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Abstract

Many applications capture, or make use of, spatial data that changes over time. This requirement
for effective and efficient spatio-temporal data management has given rise to a range of research activ-
ities relating to spatio-temporal data management. Such work has sought to understand, for example,
the requirements of different categories of application, and the modelling facilities that are most effec-
tive for these applications. However, at present, there are few systems with fully integrated support
for spatio-temporal data, and thus developers must often construct custom solutions for their applica-
tions. Developers of both bespoke solutions and of generic spatio-temporal platforms will often need to
support the inter-relating of large spatio-temporal data sets. Supporting such requests in a database
setting involves the use of join operations with both spatial and temporal conditions — spatio-temporal
joins. However, there has been little work to date on spatio-temporal join algorithms or their evaluation.
This paper presents an evaluation of several approaches to the implementation of spatio-temporal joins
that build upon widely available indexing techniques. The evaluation explores how several algorithms
perform for databases with different spatial and temporal characteristics, with a view to helping de-
velopers of generic infrastructures or custom solutions in the selection and development of appropriate
spatio-temporal join strategies.

1 Introduction

Real world objects are naturally associated with space and time: spatial information represents positions
and/or extents of the objects in space, and temporal information represents the existence of the objects in
time. When the spatial properties of an object evolve over time, the object has a history of spatial data.

A significant number of applications in fields such as the Earth Sciences, Cartography and Land Infor-
mation Systems involve the storage and analysis of large amounts of historical spatial data (e.g. [4, 5, 26]).
Such data can be challenging to represent and manage, giving rise to much work on, for example, ST
(Spatio-Temporal) data models [31, 3, 8, 6] and indexing techniques [17, 29, 19]. We note, however, that
the development of systems that provide comprehensive support for spatio-temporal data is challenging,
and that many application developers have resorted to custom solutions in the absence of widely avail-
able generic solutions. For example, a survey of experience managing spatio-temporal data describing
administrative boundaries is given by [5], in which many custom-built systems are described.

Many applications that associate collections of spatio-temporal data on the basis of their aspatial
and temporal properties are likely to end up developing or using spatio-temporal join algorithms. In ST
databases, ST join queries, that combine two sets of ST objects according to join predicates embracing
both spatial and temporal attributes, are likely to be important and expensive. For example, a spatio-
temporal join query can identify which bus routes passed through a town in 2001. Surprisingly, however,
there has been much less attention given to ST join algorithms in the literature than to, for example,
spatio-temporal data models or indexes. In this context, this paper contributes to the understanding of ST
joins by introducing and evaluating strategies for processing ST join queries. It is hoped that these results
will be of interest not only to the developers of spatio-temporal data management systems, but also to the
developers of custom applications.



Although there has been little work on ST joins, some adjacent areas have been extensively explored.
For example, there has been intensive research on spatial join algorithms (e.g., [2, 16, 21]) and temporal
join algorithms (e.g., [25, 32]) employing diverse index structures, hash tables, and sort-merge techniques.
In this paper, the strategies are implemented using techniques based on index structures, following Indez-
based Nested-Loop [7, 18] and Synchronized Tree Traversal [2, 32] approaches, as discussed further in Section
2. As such, the paper shows how approaches proposed for supporting spatial joins can be extended for
use with spatio-temporal data, and describes a performance evaluation of the resulting implementations.
This activity can be seen to complement research on other aspects of spatio-temporal querying, which, for
example, has investigated algorithms for moving objects [15] or for identifying nearest neighbours in space
and time [24].

As the ST join algorithms employed in this paper might be considered to be “obvious” extensions of
their spatial counterparts, the principal contribution is the experimental evaluation of the approaches rather
than the algorithms themselves. The experiments compare alternative strategies over various database
sizes, numbers of snapshots and input selectivities, using ST data collections generated by GSTD [28], a
ST data generator. Although there have been several performance studies of spatial and of temporal join
algorithms before, we know of no comparable study for spatio-temporal joins. In the absence of such a
study, developers lack hard evidence on which to base design decisions that may be important to their
development activities. Synthetic data is used because of the control it provides in support of experiment
design, in which it is often necessary to vary a single factor at a time in order to understand the effect that
factor has on performance. Clearly the risk exists in studying algorithms in use with synthetic data that
this data is not representative of that found in real applications. However, although some benchmarks use
real data (e.g. [27]), this approach may also involve unrepresentative data, and current practice in spatial
data management seems to favour synthetic data for performance studies (e.g., [30]).

This paper is structured as follows : Section 2 presents an overview of existing spatial and temporal join
algorithms; Section 3 describes the processing of ST joins; Section 4 explains the design of the experiments
including QEPs (Query Execution Plans); in Section 5, an analysis of the experimental results is given;
and lastly in Section 6, some conclusions are drawn from the experiments.

2 Related Work

Join algorithms are typically classified as hash-based, sort-merge-based, or indez-based, depending on the
data structure or data property exploited by the algorithm. Spatial and temporal join algorithms can also
be classified into these groups. This paper, however, focuses on index-based algorithms, as (i) indexes on
spatial, temporal and ST attributes of objects are likely to be widely available, as many different query
operations can benefit from their presence; and (ii) previous evaluations of spatial (e.g., [1]) and temporal
(e.g., [32]) joins testify to the effectiveness of index-based approaches.

Well known index-based spatial and temporal join algorithms fall into two groups: Indez-based Nested-
Loop (INL) [7, 18] and Synchronized Tree Traversal (STT) [2, 32]. INL is a variant of the simple nested-loop
algorithm, where each object of the outer collection is scanned, and the join attribute of the object is used
as the search key to an index structure for the inner collection. The pseudo-code for an INL algorithm
is given in Figure 1 using an intersection predicate. In the INL algorithm, each index lookup for the
inner collection is independent of all other lookups to that collection. Thus the index is accessed in an
uncoordinated manner.

The main idea of STT is to reduce the number of visits to internal nodes of two index trees by traversing
the indexes of the operands synchronously, as illustrated in Figure 2 for spatial joins with intersection
predicates.

INL is specifically useful when only one operand is indexed (as may be the case, for example, for joins
involving intermediate results), while STT requires indexes on both operands. Note that the intersection
predicates in line 2 of SpatialLookup() and in line 3 of SpatialSTT() can be replaced with other predicates,
e.g. a containment predicate.

Index-based join algorithms are, of course, affected by the index structures used, and various structures
for spatial and temporal indexes have been proposed. This section focuses on R-trees [9] as R-trees can
be applied to spatial [9], temporal [12] and ST data [29]. R-trees have also been shown to perform well in
both spatial [1] and temporal [32] join algorithms, and are widely available (e.g. in the PostgreSQL DBMS
(www.postgresql.org)). This paper can be seen as providing insights into the use of widely available indexes



SpatialIN LJoin(R, rootrg, O)
input:

R, a collection of spatial objects;

rootrg, the root node of Ts, the R-tree indexing the join attribute of S, the other input collection;
output:

The result O is a collection of pairs of objects from R and object identifiers from S;

/* es is an entry in leaf nodes of Ts which is a pair of MBR, mbr, and an object identifier, oid;
r is an object of R, having val as its spatial attribute;

Mbr() is a function that computes an MBR enclosing its argument;

S’ is a lookup result which is a collection of e;. */

begin
2 O = ()
: for each object r € R do
S =0
Spatial Lookup(rootrg, Mbr(r.wal), S');
for each es € S’ do
O := 0 U {(r,es.0id) };

oWy

end.

Spatial Lookup(Nr, window, O)
input:

Nr, which is a node of an R-tree; window is a searching area;
output:

The result O is a collection of entries in leaf nodes;

/* readNode() returns the R-tree node referred to by its argument. */

begin

1: for each e € Nr do

2: if N7 is a leaf node where (e.mbr intersects window) # 0

3: then O := O U {(e.0id)};

4: else if Nt is an internal node where (e.mbr intersects window) # ()
5 then Spatial Lookup(readNode(e), window, O);

end.

Figure 1: An INL Algorithm

such as R-trees, including their 3D extensions [29], for supporting spatio-temporal requests.

Note that the algorithms in Figures 1 and 2 correspond to the filtering step [2], in which approximations
(such as Minimum Bounding Rectangles) of the join attribute values are used to reduce the cost of pairwise
comparisons of spatial values; the subsequent refinement step [2] compares the actual values. In what
follows, all spatial and ST joins require a refinement step, whereas purely temporal joins do not — intervals
can be represented precisely within R-trees.

3 Approaches to Spatio-Temporal Join Processing

In a query language, there is often no specialised syntax for an ST join — it is simply a join with spatial
and temporal conditions, as in:

select *
from R, S
where C, and C4

In the above query, R and S are input data collections for a join, and Cs and C; are spatial and temporal
conditions respectively.



Spatial STT Join(rootry, rootry, O)

input:
rootr, and rootry, each of which is the root node of R-trees, Tr and T,
over input collection R and S, respectively;

output:
O, a set of pairs of object identifiers;

begin

1: O := 0

2: Spatial STT (rootry, rootry, O);
end.

Spatial STT(N,, Ns, O)
input:

N, and Ng, each of which is a node of an R-tree;
output:

O, a set of pairs of object identifiers;

/* an entry of an R-tree node, e, and e, is a pair of MBR, mbr, and an object identifier, oid;
readNode() returns the R-tree node referred to by its argument. */

begin
1: for each e, € N,. do
2: for each e; € Ns do

3: if N, and N, are leaf nodes where (e,.mbr intersects es.mbr) #

4: then O := O U {(e,.0id, es.0id) };

5: else if N, and N, are internal nodes where (e,.mbr intersects es.mbr) # 1]
6: then Spatial STT (readNode(e,), readNode(es), O);

end.

Figure 2: A STT Algorithm

This paper compares three alternative ST join strategies depicted in Figure 3 in relational algebra: (a)
performs a spatial join followed by a temporal selection; (b) performs a temporal join followed by a spatial
selection; and (c) performs a specialised ST join. In all cases a spatial selection is required to support the
refinement step. The conditions representing the filtering and refinement steps are denoted by C,’ and C,
respectively. The prime is also used in Figures 4 and 5 to label the filtering conditions.

These alternatives are explored so that experiments can compare specialised ST algorithms with com-
binations of spatial and temporal algorithms for answering ST queries. These comparisons not only assess
the efficiency of the different approaches, but can also inform the decision as to how many indexes are
required. For example, an ST index enables indexed access to both spatial and temporal data, but may be
expected to be less effective in these cases than the more specialised spatial-only or temporal-only indexes.

The experiments reported in Sections 4 and 5 compare each of the strategies depicted in Figure 3, using
both INL and STT algorithms for spatial, temporal and spatio-temporal joins.

To implement the strategies, R-trees are used for spatial, temporal and ST joins. The ST joins use 3D
R-trees [29], a 3D variant of R-trees in which two dimensions are occupied by space, and time is treated
as a third dimension.

In spatial, temporal and ST joins, the approximate values used in the 2D and 3D R-trees are: normal
MBRs (Minimum Bounding Rectangles) represented by two pairs of the x- and y-coordinates of the lower-
left and the upper-right corner points of a rectangle (i.e. (xy, yi1), (Zur, Yur)) for spatial indexes; MBRs
with upper bound x-coordinates set to the maximum value for the now time point and y-coordinates set to
zero for temporal indexes; and MBCs (Minimum Bounding Cuboids) with x- and y-coordinates representing
the spatial dimension and z-coordinates representing the temporal dimension for spatio-temporal indexes.

The STT algorithms used in the implementation adopt the local optimization and search space restric-
tion techniques of Brinkhoff et al’s algorithm [2]. By way of local optimization, the plane sweep [20]
technique is used to reduce the CPU time required for comparison of indexed entries from nodes of two
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Figure 3: Logical Expressions for ST Joins

distinct R-trees. For the spatio-temporal case, the notion of space sweep [11] is used, which is analogous to
the plane sweep, but for 3D. The first attempt to employ the space sweep for sort-merge-based spatial joins
over 3-dimensional spatial data is found in [21]. The search space restriction technique reduces the number
of indexed entries to be compared at each tree traversal stage by restricting the space of comparison using
the intersecting area of the two upper level node entries from distinct trees: only the entries overlapping
the intersecting area can be candidates of comparison at the tree traversal stage since only that area is of
interest for comparison.

4 Experiments

This paper tests the following hypotheses:

(i) Specialized ST joins perform better than spatial joins followed by a temporal selection and temporal
joins followed by a spatial selection.

(ii) Joins using STT algorithms perform better than INL algorithms in ST databases.

(iii) Spatial and temporal joins perform better using spatial and temporal indexes respectively than with
ST indexes.

These hypotheses would normally be expected to be true, so the interesting cases are those in which
the hypotheses do not hold. However, as well as testing these hypotheses, the experiments provide many
details from a range of scenarios that should be useful to the developers of spatio-temporal systems.

4.1 Queries and Query Execution Plans (QEPs)

The tables Cities, BusRoutes and Shops are used as the context for the queries used in the experiments:

Cities(id: integer, description: string, boundary: Polygon, vt: Interval)
BusRoutes(id: integer, description: string, centreline: Polyline, vt: Interval)
Shops(id:integer, description: string, location: Point, vt: Interval)

A city can change in boundaries by growth or shrinkage and keep a boundary during a time interval; a
bus route can change to reflect requirements of local areas, for financial reasons, etc; and a shop can often
change location for expansion or contraction.

The vt attribute represents the valid time of a tuple in the table. The precise spatial model used is not
crucial to the experiments, as these focus on the filtering step of join processing involving spatial values,
using MBRs or MBCs as abstract representations of the centreline, boundary and location attributes. Thus
the results presented in this paper are of relevance in the presence of different spatial models, as long as
these can be abstracted for representation in indexes using MBRs or MBCs.

The following queries are used in the experiments:



Q1.1 Which bus routes intersected a city at some time?

select x*

from Cities c, BusRoutes b

where c.boundary intersects b.centreline
and c.vt intersects b.vt;

Q1.2 Which shops were contained by a city at some time?

select *

from Cities c, Shops s

where c.boundary contains s.location
and c.vt intersects s.vt;

Q2 Which bus routes intersected a city within a given area (represented by a spatial-literal) during a
given period (represented by valid-time-literal).

select *

from Cities c, BusRoutes b

where c.boundary intersects b.centreline

and c.boundary intersects <spatial-literal>
and b.centreline intersects <spatial-literal>
and c.vt intersects b.vt

and c.vt intersects <valid-time-literal>

and b.vt intersects <valid-time-literal>;

Q3.1 Which bus routes have at some time intersected an area that at some time was a city?

select *
from Cities c, BusRoutes b
where c.boundary intersects b.centreline

Q3.2 Which shops have at some time been contained by an area that at some time was a city?

select *
from Cities c, Shops s
where c.boundary contains s.location

Q4 Which bus routes and cities co-existed at some time?

select *
from Cities c, BusRoutes b
where c.vt intersects b.vt

Queries Q1.1, Q1.2 and @2 are all spatio-temporal joins, in that their join conditions have both spatial
and temporal aspects; the principal distinguishing feature of Q2 from Q1.1 and Q1.21is that it allows changes
to the selectivity of the inputs to the join operations using spatial and temporal selection conditions. These
conditions are used to vary the selectivity of the inputs to the join, as described in Section 5.4. Queries
@3.1 and Q3.2 are purely spatial queries run over spatio-temporal data collections — there is no temporal
condition in the join. Similarly, @4 is a purely temporal query — there is no spatial condition in the join.

Queries Q1.1 and Q3.1 use intersection relationships between spatial values with extent in their ap-
proximate representation (viz. polygon and polyline values) for join predicates, but queries Q1.2 and Q3.2
involve containment relationships between spatial values with extent and without extent (viz. point values).

To evaluate such queries, a query processor translates a query written in a declarative surface language,
e.g. SQL, into a logical query expression as shown in Figure 3 comprising logical operators at internal
nodes and input collections at leaf nodes; and that expression is in turn translated into a physical query



execution plan (QEP) comprising physical operators in a similar structure to the logical expression. The
QEP is then evaluated and the corresponding algorithms and access methods are invoked.

QEPs used to evaluate Q1.1 are illustrated in Figure 4. The strategies illustrated are spatial joins
followed by a temporal selection and spatio-temporal joins; temporal joins followed by a spatial selection
involve QEPs that are analogous to those for spatial joins followed by temporal selections. QEPs for Q1.2
are analogous to counterparts for Q1.1 except for changes to the input collections.

In the QEPs, C and B represent the input collections Cities and BusRoutes respectively; P is a pointer
to a node of 2D spatial or 3D ST R-trees, sT and stT, respectively; and oid is for an object identifier. The
operators of the physical algebra used are: SeqScan — sequential scan of a collection; IdxScan — indexed
scan of a collection; INL — indexed nested loop join; STT — synchronised tree traversal join; ObjFetch —
read an object given its identifier; Select — keep the objects in a collection only if they satisfy a predicate;
and NodeFetch — retrieve a page from an index given its address.

Select(‘CS/\C't)

Select(CoACY) sezec‘t(cs) ObertTh(oidc)

ObjFetch(oidp) ObertTh(oidB) Obertr‘;h(oidB)
INL(C,") INL(C,'NCy) STT(Cy)

IdxScan(sTg)  SeqScan(C) IdwxScan(stTg) SeqScan(C) NodeFetch(Psr,) NodeFetch(Psr,)
(a) Spatial INL (b) ST INL (c) Spatial STT
Select(Cy)

Obj Fetch(oidc)
ObjFetch(oidp)
STT(C,'ACy)

NodeFetch(Psity,)  NodeFetch(Pyr,)
(d) ST STT

Figure 4: QEPs for Query Q1.1

In Figure 4 (a) and (b) INL() reads objects by calling SeqScan(), and uses the join attributes of the
objects as the search keys for IdzScan(). IdxScan() therefore retrieves object identifiers satisfying the
given join condition with the given search keys. INL() produces pairs consisting of objects scanned by
SeqScan() and object identifiers retrieved by IdzScan(). ObjFetch() then reads objects from store using
their identifiers. The objects that satisfy the refinement conditions are then selected by Select().

In Figure 4 (c) and (d), STT() reads nodes of two R-trees referenced by the given pointers by calling
NodeFetch(), and matches index entries across the two R-trees. The operator produces pairs of object
identifiers satisfying the given join condition for the filtering step. The identifiers in a pair are subsequently
consumed by ObjFetch(), which reads the corresponding objects from store. The objects read are eventually
fed into Select() to check whether they indeed satisfy the join conditions in the refinement step.

The QEPs used to evaluate Q2 are given in Figure 5. The notation is as in Figure 4, except for the
addition of Cy,, and Cy, that represent the spatial and temporal windows of the selection conditions from
Q2. In Figure 5, NodeFetch() and IdzScan() are overloaded to have additional arguments for the given
spatial and temporal selection conditions. In addition, IdzScan() is used where SeqScan() was used in
Figure 4, so that the extra condition from @2 is applied at the earliest possible moment.

The implementations of the join algorithms used are all single-pass (i.e., they were designed for use with
intermediate data sets that are smaller than the available memory, as is the case in all the experiments
reported).
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INL(CY) INL(Cs'NCy)
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(a) Spatial INL (b) ST INL
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(c) Spatial STT (d) ST STT

Figure 5: QEPs for Query Q2

4.2 System Environment

The experiments have been run using the PostgreSQL 7.1.3 object-relational DBMS. PostgresSQL allows
users to extend its functionality through user-defined functions and user-defined types. In addition, R-trees
are implemented using the GiST (Generalized Search Tree) [10] that is part of PostgreSQL. The GiST is
an Abstract Data Type for search trees, which enables users to implement additional index structures. All
the implementations of physical operators and R-trees rely on the buffer management of PostgreSQL, in
which 64 8K buffers are used.

The underlying experimental environment consists of a 7T00MHz Pentium III PC with 256Mb main
memory running RedHat Linux version 7.2. In the experiments each QEP was run three times, and the
average used. Each execution is performed after the PostgreSQL server has been shut down and restarted,
and the operating system buffer cache has been flushed (i.e., queries are run “cold”).

4.3 Data Generation

For generating data collections of Clities, BusRoutes and Shops a slightly modified version of the data
generator GSTD [28] has been used. Data collections generated with GSTD can be tuned by various
parameters:

1. The initial cardinality of a collection — this is a straightforward way of varying the sizes of the data
collections being studied.

L . . 100% Y ial object )

2. The initial density of a collection (i.e., the percentage x SZfzsof @ spatial objec ) — this can be used
. . . pace QTea A

to reflect the fact that different geographical environments may have different numbers of features in

a given area.

3. The number of snapshots — this can be used to capture the fact that applications differ in the period
for which historical data is available and that data capture rates vary.

4. The duration between consecutive snapshots — this can be used to reflect the fact that different data
sets may be updated at different rates;

5. The change in location of time-evolving spatial objects — this can be used to capture the nature of
the changes taking place.



Data Collections

Parameters DC1 DC2

number of initial spatial objects 500 to 1500 in steps of 250 200
number of snapshots 20 50 to 150 in steps of 25

initial spatial density (%) 0 for point collections; 30 for rectangle collections

[-10%, 10%)] of the entire spatial data space at random for point collections;

change in location(%) [-10%, 10%] of extents’ size at random for rectangle collections

duration between changes(%) [60%, 100%] of time resolution at random
size of objects(bytes) 460
distribution uniform

Figure 6: Data Collections

The following parameters are selectively varied to yield databases of different sizes in the performance
evaluation of queries Q1.1, Q1.2, 3.1, Q3.2 and Q4:

e the initial cardinality of spatial objects; and
e the number of snapshots.

In evaluations involving query @2, the spatial and temporal windows are varied in size.

The data collections used in the experiments simulate only discrete change in the locations of spatial
objects. The change in location of the object with extent in each direction is a random value up to 10% of
the size of the object in that direction; and when the object does not have extent (i.e. a point) the change
is a random value up to 10% of the entire spatial data space size. Changes happen consecutively after a
period that is a random value from 50% to 100% of the temporal resolution. The temporal resolution is
determined by the number of snapshots. The distribution of initial spatial objects, the changes in their
location, and the duration between consecutive snapshots follow a uniform distribution.

The details of the data collections used are presented in Figure 6. Thus data collections DC1 and DC2
explore changes in database size by varying the number of initial spatial objects and snapshots respectively.
Polygon, polyline and point values of Cities, BusRoutes and Shops are approximated by rectangles in the
collections. The data collections are inserted into PostgreSQL tables in chronological order and R-trees
are built on the tables. To give an indication of the database sizes used in the experiments, the largest
databases in both DC1 and DC?2 are around 55Mb. We note that the absolute size of the databases is not
the principal issue — the principal issue is the relative performance of the approaches and the growth curves
for single-pass algorithms; we do not explore cases in which disk space is required to store intermediate
results.

Figure 7 visualises some snapshots of an example data collection, and Figure 8 shows the simplified
distribution of time intervals of input data collections by transforming 1-dimensional intervals into 2-
dimensional points. Intervals of the last snapshots of each spatial object, whose ending instant is the
maximum value, now, in the given temporal dimension, constitute the upper distribution.

There is clearly a limit to the number of aspects of a data set that can be changed in an experimental
study. This paper has not considered aspects such as data skew, or variable complexities of individual
spatial objects. These factors could influence experimental results, and thus could form the basis for
continuing studies on spatio-temporal join performance.

5 Results

This section presents the results of the experiments, for which the data collections, queries and query
execution plans were presented in Section 4.

5.1 Varying Spatial Cardinality

This subsection describes how the different join strategies perform using spatio-temporal queries Q1.1 and
Q1.2 over data collections in DC'1, in which the size of the database is varied as a result of changing the
number of initial spatial objects. So that the experiment is focused on the number of data items, and not
influenced by changing density, the initial spatial density of rectangle collections is kept at 30% throughout
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for DC1, which means that 30% of the area is occupied at each point in time. This is done by decreasing
the average area occupied by each spatial object as the cardinality increases.

Figure 9 shows elapsed times for four of the join strategies for @Q1.1. To clarify the graphs, the perfor-
mance of QEPs using temporal INL and temporal STT joins are excluded from the graphs since they show
significantly poorer performance than the others. The poor performance of the joins based on temporal
indexes arises from the high temporal density of the data collections used. This high density gives rise to
significant overlaps in interior MBRs of temporal R-trees (and thus inefficient lookup) and to large result
sizes from purely temporal filtering for spatio-temporal joins, which in turn gives rise to high refinement
costs. We note that high temporal densities are realistic overall, as it is to be expected that many data
items will exist at the same time.

In Figure 9 and hereafter: the spatial, temporal and spatio-temporal INL strategies are referred to
as s_inl, t_inl and st_inl, respectively; and the spatial, temporal and spatio-temporal STT strategies are
referred to as s_stt, t_stt and st_stt, respectively.

The results in Figure 9 exhibit several features that are worthy of comment:

(i) The STT algorithms perform better than their INL counterparts. This result can be explained with
reference to Figure 10 (a) and (b), where it can be seen that the STT algorithms perform many fewer
visits to index nodes than the INL algorithms. This confirms earlier results [2] on the effectiveness
of the STT approach over spatial data, and shows that the results, as expected, carry over to joins
over 3D R-trees.

(ii) The st_stt (or the st_inl) performs better than the s_stt (or the s_inl). This is principally because the
number of results returned by the ST join is considerably less than the number of results from the

10
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spatial join, as shown in Figure 11. The join selectivity is lower in the ST case simply because the
join condition is more precise, including both spatial and temporal aspects. The larger join result
from the spatial query means that many more objects must be fetched from the store after the join,
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and that many more objects are processed in the refinement step of the join'. We note also that the
figures given here will generally underestimate the cost of the refinement step for real examples, as
only approximations of actual spatial values such as MBRs and MBCs are stored and analysed.

(iii) The st_inl performs better than the s_stt. In the filtering step of spatio-temporal join processing,
the s_stt visits many fewer nodes than the st_inl as shown in Figure 10 (¢). This confirms again the
effectiveness of the coordinated tree traversal technique over the uncoordinated approach as indicated
in (i) above. However, the overall performance does not correspond to the performance of the filtering
step. This can be explained by the fact that there is a significant difference in the number of the join
results between the st_inl and the s_stt, which affects the refinement step as indicated in (ii) above,
and the cost of the refinement step becomes dominant in the overall join processing.

Figure 12 shows elapsed times for four of the join strategies for @1.2. The pattern of performance curves
is similar to Figure 9 for @1.1. It stems from the fact that INL and STT algorithms with containment
predicates are only different in processing at leaf nodes from those with intersection predicates: viz. in line
2 of SpatialLookup() in Figure 1 and in line 3 of SpatialSTT() in Figure 2.

What lessons are learned from this for the developers of ST applications and systems? Perhaps the
clearest lesson is that specialised ST indexes were crucial for obtaining scalable performance with ST joins
— in the experiment, evaluation strategies that used only spatial or temporal indexes were not competitive.
This benefit derived principally from the reduced cost of the refinement step in this case. The performance
difference associated with index selection was more significant than that associated with algorithm selection,
although the STT algorithms significantly out-performed INL, as anticipated.

5.2 Varying Number of Snapshots

Figure 13 displays the experimental result of processing the query Q1.1 over data collections DC2. These
experiments assess the effect of different numbers of data values from the same geographical area, reflecting
different frequencies or periods of data capture. The results in Figure 13 exhibit the following feature that
is worthy of comment:

e As the number of snapshots increases, the benefits from using the ST indexes increase. This is
reflected in the fact that st_inl and st_stt significantly out-perform their spatial counterparts where
there are large numbers of snapshots. This is to be expected, as the purely-spatial condition testing
provided by the indexes in the s_inl and s_stt approaches becomes less discriminating as the number
of snapshots increases. This is reflected in Figure 15, where the size of the spatial join result is seen
to grow more rapidly than that of the ST join.

Figure 16 shows elapsed times for four of the join strategies for 1.2 over data collections DC2. The
pattern of performance curves is also similar to Figure 13 for Q1.1 as observed between Figures 9 and 12.
What lessons are learned from this for the developers of ST applications and systems? Perhaps the
clearest lesson is that specialised ST joins become important as the number of snapshots increases, as

1The large join result from the temporal join illustrated in Figure 11 (a) helps to explain the poor overall performance
(not shown but an indication of the poor performance can be derived from Figure 21 for pure temporal joins) of the temporal
algorithms for Q1.1 over DC1.
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would be expected. This means that developers with historical data collections with shallow histories may
well be able to get by without specialist ST indexing and joins, but that this will become increasingly less

viable as more historical information is accumulated.

Comparing the results in this section and those in Section 5.1, there are differences in the behaviours
of the algorithms for the two data collections, with DC1 varying only cardinality (and keeping density
constant) and DC2 allowing the spatial density to increase as the number of snapshots grows. This gives
rise to differences in the numbers of nodes visited for Q1.1 (and (Q1.2) with data collections DCI and DC2,
as illustrated in Figures 10 and 14. This can be understood with reference to the spatial, temporal and ST
densities in Figure 17. In particular, the spatial density becomes much higher in DC2 than in DC'1, which

in turn gives rise to the much larger results for the spatial joins in DC2.
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Figure 17: Density for DC1 and DC2

5.3 Pure Spatial and Pure Temporal Joins

In the above experiments, ST queries are evaluated using spatial, temporal and ST join strategies. In this
section, joins with purely spatial and purely temporal conditions are run over the same range of strategies.
In these examples the refinement step is identical in each case (i.e., the filtering steps all return the same
number of results for the purely spatial or purely temporal joins, respectively), so all time differences must
be attributed to the number of node visits in the filtering step and the quality of R-trees in preserving
clusters of physical addresses of spatio-temporal data stored, which can affect the costs of object fetch
operations in the refinement step. In the st_inl and st_stt algorithms only spatial (or temporal) information
is used to to search and traverse the 3D R-trees.
Firstly, the purely spatial join:

Q3.1 over DC1 and DC2 The results in Figure 18 show several features: (i) The STT algorithms out-
perform their INL counterparts (i.e., st_stt is faster than st_inl, and s_stt is faster than s_inl); and (ii)
The specialist spatial joins perform somewhat better than their ST counterparts (i.e. s_stt is faster
than st_stt, and s_inl is faster than st_inl). This latter result is principally explained by the fact that
the number of node visits of the spatial specialists is usually less than that of STT counterparts as
shown in Figure 19.

Q3.2 over DC1 and DC2 The results in Figure 20 show very similar performance for the different al-
gorithms to that in Figure 18.

Secondly, the purely temporal join:

Q4 over DC1 As to the pure temporal join algorithms over DC1 the results in Figures 21 (a) confirms
the efficiency (i) of STT algorithms over their INL counterparts (i.e., st_stt is faster than st_inl, and
t_stt is faster than ¢_inl); and (ii) of the specialist temporal joins over their ST counterparts (i.e.
t_stt is faster than st_stt, and t_inl is faster than st_inl). In pure temporal joins, the benefit using
the temporal indexes is increasing as the density is much higher in the temporal dimension than in
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Figure 20: Elapsed time for the pure spatial query Q3.2

the spatial dimension of DCT as shown in Figure 17. The number of node visits shown in Figure
22 (a), however, is not a good guide as to the behaviours of the algorithms. Since the number of
temporal join results is large, as indicated in Figure 11, the cost of object fetch operations becomes
the dominant factor of the overall join processing in this case. Figures 21 (a) and 22 (a) imply that
ST indexes can provide better temporal clustering over spatio-temporal data than temporal indexes.

Q4 over DC2 Figures 21 (b) over DC2 shows interesting behaviours of algorithms for pure temporal joins
compared with those over DCI: (i) the efficiency of STT algorithms over their INL counterparts
is still sustained; and (ii) all the specialist temporal joins, however, perform poorer than any ST
algorithm. In essence, the principal difference from the same query and algorithms for DC? is that
the spatial density of DC?2 is considerably higher than that of DC1, but the temporal density is still
considerably high compared with the spatial density, as indicated in Figure 17. Figures 21 (b) and
22 (b) imply that ST indexes provide not only better temporal clustering than temporal indexes,
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but also good physical clustering over the given spatio-temporal data collections. Variations of R-
trees used as temporal indexes are found in [12, 13, 14]. [22] provides analysis of such R-tree based
temporal indexes. Although they show good performance characteristics on average for querying,
they sometimes behave pathologically and performance becomes quite poor.

What lessons are learned from this for the developers of ST applications and systems? The experiments
show that purely spatial joins perform quite well over ST indexes, which suggests that it will not always
be necessary to maintain both spatial and ST indexes in ST applications with both spatial and ST queries.
This is an encouraging result, in that reduced storage overheads and update times result from fewer indexes.

We observe, however, that both the temporal and the ST indexes seem to be necessary to obtain
adequate temporal join performance depending on data collections.

5.4 Varying Selectivity

Some join strategies are sensitive to the selectivity of their inputs (e.g., this is important when comparing
navigational and value-based joins in object databases [23]). Figure 23 shows the elapsed times for Q2 over
one of the databases from DCT (i.e. 1000 spatial objects x 20 snapshots), for varying input selectivities. We
note that few radical changes can be seen from the results reported, but that from those shown and others
obtained for lower selectivities (not shown), it seems that the differentials observed for large selectivities
are somewhat diluted for lower selectivities. This topic could benefit from a more thorough investigation.

6 Conclusion
This paper has described several approaches to the evaluation of spatio-temporal joins and described a

comparative evaluation of the approaches. We know of no other similar study.
In terms of the hypotheses described in Section 4, the following can be observed:
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(i) Specialised ST joins perform better than spatial joins followed by a temporal selection and temporal
joins followed by a spatial selection. This hypothesis is supported by the results in Figures 9, 12, 13
and 16. It is clear that in certain cases specialist ST joins provide significantly better performance
than joins using purely spatial or temporal filtering steps, and thus that the extra overhead associated
with maintaining ST indexes can be beneficial. The benefits from use of specialised ST joins are
particularly great for data sets with large numbers of snapshots, where ST joins substantially reduce
the number of candidates forwarded to the refinement step (see, for example, Figure 15). Conversely,
where data sets are in use with modest numbers of snapshots, the benefits from using specialised ST
joins are much reduced.

(ii) Joins using STT algorithms perform better than INL algorithms in ST databases. The good behaviour
of STT joins that is familiar from spatial databases essentially carries over to ST databases. STT
performs much better than INL where there is high density, as shown in figures for elapsed time,
and in particular, this is likely to be common in the temporal dimension of ST databases. Thus
there is some evidence that STT approaches will be even more effective in ST databases than they
have been shown to be in earlier work on spatial databases. However, the experiments show that
the difference in performance for ST joins is influenced more by the use of specialised ST indexes
than by the specific join algorithm used (see, for example, Figures 12 and 13). For data sets with
large numbers of snapshots, the use of ST indexes can provide orders of magnitude improvements in
performance, as illustrated in Figure 16.

As STT requires indexes on both operands, and thus is not directly usable over intermediate join re-
sults, more work is required to understand the trade-offs involved in building indexes for intermediate
collections.

(iii) Spatial and temporal joins perform better using spatial and temporal indexes respectively than with
ST indexes. This hypothesis was broadly true in the experiments for spatial joins, but not to the
extent that we anticipated. In the spatial experiments (Figures 18 and 20) the performance of both
the STT and the INL approachs over the ST indexes were generally close to the times recorded for
the spatial joins using spatial indexes. This suggests that ST indexes may be able to support queries
with purely spatial conditions.

The hypothesis did not hold for all the cases of temporal joins depending on configurations of input
data collections: when spatial density is fixed and temporal density increases, there is clear benefit
from using specialised joins (Figure 21 (a)), but in the reversed case, specialised joins performed less
well than those using ST indexes (Figure 21 (b)). This was something of a surprise, and may suggest
either that ST indexes can be quite widely employed, or that R-trees are not particularly effective
as temporal indexes. Further study is required to understand behaviours of R-trees in the mixture
of spatial and temporal dimensions where the two dimensions show different characteristics, e.g. in
density.

In reporting on an experimental study, this paper does not claim to present a definitive position on
spatio-temporal join performance. However, it does provide empirical results in an important area, which
it is hoped will be of value to developers of spatio-temporal database systems and algorithms, designers of
cost models for spatio-temporal systems, and developers of data-intensive spatio-temporal applications.
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