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Abstract

 

Although many geostatistical studies only study a measured attribute in relation to
its spatial coordinates, this paper argues that other layers in the GIS database can be
of additional use for spatial prediction purposes. They may enter the prediction
equations as predictors in a regression model, or as correlated measurements. In an
example we will show how this is done for predicting PCB138, a sediment pollution
variable, over the North Sea floor. Issues of exploratory data analysis, required
sample size, sample configuration, local versus global neighbourhoods, non-
stationarity, non-linear transformations, change of support and conditional
simulation will be discussed in the light of this example.

 

1 Introduction

 

Whereas traditional statistics is usually concerned with questions like 

 

how much?

 

, or

 

how

 

 are 

 

x

 

 and 

 

y

 

 related? the main focus of spatial statistics is the 

 

where

 

 question: 

 

where

 

do certain features occur, 

 

where

 

 is the pollution largest, 

 

where

 

 do certain relations
change. In his book on spatial statistics, Cressie (1993) distinguishes three types of
spatial data: point pattern data, lattice data and geostatistical data. Point pattern data
record locations of incidences of a certain kind. Examples include the locations of trees
in a forest or the exact locations of accidents or crimes in some area over a given period
of time. Lattice data accrue when the data are collected for larger regions such as
administrative areas that have nothing specific in common with the features collected;
in this case the exact feature locations are lost. Geostatistical analysis is concerned with
the analysis of geostatistical data, and the typical question is what we would have
measured had we measured elsewhere, or even everywhere. Given the data, geostatistical
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methods are used to make probabilistic statements about the non-measured quantities
of interest. Excellent overviews of the origin and history of geostatistics are given by
Ripley (1981) and Cressie (1993).

Geostatistical data can be continuous variables such as topographic altitude, discrete
variables such as land use or soil type, or even densities of point pattern data such as
number of diamonds in a rock sample or density of sea birds over a fixed area strip
transect count. In the latter cases, the underlying process is a point pattern, but the
measurement technique integrates this over a certain measurement volume, intentionally
or necessarily leading to geostatistical data. The measurement area or volume (or even
time), also called the measurement 

 

support

 

, may be much smaller than the support for
which estimates are required. The reasons for the need of estimates integrated over
larger areas can be diverse:

• In a mining context, core samples from a bore hole are much smaller than the
smallest unit that can be mined.

• In an environmental context, policy makers may be interested in aggregated, regional
estimates from certain smaller or larger regions.

• From a statistical context, estimates for small or moderately large sub-regions can
often be estimated with a much higher accuracy than values for regions the size of
the measurements.

A large branch of geostatistics has been developed to deal with measurements and
spatial estimates having a different support.

Many books have been written on geostatistics. Good introductory texts include the
very accessible Isaaks and Srivastava (1989) and the much more comprehensive Chilès
and Delfiner (1999). General overviews from a GIS perspective include Burrough and
McDonnell (1998) and Heuvelink (1998). Other books are directed towards certain
applications, such as mining (Journel and Huijbregts 1983), soil science (Goovaerts
1997), or hydrologeology (Kitanidis 1997). More mathematical statistical books are
Ripley (1981), Christensen (1991), Cressie (1993), and Wackernagel (1998).

Although many texts on geostatistical analysis emphasize the theory of spatial
prediction, this paper emphasizes the application of geostatistics. We will show how it
is done by analyzing a multi-temporal data set on sea floor surface sediment pollution
in the Dutch part of the North Sea (Laane et al. 1999), which was provided by the
Dutch National Institute for Coastal and Marine Management (RIKZ). Data, software
and a script with all the analysis steps are freely available through links on the author’s
website (see http://www.geog.uu.nl/~pebesma/ga/ for additional details). The data analysis
will start with an exploratory data analysis, but first we will introduce the general linear
geostatistical model.

 

2 The Linear Geostatistical Model

 

In linear geostatistics, we assume that the variability of the 

 

n

 

 observations 
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(
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), with 

 

s

 

denoting spatial location, is the sum of a trend 

 

m

 

(

 

s

 

) and a residual 

 

e

 

(

 

s

 

):

 

Z

 

(

 

s

 

i

 

) 

 

=

 

 

 

m

 

(

 

s

 

i

 

) 

 

+

 

 

 

e

 

(

 

s

 

i

 

),       

 

i

 

 

 

=

 

 1, . . . , 

 

n

 

(1)

The trend 

 

m

 

(

 

s

 

) is either an (unknown) constant 

 

m

 

, or a deterministic, linear function of

 

p 

 

+ 

 

1 unknown constants 

 

β

 

i

 

 and known covariates, 

 

f

 

i

 

(

 

s

 

):



 

The Role of External Variables and GIS Databases

 

617

 

© 2006 The Author. Journal compilation © 2006 Blackwell Publishing Ltd

 

Transactions in GIS

 

, 2006, 10(4)

 

m

 

(

 

s

 

i

 

) 

 

=

 

 

 

β

 

0

 

 

 

+

 

 

 

β

 

1

 

f

 

1

 

(

 

s

 

i

 

) 

 

+

 

 . . . 

 

+

 

 

 

β

 

p

 

f

 

p

 

(

 

s

 

i

 

) (2)

where 

 

f

 

0

 

(

 

s

 

i

 

) 

 

≡

 

 1. Note that covariates may be both continuous variables (“regressors”),
or categorical variables, in which case they are transformed into a series of (0/1
encoded) dummy variables.

The residual is a zero mean random variable with a stationary covariance, i.e. a
covariance that depends on separation vectors 
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which, in case of isotropy (direction independence, opposite anisotropy) further reduces
to 
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h the separation distance.
Instead of using covariances, geostatistics looks at semivariances γ(h) = 0.5E(Z(s) −

Z(s + h))2. In most cases, semivariances are related to covariances by γ(h) = C(0) − C(h)
(Cressie 1993). Semivariances are estimated from data point pairs by averaging over the
Ni point pairs with spatial separation distance in the interval hk = [hk, hk+1]:

(4)

for several consecutive distance intervals, usually ranging up to one third of the area size.
For predicting Z(s0) at a location s0 where no measurements of Z are available (also

called kriging, Table 1), we need to know f(s0). Therefore, the f(s) need to be complete
coverages in the GIS database. Variables that are always present are the spatial {x, y}
coordinates of s0, but these may not carry very useful information with regard to
explaining variability in Z. Better variables that may be “cheap” to obtain are distances
to source locations when the variable Z is subject to dispersion processes (e.g. point
source pollution, or plant or animal abundances).

The challenge of geostatistical analysis is to apply this mode to our data such that:
(1) all information available is used optimally; (2) the agreement of model and data is
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Table 1 Prediction and prediction standard error equations for the linear geostatistical
model (equation 1)

Let (1, f1(si), . . . , fp(si)) be the i-th row in the n × (p + 1) matrix F with predictors or
covariates, and let (1 + f1(s0), . . . , fp(s0)) be the 1 × (p + 1) vector f (s0). Then, given the
covariance matrix V of e(s), the best linear unbiased predictor (or universal kriging predictor)
of Z(s0) is:

Z(s0) = f (s0)^ + v ′V −1(Z(s) − F^)

with ^ = (^0, . . . , ^p)′ = (F ′V −1F )−1F ′V −1Z(s) is the generalized least squares estimate of the
trend coefficients, where F′ denotes the transpose of F, and with v = (Cov (Z(s0), Z(s1), . . . ,
Cov (Z(s0), Z(sn)))′ where Cov (⋅,⋅) denotes covariance, defined as Cov (Z(s1), Z(s2)) = E[(Z(s1) −
E(Z(s1)))(Z(s2) − E(Z(s2)))]; where E(⋅) denotes expectation. The corresponding prediction error
variance is:

where  When trend coefficients are known, β is substituted for ^ in the first
equation, and the third term of the right hand side of the second equation disappears.
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satisfactory; and (3) the model yields adequate predictions. Obviously, success depends
on the quality of both measurements Z(s) and covariates f (s), and the variability present
in the data.

3 Exploratory Data Analysis

The sediment data set is collected by the RIKZ during a monitoring program, aimed at
describing spatial and temporal variability in sea floor sediment. Variables that were
measured comprise heavy metals and organic contaminants, comprising a number of
polychlorinated biphenyls (PCBs). The measurements for one such PCB, PCB138 are
shown in Figure 1. Table 2 shows summary statistics for PCB138 concentration, for

Figure 1 Maps with PCB138 measurements (µg/kg dry matter) for each monitoring year.
The unsampled white area in the south-east corner of the maps approximates the outer coast
line of the Netherlands. In the area shown, the x-coordinates range from 464,000 m to
739,000 m, and the y-coordinates range from 5,696,500 m to 6,131,500 m, projection
UTM31
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each year with measurements. The main monitoring program aims at measuring every
five years, and this was done in 1986, 1991, 1996 and 2000. For some years in between,
samples of smaller size were collected. The samples were collected using box core samplers,
and only the fraction smaller than 63 µ was analyzed for contaminants.

The spatial pattern of PCB138 measurements, shown for each year in Figure 1,
reveals that PCB138 concentration tends to decrease when moving from the coast. The
summary statistics of Table 2 indicate that the PCB138 concentration decreases over
time. However, this tendency may be partly attributed to the increase of the fraction of
off-shore sampling points over time (Figure 1): the temporal variability of the spatial
sampling scheme does not make such an analysis trivial.

How concentrations depend on water depth is shown in Figure 2 where PCB138
was graphed on a log-scale to make the relationship shown closer to linear. This relation
does not come as a surprise: most of the polluted sediment originates from the rivers
(Rhine, Meuse, Schelde) that enter the North Sea, and get transported further by the
North Sea along-coast flow in a north-eastern direction.

In the exploratory stage we look for data irregularities, possible outliers, suitable
data transforms, and explore relations between measured variables and other variables
(such as sea water depth) that are available and may help predict the measured variable
over the spatial domain. In our case, water depth is not the variable that causes PCB138
to have certain values; behind this variability a complete transport process with dynamic
sources, convection and dispersion, and complex sea water flow patterns is hidden. In
absence of knowledge of this process, water depth does seem to be a good proxy to
much of this process, and it explains a fair proportion of the variability. Figure 2 does
not give evidence to remove outliers.

The simple approach after fitting the trend (Figure 2) would be to predict log-
PCB138 at unobserved locations as a function of year and depth:

¸(s0) = 3year + ^1f1(s0) (5)

with 3year the year-dependent intercept and f1(s0) the depth at location s0. This regression
model explains 77% of the variability in the data. It is assumed that the slope β1 is
constant over time; year-dependent slopes did not improve the linear regression model
significantly. The maps that result from applying Equation (5) spatially are depth maps
with a modified legend. The data however may well carry more information than only
this trend, and one way to find out is considering the residuals spatial correlation.

Table 2 PCB138 (µg/kg dry matter) summary statistics; years marked with an * are the
regular monitoring years, other years result from additional sampling programs

year 1986* 1987 1989 1991* 1993 1996* 2000* all

mean 7.29 8.39 4.08 3.70 1.03 1.58 1.27 4.20
median 6.90 7.50 2.65 3.05 0.775 1.40 0.90 2.85
max 21.1 19.7 12.3 13.1 2.7 4.9 3.3 21.1
min 1.60 2.10 1.00 0.70 0.25 0.20 0.20 0.2
n 45 29 14 42 6 49 31 216
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4 Variography

The modeling of spatial correlation lies at the heart of geostatistics. Usually, spatial
correlation is modeled by calculating sample variograms (equation 4) and fitting
parametric models to them. Another approach is fitting of variogram parameters direct
to the (quadratic form of the) data by maximum likelihood or restricted maximum
likelihood (Kitanidis 1983, Stein 1999). Here we will explore and model sample
variograms, calculated from estimated residuals obtained by ordinary least squares.
Although estimated residuals are not equal to the “true” (but unknown) residuals, they
are suitable for modeling residual spatial correlation (Kitanidis 1993).

Figure 3 shows the sample variograms for log-PCB138 for each year. In this figure
many of the variograms show an erratic structure (1987, 1989, 1991, 1993, and 2000),
others do slightly less so. Erratic variograms may occur for various reasons, including
small sample sizes, very skew data distributions, outliers contaminating the sample data,
sample locations that are highly clustered, non-stationary situations or combinations of
the above. We will consider all these issues.

Figure 2 PCB138 concentrations (µg/kg dry matter) as a function of water depth (m); the
dashed lines have a constant slope and a year-dependent intercept; R2 for the regression
model (equation 5) is 0.77
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4.1 Sample Size

Given n observations, we can form n(n − 1)/2 point pairs, so from 45 observations we can
form 990 pairs, from 100 we can form 4,950. This seems a lot, but any two point pairs
that share a common point are strongly correlated. As becomes clear from comparing
sample sizes in Table 2 with sample variograms in Figure 3, larger samples give usually
better (less erratic) sample variograms. It is impossible to say how large a sample should
be (“at least 100!”), because distribution and spatial pattern play a role. In Figure 3, the
1986 and 1996 variograms do suggest that a sample size of 50 may suggest the spatial
correlation reasonably well.

The point pairs formed are to be divided over distance classes hk in equation (4).
The key feature of a variogram is its behaviors near the origin, when h → 0. It is
tempting to make the distance classes hk (equation 4) narrow, especially near zero, but

Figure 3 Sample variograms per year for long-PCB138; numbers denote the number of pair
points Ni (over which a variogram was averaged)
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this also decreases the number Ni, which in turn makes the variogram more erratic. A
trade-off has to be found between regularity and detail at small distances. We will show
this in the following example.

When sample sizes are small, there is little hope of ever getting good estimates of
spatial correlation. For the sediment data set, however, we do have several years of data
available, and we could try to combine this information to get a better idea of the spatial
correlation in the residuals. One approach would be simply merge all residuals, and
calculate their sample variogram. This is shown in the first panel of Figure 4 (“ignoring
year”). This approach assumes a temporal persistence of the actual residual spatial
pattern, which is rather unlikely for phenomena in a dynamic environment. Another
approach would be to average (“pool”) sample semivariances over different years to a
single “pooled” sample variogram. This latter approach only assumes persistence of the
nature of the residual spatial variability, which is a much weaker assumption that seems
in accordance with Figure 3. The pooled variogram includes only point pairs that are
measured in the same year. The second panel in Figure 4 shows this sample variogram.
Although the first semivariance estimate now has 177 points pairs (compared to 829
point pairs for the non-pooled semivariance estimate) it does reveal a much stronger
spatial correlation, confirming our expectations about temporal dynamics in the residual
pattern. When we zoom in at the short distances, the first semivariance estimate with 177
point pairs, &(4,178) = 0.13, splits and reveals in the third panel of Figure 4 even more
spatial correlation: with 36 point pairs the semivariance decreases to &(590) = 0.08. The
final panel shows a fitted exponential model. This model was fitted to the last sample
variogram using weighted least squares fit with weights proportional to Ni, while the
nugget effect (the value where the model reaches h = 0) was fixed at 0.08.

Data sets too small for reliable modeling of spatial correlations occur frequently.
Other general strategies that deal with obtaining spatial correlation for small data sets
are:

• When variability within several sub-regions is considered, variograms from different
sub-regions may be pooled, in which case it may be useful to normalize variances
before pooling, thus assuming equal spatial autocorrelation instead of semivariances.

• Variograms can be obtained from larger, similar areas (or time periods for which
many more measurements are available) as the class from which a variogram is
borrowed, possibly after normalizing variances (Pebesma and De Kwaadsteniet
1997).

One of the problematic issues of applying kriging (Table 1) is that it assumes that
all covariances (or semivariances) are known, and not subject to uncertainty. A more
complete approach would be to take uncertainty with respect to variogram model coef-
ficients and/or parameterizations into account, e.g. as in the Baysian approach of Diggle
et al. (1998).

4.2 Skewed Distribution and Outliers

A nice example of the influence of a single observation on the sample variogram is
present in the Cadmium observations of the sea floor surface sediment data set, as
shown in Figure 5. A pooled within-year sample variogram for (untransformed) cad-
mium observations is shown in Figure 5a. It shows that there is spatial correlation, as
semivariances increase with distance, but the variogram is very erratic. To investigate
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whether there are single observations that cause this behavior, we plotted the sample
variogram cloud (Figure 5b), which shows for each point pair 0.5(Z(si) − Z(sj))

2 plotted
against separation distance h = | si − sj |. Note that the plot in Figure 5b shows exactly the
same information present in Figure 5a, but omits the averaging over distance classes hk.
In the plot reproduced in Figure 5b we can identify individual point pairs, or in this case
digitize the whole area with semivariances above 20, as this group seems anomalous.
The plot in Figure 5c shows the spatial locations of these selected pairs, and the star
shape indicates that they all share a single observation: the maximum value that seems
to be outlying in the normal probability plot of Figure 5d. The strong variability of
semivariance estimates in Figure 5a seems to be caused by the fact that high estimates

Figure 4 Sample variograms for log-PCB138 residuals. Upper left: ignoring years, simply
merging residuals; upper right: including only point pairs from the same year; lower left: as
upper right, zooming in at small distances; lower right: as lower left, but with fitted
model. Numbers reflects the number of point pairs, Ni. The fitted model is γ (h) =
0.08δ (h) + 0.224(1 − exp(−h/17,247)) with δ (h) = 0 if h = 0 and δ (h) =1 if h > 0
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Figure 5 Cadmium in the sea floor surface sediment data set: (a) cadmium variogram
(pooled, within-year); (b) sample variogram cloud for (a); (c) circles: data locations, lines:
point pairs that have a semivariance in (b) larger than 20; (d) normal probability plot for
cadmium; (e) pooled within-year sample variogram for log cadmium; (f ) pooled within-year
sample variogram for log cadmium after trend removal (including only a linear-depth effect
and a year-dependent intercept)
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include many point pairs with this extreme, and the low estimates do less so: a single
observation dominates the sample variogram in a disturbing way. On the log-scale, the
influence of this outlying point is much less and the sample variogram of Figure 5e for log
cadmium, and Figure 5f for log cadmium after a linear effect for depth was subtracted,
reveal the spatial correlation much better. Comparison of Figures 5e and f further show
that removal of a slow, gradual trend (as depth is) does influence the long-distance
residual variability much more than the short-distance behavior.

A special case of the distribution problem occurs with binary, e.g. 0/1 encoded,
variables: if the proportion of ones is very close to zero (or one), then even very large
samples may prove difficult for modeling the spatial correlation. Continuous variables
that have very few large outliers behave the same as linearly scaled 0/1 data with very
few non-zero values. Continuous variables can always be transformed into 0/1 variables,
e.g. indicating whether concentrations lie above a certain threshold. Applying such as
transformation before spatial analysis may, however, remove valuable information.

Whether an extreme is to be considered an outlier, and thereby a candidate for
removal before further analysis, remains a difficult issue. In the above example of
cadmium concentrations, a normal probability plot of log cadmium (not shown) did
indicate the largest value to be not outlying but perfectly conforming to a log-normal
distribution. In such a case, working on the log-scale seems the obvious approach.

4.3 Sample Configuration

Irrespective the spatial structure in the variable studied, the success of inferring this
structure from sample data is determined by the spatial configuration of the sample
locations. If the samples are spread over a regular grid, then no information is available
about distances shorter than the grid spacing. If the aim is interpolation between grid
nodes, then the absence of this information may be disastrous, because the correlation
at short distances is the dominant factor when interpolating near observation locations.
For reliable modeling of variograms, the availability of observations taken at short
distances from each other (or even replicates taken at the same location) is of utmost
importance.

Variograms will reveal whether measurements at small distance are present in the
data set. However, they will not reveal where they occur. If the sample variogram
estimate at the shortest distance has 36 point pairs (Figure 4, lower left panel) then we
still do not know whether these are obtained from nine points in the cluster (9 × 8/2 = 36)
or from 72 points pairwise (72/2 = 36) close together but otherwise well spread over
the study area. The nine points cluster is of course not to be preferred, both from the
vague notion of being not geographically “representative” (although the cluster may
have been located at random!) as well as from the statistical side: 72 points carry much
more information than nine do.

Seldom is the estimation and modeling of variograms a goal in itself, usually we
want to estimate the measured value over the study area as a whole. Given knowledge
of the variogram, regular sampling is preferred for interpolation. If secondary data
(covariates, like depth in our sediment data set) are available, and relations with covariates
need to be explored, then a spread of the data over the range of the covariates is also
advisable. Without knowledge of the variogram, in addition a considerable effort should
be made to ensure that the short-distance behavior of the variogram can be inferred
from the data.
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4.4 Non-stationary Behavior

The assumption underlying most of linear geostatistics, called the intrinsic hypothesis,

E(Z(s)) = m(s),  E(Z(s) − Z(s + h))2 = 2γ(h)

basically assumes that (1) the trend is modeled correctly, and (2) residual variability and
spatial correlation is independent of spatial location. This is a model, and as with all
models, rejecting this model is only a matter of collecting sufficient evidence (i.e. data)
against it. Rejecting the model is therefore in itself of little value. Only if reality differs
clearly and substantially from the model, refinement is justified. Refinements may
include modifications of the trend model, choosing a non-linear transformation of Z(s)
(e.g. log-transformation, see Figure 5), splitting the area in a number of sub-domains
and modeling trends and/or variograms for each of the strata separately, or modeling
direction-dependent (anisotropic) variograms.

5 Spatial Prediction and Conditional Simulation

Given observed data and the variogram, the prediction equations in Table 1 can be
applied when residual covariances C(h) are replaced by residual generalized covariances
C − γ(h), irrespective of the choice of a constant C (Kitanidis 1993).

For log-PCB138, results are shown in Figure 6. Using the trend model shown in
Figure 2 and the residual variogram of Figure 4, we could predict log-PCB138 for each
year, for each location. The maps show a pattern similar to the spatial pattern for sea
floor depth, and in areas where no data are nearby the predictions heavily reply on the
correctness of the assumption that the linear relationships shown in Figure 2 can be
extrapolated to non-sampled locations. In areas where data are nearby (Figure 1), the
maps deviate from this pattern. The series of maps also show the gradual decrease in
PCB138 levels over the years, and the persistence of the dependence on depth. As can
be seen by comparing the data locations (Figure 1) with the maps of predicted value
(Figure 6), large areas where we predict have none or very sparse data. The extent to
which we can believe the predictions is linked to the extent we may believe that the
fitted trend in Figure 2 is a good model for the whole area. The predictions are however
subject to prediction errors, the variance of which is quantified in the second of the two
equations shown in Table 1.

The prediction (or kriging) standard error σ(s0) is a measure of the quality of the
prediction. Showing prediction standard error maps is of little value, as their main use
is in relation to the predicted value. Approximate 95% prediction intervals can be
formed by back-transforming [¸(s0) − 2σ(s0), ¸(s0) + 2σ(s0)], and Pebesma and De
Kwaadsteniet (1997) give two simple ways of presenting maps with prediction intervals
that avoid the display of maps with only a single side of a prediction interval.

Another approach to visualize prediction errors is by conditional simulation. This
technique generates Monte Carlo realizations of the complete field Z(s), and each real-
ization: (1) “follows” the trend; (2) has data values at data locations; and (3) has the
variability and spatial correlation structure of Z(s). Point (3) may seem obvious, but it
should be noted that maps with predicted (i.e. expected ¸(s)) values are by definition
much smoother than reality, Z(s). Figure 7 shows eight conditional simulations for
5 km × 5 km block median values of PCB138 for 1991. The spatial variability within a
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single realization has the same spatial variability (i.e. it has the same variogram) as the
real block median values. Differences between realizations reflect our uncertainty, inher-
ent in predicting the values of Figure 6. This uncertainty results from the fact that we
only have a very limited sample of observed concentrations (Figure 1), and try to predict
values for the whole area. The simulations shown here only address residual variability,
and incorrectly assume that the trend coefficients are known.

Suppose that the 10 µg/kg contour is an important criterion for this variable. Looking
at Figure 6, for 1991 only a few locations close to the coast (SE border) exceed this level.
Based on the conditional simulations (Figure 7), one could argue that many more locations
may exceed this level, and also that these locations may be much more offshore than
Figure 6 suggested.

When we simulate a large number of realizations, their mean will equal the universal
kriging prediction, and their standard deviation will equal the universal kriging prediction
standard error, so we do not need simulations for that (an often overlooked triviality!).
However, for approximating the block averages instead of the block median in Figure
6, we could use many point support simulations on the log-scale of a fine grid, take their
exponent, and calculate block averages for each of the realizations, and calculate their
mean over all realizations. Although it should give the same results, this approach avoids
the rather cumbersome log-normal kriging equations given, for example, in Journel and

Figure 6 PCB138 predictions: predicted block median values from 5 km × 5 km square
blocks; trend model according to Figure 2, residual spatial correlation according to Figure 4.
This figure appears in colour in the electronic version of this article and in the plate section
at the back of the printed journal
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Huijbrechts (1983). Other, non-linear measures can only be obtained by simulations; an
example is a probabilistic estimate (e.g. an interval estimate) of the areal fraction for
which concentrations are above (or below) a certain threshold (Pebesma and Heuvelink
1999), or more complex functions of the variable, e.g. generated by a process model that
simulates transport, flow, dispersion or diffusion, etc.

5.1 Change of Support

As the predictions for 5 km × 5 km block average values underlying Figure 6 were
calculated on the log-scale, we cannot obtain block average values on the original scale
by simply taking the exponent. The values obtained by taking the exponent (which was
done here) can, however, be interpreted as block median values, i.e. the mid value of all
point support values within each block, when, on the log-scale, point support values
inside a block are symmetrically distributed. In other cases, it can be interpreted as the
block geometric mean (Pebesma and De Kwaadsteniet 1997).

Figure 7 Eight distinct PCB138 conditional simulation realizations for 1991; simulated
block median value for 5 km x 5 km square blocks, trend model according to Figure 2,
residual spatial correlation according to Figure 4. This figure appears in colour in the
electronic version of this article and in the plate section at the back of the printed
journal
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5.2 Kriging in Local Neighborhoods

One of the features of the general linear geostatistical model (Equation 1) is that the
mean m or regression coefficients βi are spatially constant. A weaker version of this
assumption is that these coefficients are only constant in a local neighborhood around
the prediction location. This neighborhood should be sufficiently large to estimate the
coefficients accurately. This weaker assumption, underlying local kriging, may suit the
data better than the global assumption.

Another (and, historically the original) reason for working with local neighbor-
hoods is that when data are abundant (say, n >> 1,000), it may became very cumbersome
or even impossible to compute V−1 in the two equations reproduced in Table 1. In such
cases, restricting attention to a local neighborhood can be many orders of magnitude
faster, provided that an efficient neighborhood search algorithm is used, such as PR-
bucket quadtree-based search index (Hjaltason and Samet 1995, Pebesma 2004). When
neighborhoods are fairly large, e.g. when they contain at least 50 points, and when
spatial correlation is strong, and when the trend model only contains a mean value
(intercept), then using global or local neighborhoods both result in practically identical
prediction and prediction standard error maps.

5.3 Dealing with Auxiliary Information: Multivariate Prediction

Treating GIS coverages as f(s) in the regression model of the trend is an effective way of
using auxiliary information to predict the primary variable, but it does assume that the
coverage is complete. Suppose that our sea floor surface depth data were not given as a
GIS layer covering the study area, but rather as a set of points. In that case, interpolating
depth and treating it as a known coverage would not be correct, as depth at interpolated
locations was only predicted, not measured, and prediction errors may be large.

The alternative is to treat the secondary, measured information as a random field
(instead of a given, fixed covariate f(s)) and to model spatial cross-correlation between
the primary and secondary variable, either by using the classic cross-variogram:

γ12(h) = 0.5E(Z1(s) − Z(s + h))(Z2(s) − Z2(s + h)) (6)

which can be used when Z1 and Z2 have sufficient observation locations in common, or
by using the pseudo cross-variogram:

γ12(h) = 0.5Var(Z1(s) −Z2(s + h))2 (7)

Given models for the primary and secondary variables variograms and their cross-
variogram, cokriging (Cressie 1993, Wackernagel 1998) is used to predict each of the
variables and cosimulation (Gómez-Hernández and Journel 1993) can be used for their
simultaneous simulation. Even if the secondary variable is available as a complete
coverage, Rivoirard (2002) showed that under certain circumstances it may be beneficial
to treat it as a random variable, i.e. in a cokriging setting.

5.4 Temporal Change

In addition to prediction variances cokriging also yields the prediction error covariance
Cov(¸1(s0), ¸2(s0)), a quantity that is needed for example to estimate the standard error
of the predicted differences ¸1(s0) − ¸2(s0). This difference estimates temporal changes
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when Z1(s) and Z2(s) are measurements at two moments in time. In this approach, we
assume that time yields multiple, correlated realizations of the measured variable.

Another approach for modeling spatial-temporal variability is to consider the
variable measured as coming from a space-time random function Z(s, t) with a single
variogram defined over continuous space-time. The difficulty of this latter approach is
inferring this variogram, because we need to compare distances between points sepa-
rated in both space and time. An advantage of this approach is that it allows predictions
of Z(s, t), at any location/moment combination (s0, t0).

Kyriakidis and Journel (1999) provide an overview of different geostatistical
approaches to space-time modeling. Pebesma and Duin (2005) provide a space-time
analysis of the PCB-138 data used here.

5.5 Other Non-Linear Approaches

As with any linear statistical model, the linear geostatistical model works best for data
with a Gaussian (residual) distribution, and in practice, it also works well for data with
a distribution that is not too far from Gaussian. In the example on PCB138 and cadmium
we showed how log-transformation made the variables well suited to this model.

Other non-linear approaches include approaches where the variable is transformed
to Gaussian (the “multi-Gaussian” approach (Goovaerts 1997), or the disjunctive kriging
approach (Rivoirad 1984)), or approaches where a variable is transformed to binary
values depending on whether its value is below (1) or above (0) a certain threshold. The
latter is indicated with the indicator approach (Goovaerts 1997).

The indicator approach seems a natural start when the dependent variable is binary,
or categorical. Gotway and Stroup (1997) give an extension of this approach, building
upon generalized linear models (McCullagh and Nelder 1989) for modeling the trend,
and mean-dependent covariances.

6 Conclusions

In this paper, we have shown for a sample data set that a successful analysis can be
obtained by modeling the trend in the data using coverages available in the GIS data-
base, and by modeling the spatial correlation in the residual by ways of variogram
analysis. Much of the geostatistical analysis of today concentrates only on the latter,
ignoring possibly informative external variables. This is partly driven by the options
provided by geostatistical software. For example, the Geostatistical Analyst extension
for ArcGIS 8.3 does provide universal kriging where the trend is driven by the spatial
coordinates, but not where the trend is driven by external variables, as in the example
shown here (sometimes referred to as “external drift kriging”). In this author’s experience,
spatial coordinate regression and variogram analysis seldom inform us about the physical
(causal) relationship regarding the variable studied and seldom help increase the under-
standing of its variability. Relevant external variables do so, are usually present, and
should be used wherever possible to drive the geostatistical predictions.
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Data, Software, and Acknowledgements

The sea floor surface sediment data used in this paper are available from the author’s
web site. The software used throughout this paper is the R system (Ihaka and Gentleman
1988), which is an open source implementation of the S language (Becker et al. 1988).
Within R, we used the gstat package for R or S-PLUS (Pebesma and Wesseling 1998;
Pebesma 2003, 2005), which is also in open source form available from http://
www.gstat.org/. This package extends the model interface of S (Chambers and Hastie
1992) to multivariable geostatistical models. The model interface takes care of automatic
translation of categorical variables into the necessary dummy variables and allows a
simple definition of interactions or nested effects for example. The sea floor surface
sediment data set and financial support for the development of the gstat S package were
gratefully obtained from the Dutch National Institute for Coastal and Marine Management
(RIKZ). Richard Duin (RIKZ; http://www.rikz.nl) played a stimulating role in the work
presented here.
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