traffic states due to 
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randomness in driving behavior, the changing weather conditions, etc. is not captured.  

The stochastic cell transmission model (SCTM), proposed by Sumalee et al. (2010) 

considers the random evolution of traffic states. This model extends the CTM by defining 

parameters governing sending and receiving functions explicitly as random variables as well 

as by specifying the dynamics of the basic model parameters of the FD including free flow 

speed, backward wave speed, saturation flow rate, and jam density in each cell. The SCTM 

employs a triangular flow-density relation and uses densities as state variables instead of cell 

occupancies. Moreover, the SCTM allows variable cell lengths. The SCTM is shown to be 

able to give a good estimate on the mean actual traffic flow on freeways (Sumalee et al., 

2010). However, the SCTM does not consider route choice and the First-In-First-Out (FIFO) 

rule at diverges. Hence, the SCTM cannot be used to model traffic propagation in general 

networks. In addition, the correlations between the model parameters between different cells 

are not captured. 

The proposed MC-SCTM considers route choice, FIFO, and the correlations between the 

model parameters of trapezoidal flow-density relationships of various cells at the expense of 

the increase in computation time. The MC-SCTM allows the parameters to be modeled by 

any distribution with correlation between the model parameters to fit the observed data better. 

The MC-SCTM relies on the Monte Carlo simulation (MCS) to generate traffic states for 

network loading and collect travel time statistics from each network loading. The network 

loading is done by the proposed modified CTM (M-CTM) which is extended from the 

existing network version of the CTM (Daganzo, 1995) that use occupancies as state variables. 

The M-CTM allows cells having unequal lengths regardless of actual free flow speed, and is 

more suitable for large networks with random evolution of traffic states than the existing 

network version of the CTM.  

In the M-CTM, a highway is discretized into many cells and the study horizon is 
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discretized into many equal length intervals. The length of each cell is equal to the product of 

the maximum free flow speed for that cell and the length of each time interval. Then, the flow 

propagation equation of the M-CTM for a simple highway is the same as that of the CTM: 

        11 ,j j j jn n y y        (11) 

where the subscript j refers to cell j, and the subscript j-1 represents the cell upstream of  j. 

The variables  jn   and  jy   denote the number of vehicles in cell j and the actual 

number of vehicles entering cell j at time  , respectively. Basically, (11) states that the 

number of vehicles in cell j  at time  1 is equal to the number of vehicles in that cell at 

time   plus those entering minus those leaving. 

As in the CTM, the M-CTM uses the Godunov scheme (see Godunov, 1959) to set the 

actual number of vehicles entering cell j at time   to be the minimum of the maximum 

possible number of vehicles leaving the upstream cell j-1 at that time,  1jS  , and the 

maximum possible number of vehicles entering cell j at that time,  jR  :  

       1min , ,j j jy S R    (12) 

 To account for non-uniform cell lengths, the M-CTM calculates  1jS   and  jR   

based on the following: 

        
min , , j

j j j
j

N
S Q n

d


  

    
  

 and  (13) 

      
       

min , , ,j j
j j j j

j j

w N
R Q N n

v d

 
   


      
  

 (14) 

where  jQ  denotes the inflow capacity of cell j or the maximum number of vehicles that 

can flow into cell j during time  .  jn   and  jN   are, respectively, the occupancy of 

cell j and the maximum number of vehicles that can be present in cell j (or the holding 
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capacity of cell j) at time  . The latter equals the product of the number of lanes, the jam 

density, and the length of the cell.  jw   and  jv   are, respectively, the backward wave 

speed and the free flow speed of cell j during time  . jd  is the length of cell j. Equations 

(13)-(14) assume that any cell j is made up of n  “imaginary” standard cells connected in 

series, where n is a positive integer and a standard cell is the shortest cell in the network. 

According to (13), the sending flow of cell j is constrained by the inflow capacity, the cell 

occupancy, and the holding capacity of the last “imaginary” standard cell of cell j. Equation 

(14) states that the available capacity of cell j  is the minimum of the inflow capacity of cell j, 

the product of the vacant space    j jN n     and the factor    j jw v   that accounts 

for the effect of shockwave on the vacant space in cell j , and the holding capacity of the first 

“imaginary” standard cell embedded in cell j.  

In a general network with many OD pairs, the general principle of (11)-(14) is still 

applicable to the vehicle movements between cells. However, to maintain the intended routes 

of vehicles and the FIFO property, the number of vehicles in each cell is disaggregated by 

route (p) and by waiting time ( , modeled as a discrete time index). The route variable is 

used to direct vehicles at merges and diverges. By tracking  , the FIFO property is 

maintained by ensuring that earlier arrivals (with a larger  ) will leave sooner.  

 For a simple highway, the conservation of traffic flow leads to the following  

 , , 1 , , , ,( 1) ( ) ( ),j p j p j pn n y         and (15) 

    1, ,1 , ,1 ,j p j pn y 


     (16) 

where
  , ,j pn  

 
denotes the number of vehicles in cell j at time   on route p and enters the 

cell at time 1   , and  , ,j py    denotes as the number of vehicles (on route p and that 

has been waiting for   time intervals) leaving cell j at time  . Equation (15) states that the 
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remaining number of vehicles in cell j at time  +1 (determined by the difference between 

the number of vehicles in cell j at time   minus those leaving) increases their waiting time 

from   to 1  . Equation (16) states that the vehicles enters cell j+1 at 1  . 

 If the minimum waiting time  ja   in cell j at time   is known, then  , ,j py    in (15) 

and (16) can be determined by: 

  

   

      

 

, ,

, , , ,

if ,

if ,

0 if ,

j p j

j p j j p j

j

n a

y a n a

a



 

  

     

 







 

  

 


 (17) 

where  ja 


 denotes the smallest integer equal to or greater than  ja  . Equation (17) 

states that if the waiting time   of any vehicle is longer than  ja 


, the vehicle advances 

to the next cell; none of the vehicles leave cell j if their waiting time is less than  ja  ; and 

lastly, for all the vehicles in cell j with waiting time  ja 


 , only     , ,j j pa n     

of them leave the cell. 

 To avoid vehicles traveling at a speed higher than the free flow speed, according to the 

Courant-Friedrichs-Levy condition (Courant et al., 1967), the minimum waiting time  ja  , 

or equivalently the minimum number of intervals required by a vehicle to stay in cell j, must 

be at least equal to the minimum number of intervals required to leave cell j ,  jt  : 

    j ja t  .  (18) 

The latter depends on the length and actual free flow speed of the cell as follows: 

    
max,

0

,j j
j

j

d v
t

d v



   (19) 

where  jv   and max, jv , respectively, denote the actual and maximum free flow speeds of cell 
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j with  jv  max, jv , and  jv 
 
=

 max, jv  when there is no uncertainty for  jv  . jd and 0d , 

respectively, denote the lengths of cell j and the shortest cell. They represent the distance 

traveled by a vehicle at the maximum free flow speed during one time interval. Equation (19) 

states that  jt 
 
is directly proportional to the length of cell j and inversely proportional to 

the actual free flow speed  jv  . In the extreme case, when jd = 0d  and  jv 
 
=

 max, jv , 

,j  , the M-CTM is reduced to the CTM.  

 The M-CTM also has the following relationship: 

  
 

 , ,

j

j j p
t p

n n 
 

 


   , and (20) 

    , ,j j p
p

y y 


   . (21) 

Equations (12)-(21) can be used to determine the traffic propagation for a simple highway 

over time. Suppose the disaggregate occupancies  , , , , ,j pn j p    and the necessary 

boundary conditions are known. Then, we can obtain   ,jn j   by (20). After that, by 

solving the system of equations (12)-(14), (17), (19), (21), we can determine  ja   and 

 , ,j py    simultaneously, which are used to compute  , , 1( 1)j pn     and  1, ,1 1 , ,j pn j p    

through (15) and (16), respectively. The new disaggregate occupancies  , , 1 , , ,j pn j p     

can then be used to obtain the disaggregate occupancies for next time interval. This procedure 

is repeated in the ascending order of  .  

Compared with Daganzo (1995), the new feature of the M-CTM is described by (13), (14), 

(19), and (20). For general networks, the M-CTM still adopts the merge and diverge concepts 

proposed in Daganzo (1995) but the maximum possible numbers of vehicles leaving and 

entering a cell on each branch are determined by (13) and (14), respectively, and the 

disaggregate cell occupancy on each branch is determined by (19) and (20). 
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The M-CTM discussed above is to determine the travel time given the path inflow kf  for 

one realization in the MC-SCTM. To obtain the means and SDs of route travel times, many 

realizations are generated by the MCS. To reduce computation time, the MC-SCTM 

incorporates the common random number MCS method and recursive formulas for 

determining the means and SDs of route travel times. The algorithmic steps of the MC-

SCTM are as follows:  

1.) Select the maximum number of samples for each iteration maxM . Set the sample 

number 0m  , the estimates of the means and SDs of route travel times 

, , , ,0,  0, , ,rs rs
p t m p t m rs p t    . 

2.) Set 1m m  . Generate an observation mμ  for free flow speed, backward wave speed, 

jam density, and saturation flow for each cell at each time interval from the 

predefined distributions.  

3.) Load the path inflows kf  into the cell network using the M-CTM. 

4.) Deduce the cumulative inflow and outflow curves. Calculate the travel time 

 , , , , ,rs k m
p t rs p t f μ  using the procedure in Tong and Wong (2000), Lo and Szeto 

(2002) or Long et al. (2010). 

5.) Update the mean route travel time and the corresponding
 

SD based on 

 , , , 1

, , , , 1

,
, , ,

rs k m rs
p t p t mrs rs

p t m p t m rs p t
m

 
  




  

f ω
, and (22) 

 22

, , , , 1 , , , , 1

1
1 , , ,

1
rs rs rs rs
p t m p t m p t m p t mm rs p t

m
    

           
 . (23) 

6.) If maxm M , go to 2.). Otherwise, set  rs
p t  = 

max, ,
rs
p t M , and  rs

p t  = 
max, ,

rs
p t M . 

To sum up, given the path inflow kf , the MC-SCTM can calculate the occupancy of each 

cell together with the means and SDs of route travel times. 
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4. THE SELF-REGULATED AVERAGING SOLUTION METHOD  

The method of successive averages (MSA) was extensively used to solve the fixed point 

problem during the past decades. This method relies on a predetermined step size for 

guaranteeing convergence. However, the convergence speed of the MSA is slow due to two 

reasons: 1) The predetermined step size is too large at some iterations such that the next 

solution is even farther away from the optimal solution than the current one (i.e., 

overshooting occurs), and 2) When the current solution is close to the optimal solution, the 

predetermined step size is too small and the convergence process is slowed down.  

A self-regulated averaging method (SAM) was proposed by Liu et al. (2009) to deal with 

the slow convergence problem, and was used to solve the deterministic-network stochastic 

user equilibrium (SUE) problem. Nevertheless, to our best knowledge, this method has not 

been used to solve stochastic network assignment problems yet. In this paper, we adopt this 

method to solve our proposed stochastic problem, which relies on the Euclidean distances 

( )k kf Y f
 
in the two consecutive iterations to select an appropriate step size. If 

( )k kf Y f 1 1( )k k  f Y f , a step size larger than that of the MSA at iteration k will be 

chosen to speed up the convergence process. Otherwise, a step size smaller than that of the 

MSA at iteration k will be chosen to reduce the chance of overshooting.  

Due to the sampling errors of MCS, the error estimate for each (major) iteration may not 

be exact. Therefore, instead of just using the Euclidean distance at the current iteration k, we 

use a simple moving average of the last three Euclidean distances as the convergence 

measure. The detailed algorithm steps are as follows:  

1.) Initialization: Set the number of major iterations 1k   and the initial step size 
0 1  . 

Define parameters such as the maximum number of iterations maxk , the convergence 

tolerance  , the step size parameters   and   . Set the initial route flows 0f . 
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2.)  Updating the mapping function: Based on kf , determine the means and SDs of route 

travel times by the MC-SCTM. Calculate  kY f . 

3.) Checking convergence: Report results and stop if i) maxk k , or ii) 

2

1
( )

3

k
j j j

j k


 

  f Y f , 3k  , where 

     2
, ,Y( ) ( ( ) )k k rs rs rs

p i p i i
rs p i t

f t w t q t     f f . (24) 

4.) Step size determination: The self-regulated step size 1 /k ka  , and k is updated by: 

 
1 1 1

1 1 1

, 1,  if  ( ) ( ) ,

, 1,  if  ( ) ( ) .

k k k k k

k

k k k k k




  

  

  

        
    

f Y f f Y f

f Y f f Y f
 (25)  

5.) Updating the flow pattern: 1 ( ( ) )k k k k k ka    f f Y f f , 1k k   and go to 2.) 

Note that when 1   , the SAM becomes the MSA.  

 

5. NUMERICAL STUDIES  

Eight examples are set up to illustrate the properties of the problem and the performance of 

the solution method. These examples are summarized in Table 1. For examples 1-5, 7 and 8, 

a 10-cell network in Figure 2 is used. This network has one OD pair where cell 1 is the origin 

cell and cell 10 is the destination cell. The basic settings for these examples are as follows: 

 Cell lengths: a) cells 3, 4, and 6: 5 miles; b) cell 7: 3 miles, and c) other cells: 1 mile; 

 The number of lanes: a) cells 5 and 8: 2; b) cells 3, 4, 6, and 7: 3; c) other cells: 6;  

 Convergence tolerance:  = 0.01; 

 Length of a discretized time interval: 1 minute; 

 Sample size of the MCS: 1000; 

 Route choice parameters: 1.65Z  , 1 0.05  ;   =   = 1; 
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 Demand: a) level: 1800 veh/hr/lane; b) loading period:  1,15 ; 

 Parameters for the FD of each cell: symmetric triangular distributions with 

a) Free flow speed:  The maximum is 60 mph, and the minimum is 50 mph; 

b) Backward wave speed: The maximum is -10 mph, and the minimum is -20 mph; 

c) Jam density: The maximum is 240 veh/mile, and the minimum is 160 veh/mile;  

d) Saturation flow: The maximum is 1800 veh/hr/lane, and the minimum is 1620 

veh/hr/lane, except cells 6 - 8, where the minimum is 1080 veh/hr/lane. 

With these settings, the lower route is shorter than the upper one, but has a larger SD and a 

lower mean saturation flow. 

For example 6, the Mong Kok district (see Figure 3) is considered and modeled as shown 

in Figure 4. The network has 4 OD pairs and 33 cells. The shortest and longest cells are 0.02 

mile and 0.08 mile long, respectively. Each time interval is 5 seconds long. The rest of 

parameter settings are similar to those for the small network, except the following: 

 Cell lengths: a) cells 5, 12, and 21: 0.08 mile; b) cells 6, 7, 8, 11, 22, and 23: 0.06 mile, 

and c) cells 15, 16, 18, 19, 20, 29, and 30: 0.02 mile; d) other cells : 0.04 mile;  

 The numbers of lanes: a) cells 1 to 9: 3; b) cells 10, 11, 13, 14, 24, 26, 27, 28, 32, and 33: 

2; c) other cells: 1;   

 Demand levels: OD pair 1-9: 960 veh/hr/lane; OD pair 10-9: 1080 veh/hr/lane, and OD 

pairs 1-33 and 10-33: 720 veh/hr/lane;  

 Parameters for the FD of each cell: symmetric triangular distributions with 

a) Free flow speed: The maximum is 14.4 mph, and the minimum is 8.64 mph; 

b) Backward wave speed: The maximum is -6 mph, and the minimum is -8 mph. 

The nominal fundamental diagrams for the two networks are shown in figure 5.  

All examples were run on a computer with an Intel (R) Core(TM) 2 Duo T9400 2.53GHz 

CPU and a 3GB RAM. Unless stated otherwise, each example is run for 20 times with 



 

 19

different seeds, and the average results are reported. Initially, the demand in each period is 

evenly assigned to each path at the first iteration. 

 

Table 1 Example setting  

 
Figure 2 A ten-cell network for examples 1-5, 7 and 8 

 

Example 1 

This example is set up to illustrate the effect of the different combinations of   and   on 

computation time and compare the performance between the SAM and the MSA.  In this 

example,   is in the range from 1.0 to 2.0, while   is in the range from 0.2 to 1.0, thereby 

capturing the range recommended by Liu et al. (2006). The increments for these parameters 

Example Network No. of 
classes N 

Illustration  Setting/ Remarks 

1 10-cell 
network  

1 Effects of  and  on 
computation time  

Different combinations of  
  and   

2 10-cell 
network 

1 Effect of   on computation 
time 

  = 0.05, 0.1, 0.15, 0.2, 
0.25 

3 10-cell 
network 

1 Effect of demand on 
computation time 

Demand = 600, 900, 1200, 
1500, 1800 veh/hr/lane 

4 10-cell 
network 

1 Effect of Z on computation 
time 

Z = 0, 0.825, 1.65  

5 10-cell 
network 

varied Effect of the number of 
classes on computation time 

N = 1, 2, and 3 

6 Mong 
Kok 
Network 

1 Computation performances  
of constant and varying 
sample size strategies 

Change the sample size of 
MCS from 100 to 1000 at 
different convergence levels 

7 10-cell 
network 

1 Effect of the degree of risk 
aversion and   on route 
choice 

See below  

8 10-cell 
network 

2 Effect of  information quality 
on the mean and SD of total 
system travel time 

See below 

1 2 

3 

6 

4

7 8

9 10

5
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are set to 0.2, and hence 30 combinations can be obtained as shown in Table 2. In particular, 

when =1.0 and  =1.0, the test case represents the case using the MSA.   

 
Figure 3 The Mong Kok district in Hong Kong 

 

Figure 4 The Mong Kok network for example 6 

 
Figure 5 The nominal flow-density diagrams for the example networks 
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Table  2 The effect of step size on number of iterations required 

     
    1 1.2 1.4 1.6 1.8 2 

1 176.2 212.5 249.3 282.0 321.0 355.5 
0.8 86.4 102.9 117.8 135.3 151.2 170.7 
0.6 44.4 51.9 59.6 67.9 75.6 82.8 
0.4 25.0 28.7 32.2 36.1 40.6 44.2 

  

0.2 15.7 17.7 19.4 21.3 23.2 25.2 
 
The numbers reported in table 2 are the average numbers of iterations required to obtain 

optimal solutions. From this table, we can observe that a higher value of   results in a larger 

number of iterations required on average and hence a longer computation time. This means 

that a large step size is preferable for this problem. While it may not be always true to use a 

very large step size for all the problems, this example clearly shows that the combination of 

the step size parameters highly affects the speed of convergence. The ratio of the average 

number of iterations of the worst combination to that of the best combination is larger than 

20. More importantly, this example clearly demonstrates the benefit of using the SAM over 

the MSA to solve stochastic problems, which has not been examined before. The 

computation time of the best combination (i.e., =1.0,  =0.2.) is even less than one-tenth of 

that of the MSA. This is because for most of the time, the MSA used too small step sizes 

along the descent direction, whereas the SAM can regulate the step size to speed up the 

convergence process. Moreover, for all the test cases shown, all 24 out of 29 cases can obtain 

optimal solutions quicker than the MSA, as these 24 cases use  <1.0 which allows 

increasing step sizes for speeding up the solution process when necessary. For the remaining 

5 cases, (  >1 and   =1.0),    >1 causes the initial overshooting (the new solution is farther 

away from the optimal solution than the initial solution) but there is no speeding-up strategy. 

Therefore, these 5 cases require a longer computation time than the case using the MSA. In 

particular, the larger is the value of  , the worse is the performance of the SAM, as the 

overshooting problem is more serious.   
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Example 2-Example 4  

Examples 2-4 aim to illustrate the effect of parameters on computation time. For each 

example, to avoid being smeared by other factors, we only vary one parameter value while 

keeping other values fixed as those used in the basic setting. The best combination of   and 

  (i.e., =1.0,  =0.2.) is used to solve for solutions. The results are presented in Figures 6-

8. Figure 6 show that information quality has significant effect on computation time as 

reflected by the average number of iterations required to get optimal solutions. According to 

Figure 6, when   increases from 0.05 to 0.25, (representing the case when the information 

quality increases), the average number of iterations required increases nearly double. While 

the exact increase of average computation time depends on the specific problem, the 

increasing trend here agrees with the observation obtained by solving the SUE problem by 

the MSA under various values of   (see Sheffi, 1985), where the SAM is a variant of the 

MSA. When   is small, effective travel time is less important and the information quality 

plays a more important role in determining the flow pattern. In the limiting case, when  =0, 

effective travel time is not used for determining the flow pattern.  
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Figure 6 Effects of information quality on computation time 

 

When the demand level increases from 600 veh/hr/lane to 1800 veh/hr/lane, the network 

condition changes from free-flow to congested, and the average number of iterations 
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increases nearly four times (see Figure 7). This observation is again consistent with the one 

obtained by solving the SUE problem by the MSA. When the demand is low, the change in 

effective travel time in successive iterations is small, and hence the convergence speed is fast. 
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Figure 7 The Effect of demand on computation time 
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Figure 8 The effect of risk aversion on computation time 

Figure 8 demonstrates the effect of degree of the risk aversion of drivers on computation 

time. Basically, a higher value of Z results in a higher number of iterations required, as a 

higher Z implies a larger safety margin and a larger effective travel cost. When Z is small, the 

change in effective travel cost in successive iterations is small, and hence the average 

computation time is small. However, the relationship between the average computation time 

and Z is not linear, and the increase in Z is marginal when Z is greater than 0.825. This 

phenomenon deserves a deeper analysis. We leave this to future studies. 
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Example 5 

Table 3 compares the means and SDs of the computation times of the three cases (i.e., N = 

1, N =2, and N = 3) over 20 runs. (Note that the average level of information quality and the 

total demand of all the cases are the same in order to have a fair computation). The results of 

the t-test on the difference in their means are shown in Table 4. The t-test shows that the 

computation time for the case of N = 1 is smaller than that of N = 2 and that of N = 3 at the 

significant level of 5 %, but the computation time for the case of N = 2 is greater than that of 

N = 3 at the same significant level. These results indicate that increasing more variables in 

the problem does not necessarily increase computation time. 

 
Table 3 The computation times in seconds for various number of user classes 

 N=1 
( 1 0.1  , 

 1,10
1 1800q t  ) 

N=2
( 1 0.05  , 2 0.15  , 

   1,10 1,10
1 2 900q t q t  )

N=3
( 1 0.05  , 2 0.1  , 3 0.15  ,

     1,10 1,10 1,10
1 2 3 600q t q t q t   )

Mean 58.17 91.12 80.44
SD 2.07 12.07 11.18

 

Table 4  t-tests on the difference in mean computation times 
Comparisons Difference in mean t-value  Probability

Between the cases of N=1 and N=2 -32.95 -12.03 0.000 
Between the cases of N=1 and N=3 -22.76 -8.76 0.000 
Between the cases of N=2 and N=3 10.68 2.90 0.003 

 

Example 6  

This example aims to illustrate the computation performance of varying sample sizes during 

the solution process. The Mong Kok network is used. Drivers are assumed to select paths 

without cycles. Three strategies are considered:  

1. Strategy a: A constant sample size of 1000 is used throughout the computation process. 

2. Strategy b: A sample size of 100 is used initially. A sample is 1000 is used when the error 

( )k kf Y f
 
is less than 1. 
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3. Strategy c: Similar to strategy b except switching occurs at the error of 0.1. 

Figure 9 shows three representative cases on the convergence processes.  
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(a)               (b) 
Figure 9 Computation performances of the three strategies 

 
While the three strategies can decrease the error quickly in very early stages (figure 9a), 

the three strategies show markedly different convergence behavior. As shown in Figure 9a, 

the error of strategy a is monotonically decreasing in a smooth manner. However, the errors 

of strategies b and c are not because of the occurrence of switching (see figure 9b). In the 

worse case, the switching in strategy c causes a temporary increase in error due to the 

realization of more accurate means and SDs of route travel times using a large sample. This 

prolongs the convergence process compared with the no-switching strategy (Strategy a). 

The average performances of 20 runs for the three strategies are shown in Table 5 and the 

t-test results on their differences in means at the significant level of 0.05 are reported in Table 

6. This table shows that their means are quite difference at this significant level. Strategy b is 

better than strategy a by 29% in terms of their mean performances, which is in turn better 

than strategy c by 30%. The implication is that while switching at earlier stages can reduce 

computation time, switching at later stages can increase computation time. A careful selection 

of the parameter for triggering switching is necessary to optimize the speed of convergence. 
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Nevertheless, in general, switching at earlier stages of the solution process can reduce 

unnecessary sampling, as we only need a rough descent direction anyway. However, at later 

stages, we need to have accurate mean and SD to find out an exact descent direction and an 

optimal solution. Switching too late can prolong the convergence process. 

 
Table 5 The computation times in seconds for various computation strategies 

 Strategy a Strategy b Strategy c 
Mean 1930.83 1500.01 2503.99 

SD 83.74 269.03 332.31 
 

Table 6  t-tests on the difference in mean computation times 
 Difference in mean t-value Probability

Comparison between strategies a and b 430.82 6.84 0.000 
Comparison between strategies a and c -573.16 -7.48 0.000 
Comparison between strategies b and c -1003.99 -10.50 0.000 

 

Example 7 

To illustrate the effect of the degree of risk aversion and information quality on route choice, 

four cases are set up: (1) 0.00,  0.05Z    (risk-neutral drivers with poor information 

quality), (2) 0.00,  0.10Z    (risk-neutral drivers with better information quality), (3) 

1.65,  0.05Z    (risk-averse drivers with poor information quality), and (4) 

1.65,  0.10Z   (risk-averse drivers with better information quality). 

The optimal result of each case is depicted in Figure 10.  

In Figure 10, we can see that the four lines are distinct implying that different route choice 

assumptions give significantly different equilibrium route flow proportions. For example, for 

the 1st departure time interval, the difference in route flow proportions between cases 1 and 4 

is about 8%. This observation further implies that the route choice assumption can greatly 

affect the results of performance evaluation because most performance measures, e.g., total 

system travel time (TSTT), highly depend on the flow proportions. 
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Figure 10 Proportions of drivers on the lower route 

 

 We can also observe that the best route changes with the departure time. When the route 

flow proportions are above 0.5, the route is the best one. According to figure 10, for all cases, 

the lower route (with a shorter mean travel time but a higher SD) is the best route only during 

early periods. For cases 1 and 2 (i.e., risk-neutral drivers), the lower route is better in terms of 

mean travel time in early periods. However, since the mean saturation flow on the lower 

route is less than that of the upper route, the rate of increase of the mean travel time on the 

lower route is faster than that of the upper one. Eventually, the mean travel time of the upper 

route becomes better than that of the lower route. For cases 3 and 4 (i.e., risk-averse drivers), 

similar to the case with risk-neutral drivers, the lower route is better initially in terms of 

effective travel time, and then the mean and SD of travel time on this route become worse 

than those on the upper route in later time periods. In particular, the increase of the SD of the 

travel time on this route is because the queue formation occurs on this route and the 

uncertainty of queue length accumulates over time.  

The best route also varies from case to case. Consider the 9th departure time interval, the 

proportion is greater (less) than 0.5 for case 1 (case 3), which means that the lower (upper) 

route is better for case 1 (case 3). The implication is that when only mean travel time is 

considered, the lower route is better as the mean is lower. However, when the effective travel 
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time is considered, the upper route is better due to its lower travel time variability. Similar 

findings can also be observed when comparing between cases 2 and 4. For the effect of 

perception errors, a higher   value results in more travelers selecting the better route. For 

example, consider the 1st departure time interval. More drivers are on the better route in case 

2 (4) than in case 1 (3).   

 

Example 8 

The setting of this example is similar to the basic setting except that there are two classes of 

drivers: risk-neutral drivers (i.e., 1 0Z  ) and risk-averse drivers (i.e., 2 1.65Z  ). Four 

scenarios are considered as shown in table 7. For each scenario, two levels of information 

quality are considered: low (i.e., 1 2 0.05   ) and high (i.e., 1 2 1.0   ). The objective is 

to examine the effect of information quality on the mean and SD of TSTT obtained by the 

MCS after the optimal flow pattern is determined. The procedure is similar to that for 

determining the mean and SD of route travel time but the route travel times in the formulas 

are replaced by TSTT.  

 
Table 7 The effect of information quality and the degree of risk aversion on the mean 

and SD of TSTT 

  
 

Demand 
(veh/hr/lane) 

Proportion 
of risk-
neutral   

Proportion 
of risk-
aversion  

Mean 
(min) 

SD 
(min) 

Mean 
(min) 

SD 
(min) 

Scenario 1 1800 10% 90% 79970 7034 87145 7903 
Scenario 2 1800 90% 10% 79925 6595 86001 8120 
Scenario 3 1200 10% 90% 44615 3186 49159 3258 
Scenario 4 1200 90% 10% 44570 3329 48477 3635 

 

From table 7, we can observe that when the information quality is improved, both the 

mean and SD of TSTT increase. This observation implies that it may not be cost-effective to 

improve the traffic information provision system where the original objective is to provide 
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better information for travelers to avoid passing through the congested area and reduce the 

uncertainty of trip travel time due to unpredictable congestion. While the mean is increased 

by around 9 % in all scenarios, the SD is increased by 2-23%, depending on scenarios. The 

extent of increase in SD depends on both the driver composition and the demand level. When 

there are more risk-neutral drivers as in scenarios 2 and 4, improving information quality 

results a higher increase in the SD of TSTT, because more risk-neutral drivers will select the 

route with a lower mean travel time but a higher travel time variability. On the other hand, 

when the demand level is higher (i.e., Scenarios 1 and 2), the percentage increase of the SD 

of TSTT is also higher, since a more congested network leads to more uncertainty in trip time.  

 

6. IMPLEMENTATION ISSUES TO REALISTIC NETWORKS 

When implementing the proposed fixed-point model (including the submodel, the MC-

SCTM) and the solution method to realistic networks, the following issues should be 

considered. First, the proposed cell-based modeling requires the following two conditions to 

be satisfied simultaneously:  1) The cell length must equal the maximum free flow speed 

times the length of a discretized time interval, and 2) The lengths of longer cells must be 

multiples of the length of the shortest cell. These two conditions will restrict the numbers of 

discretized time intervals and cells used, and the lengths of each discretized time interval and 

cell. Normally, short time intervals and short cells can satisfy these conditions. However, 

these can increase the computation time as the number of cells and time intervals increase.  

Second, one cell for a corridor should be considered to reduce the number of cells used. 

However, if there are lane additions or lane drops within a link, more cells should be 

considered for modeling a link for increasing the modeling accuracy at the expense of 

increasing computation time. For modeling junctions, sometimes dummy cells are added to 

apply the merge and diverge models proposed in Daganzo (1995). More general intersection 
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models (e.g., Ishak, et al., 2006) can be used to avoid using dummy cells.  

Third, the path set is assumed to be given in the SAM. In a realistic network, not many 

paths between an OD pair will be used by travelers. The used path set indeed is not large. 

This path set can be generated by the k-shortest path algorithms using a realistic number of k. 

According to Cascetta et al., (1997), 4 to 7 paths are enough to obtain a reasonable solution. 

Alternatively, this path set can be obtained from personal interviews and hence constitutes a 

set of likely used paths (Chen et al., 2002b). 

Fourth, the proposed MC-SCTM requires the MCS that can lead to long computation 

times for large networks. One of the numerical studies has tested the idea of using smaller 

sample sizes for early stages of solution processes and larger ones at the later stages. The 

results are quiet promising in terms of saving computation time. Although the optimal 

parameter for triggering switching varies case by case, this strategy can be used for reducing 

the computation time to solve large problems by selecting a nearly optimal switching 

triggering value. Another strategy is to extend the analytical SCTM proposed by Sumalee et 

al. (2010) for general networks, and use the analytical SCTM to approximately solve the 

problem in the early or some stages of the solution process. One more strategy is to use 

antithetic sampling and Latin hypercube sampling techniques, and single point approximation 

techniques to reduce the sample sizes and hence the computation time while maintaining an 

acceptable level of solution quality.  According to Sharma et al. (2010), using Antithetic 

Sampling can reduce the sample size 10 times to solve in their problem about the Network of 

Fort Area, Mumbai while reducing the computation time to 20% of the original time required. 

Using single point approximations can further lead to a 99% computation time saving.  We 

expect the computation time can be reduced significantly by introducing these techniques in 

our solution method, but the exact reduction magnitudes may be slightly different.  Due to 

space limitation, we did not include their comparison in this paper but they are definitely 
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deserved to be further studied and compared comprehensively.  

Fifthly, the proposed model requires a fairly accurate time-dependent OD matrix. If this 

matrix is not accurate enough, one can consider extending the model to consider departure 

time choice as well, as the simultaneous route and departure time choice model only requires 

an OD matrix like the one for the static traffic assignment. The cost is to estimate the 

desirable arrival time and desirable arrival time interval of travelers. For the peak hour traffic, 

this information is not difficult to obtain from surveys. Alternatively, one can consider time-

dependent OD matrix with a larger discretized time interval and the demand for each larger 

interval is assumed to be equally split into several smaller time intervals for network loading. 

 

7. CONCLUDING REMARKS 

This paper proposes the MDS-DUE-P considering the random evolution of traffic states, the 

effect of travel time variation on route choice, and the effect of spatial queues. The proposed 

problem consists of two components: traffic flow and route choice components. The traffic 

flow component extends the SCTM proposed in Sumalee et al. (2010) to consider general 

networks. The route choice component is described by the dynamic extension of the effective 

travel time concept. The proposed problem is formulated as a fixed point problem and solved 

by the SAM. Numerical examples are set up to illustrate the properties of the problem and 

performance of the solution method. The key findings and implications are as follows:  

1. Reducing perception errors on traffic conditions may not be able to reduce the uncertainty 

of estimating system performance. This has a strong implication on providing better but 

free traffic information to travelers, as providing better information requires investment 

but the investment may not result in reducing the occurrence of the worse case 

performance.    

2. Using the SAM can get solutions much quicker compared to using the MSA in most cases. 
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Moreover, the combination of the values of the step size parameters highly affects the 

speed of convergence. This implies that when the combination of the parameters is 

wrongly chosen, the rate of convergence can be worse than that of the MSA. 

3. A higher demand, a better information quality, or a higher degree of the risk aversion can 

lead to a higher computation time.  

4. More driver classes do not necessary results in a longer computation time.  

5. Computation time can be greatly reduced by using small sample sizes in the early stage of 

solution processes. 

A discussion on the implementation issues of the proposed model and the SAM to realistic 

networks is also provided. 

This study opens many research directions. Firstly, to use the proposed model for real 

applications, we need to calibrate the parameters and validate the models. This can be one 

future research direction. Secondly, the effects of physical queues have been captured in the 

proposed model. Yet, their impacts on travel time uncertainty have not been investigated. 

Indeed, it is interesting and important to investigate if there is a propagation of travel time 

uncertainty from one route to another, as the travel time uncertainty affects the route choice. 

This investigation should be carried out in the future. Thirdly, this paper does not consider 

departure time choice and stochastic travel demand. Including these two components into the 

model framework should be an interesting research direction. Fourthly, multiple-pipe and 

variational theories as well as the modeling theories for lane-changing behaviour and moving 

bottlenecks (Daganzo and Laval, 2005; Daganzo, 2006; Leclercq, 2007) have not been 

advanced to deal with large-scale network assignment applications which requires modeling 

the traffic interaction at junctions and reasonably short computation time.  Advancing these 

theories can be another future research direction. Fifthly, antithetic sampling and Latin 

hypercube sampling techniques and single point approximation techniques have not been 
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incorporated in the solution method.  A comprehensive evaluation and comparison of using 

these techniques for solving the proposed problem can be done in the future. Finally, the 

proposed model can be applied to transport planning and management by extending it to a 

bilevel model and solved the resultant model by heuristics such as tabu search (e.g., Fan and 

Machemehl, 2008; Mohan Rao and Shyju, 2010), genetic algorithms (Adeli and Kumar, 

1995a,b; Sarma and Adeli, 2000a,b, 2001, 2002; Kim and Adeli, 2001; Teklu et al., 2007; 

Jiang and Adeli, 2008; Cheng and Yen, 2009; Kang et al., 2009; Ng et al., 2009; Zeferino, et 

al., 2009; Lee and Wei, 2010; Al-Bazi and Dawood, 2010), and ant colony heuristics (e.g., 

Vitins and Axhausen, 2009). 
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