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Abstract: This interdisciplinary research is based on the application of unsupervized connectionist architec-

tures in conjunction with modelling systems and on the determining of the optimal operating conditions of a new
high precision industrial process known as laser milling. Laser milling is a relatively new micro-manufacturing
technique in the production of high-value industrial components. The industrial problem is defined by a data set

relayed through standard sensors situated on a laser-milling centre, which is a machine tool for manufacturing
high-value micro-moulds, micro-dies and micro-tools. The new three-phase industrial system presented in this
study is capable of identifying a model for the laser-milling process based on low-order models. The first two

steps are based on the use of unsupervized connectionist models. The first step involves the analysis of the data
sets that define each case study to identify if they are informative enough or if the experiments have to be
performed again. In the second step, a feature selection phase is performed to determine the main variables to be

processed in the third step. In this last step, the results of the study provide a model for a laser-milling procedure
based on low-order models, such as black-box, in order to approximate the optimal form of the laser-milling
process. The three-step model has been tested with real data obtained for three different materials: aluminium,
copper and hardened steel. These three materials are used in the manufacture of micro-moulds, micro-coolers

and micro-dies, high-value tools for the medical and automotive industries among others. As the model inputs
are standard data provided by the laser-milling centre, the industrial implementation of the model is immediate.
Thus, this study demonstrates how a high precision industrial process can be improved using a combination of

artificial intelligence and identification techniques.
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1. Introduction

Owing to the fast development of the manufac-

turing capabilities of countries such as China

and India, traditional manufacturing is cur-

rently looking for new challenges. One such

opportunity is in the manufacture of high-value

micro-tools for different industrial sectors. Ex-

amples of these tools are those used in the field

of medical therapeutics (odonto-stomatology)

for bucco-dental rehabilitation and restoration

in the processing and manufacturing of bucco-

dental prosthesis, such as partial crowns, inlays

and onlays, and partial and complete prosthesis

fitted on structures of different metals, such as

titanium, chrome cobalt, noble metals, etc., in

which the optimizing of the registering and

mapping of the surgical field to be operated on

is required. Other examples are steel moulds

with deep marking for serial numbers or bar-

codes for quality control for the automotive

industry, aluminium moulds with highly com-

plex 3D micro-shapes for medical applications

or copper electrodes for electrical discharge

machining (EDM). These tools are character-

ized by requiring critical 3D shapes or deep

vertical walls somewhere on their surfaces. The

generation of these geometries can be done

using high-accuracy, high-speed milling or

EDM, but both technologies have a physical

limit where the 3D shapes are very small. A new

technology is called for to surpass this limit:

laser milling (Ion, 2005).

Laser milling consists in the controlled eva-

poration of material caused by its interaction

with a high-energy pulsed laser beam. The

amount of vaporized material depends not only

on laser pulse characteristics, but also on the

composition of the material to be removed

(Kuhl, 2002; Henry et al., 2004). A conventional

milling machine knows in every moment the

amount of material removed (the whole volume

of the mill), but this is not so easy for a laser-

milling centre. The usual proposal to solve this

problem is the development of analytical or

empirical models fit to the process behaviour

(Harrison et al., 2004; Tani et al., 2008; Witte

et al., 2008). However, these models always take

those variables that perfectly fit the physical

process as input data. Unfortunately, these

variables cannot be measured easily on real-

world industrial machines that implement laser-

milling technology. Therefore, to facilitate the

quick take-up of this technology by industry, it

is necessary to develop a high precision model

that can predict the exact amount of material

that each laser pulse can get out using input data

variables that can be obtained directly from

real-world machines. This model will provide

the control of laser milling with the accuracy

required for micro-tools and, also, the optimiza-

tion of their manufacture. In this interdisciplin-

ary study, such a model is obtained using a

combination of conventional and soft comput-

ing models. Soft computing (Cruz & Pelta, 2009;

Corchado et al., 2010; Torra & Narukawa,

2010) is a collection or set of computational

techniques in machine learning (Abraham

et al., 2009), such as artificial neural networks

(Kohonen, 2006; Herrero et al., 2010), genetic

algorithms (Lorena & de Carvalho, 2008; Naldi

et al., 2008), fuzzy systems (Zadeh, 2009;

Berlanga et al., 2010) and swarm intelligence

(Das et al., 2008), which investigate, simulate and

analyse very complex issues and phenomena.

Unsupervized learning is used initially, as a

preliminary phase before the modelling system

is established, to analyse the internal structure

of the data sets. Consequently, it is worth

knowing whether the data sets are relevant and

informative enough. Exploratory projection

pursuit (EPP) (Diaconis & Freedman, 1984;

Caló, 2007) is a statistical method aimed at

solving the difficult problem of identifying

structures in high-dimensional data, providing

an interesting view of the internal structure of

the data set representing the problem to be

analysed using higher-order statistics such as

kurtosis, which is a measure of how pointed a

distribution is.

In EPP, a relevant structure is usually defined

with respect to the fact that most projections of

high-dimensional data onto arbitrary lines

through most multi-dimensional data give al-

most Gaussian distributions (Diaconis & Freed-

man, 1984). Thus, interestingness is usually
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defined in terms of how far the distribution is

from the Gaussian distribution.

These models are also used in a second step to

carry out feature selection (Guyon & Elisseeff,

2003; Liu & Yu, 2005) to identify the main

variables to be used in the third step. Several

neural projection models based on EPP are

applied in this study to carry out the first two

steps of this soft computing model.

In complex, multi-dimensional domains, such

as in industry, some data sets may hinder their

own internal structures. Variables may contain

false correlations that hinder the process of

detecting the underlying causes of a data set.

Furthermore, some features may be redundant

because the information they add is contained in

other features or variables. Extra features may

increase computation time and can interfere in

the accuracy of the clustering or classification

process.

Feature selection (Guyon & Elisseeff, 2003;

Liu & Yu, 2005) improves classification by

searching for the subset of features that best

classifies the training data and decreasing com-

putation time.

Finally, the third and last phase is based on

the use of classical identification techniques to

obtain a model of the normal operating condi-

tions.

Thus, unsupervized learning, and specifically

EPP, is used in conjunction with classical identi-

fication techniques to obtain a model of the

dynamics for a real-world industrial process,

laser milling in this case. EPP is used to extract

the relevant structures and relationships be-

tween variables to guarantee that the data set

obtained by the sensors during the experiments

is informative enough to identify the most sig-

nificant features. The classical identification

techniques then model the laser-milling condi-

tions to choose the correct working parameters.

Finally, the estimated working parameters facil-

itate increasing the quality of the resulting

pieces.

This study presents the three-step procedure

designed to identify the optimal conditions of a

laser-milling process. The paper is organized as

follows: Section 2 introduces the unsupervized

connectionist techniques used for analysing the

data to extract the relevant internal structures.

This is the first step in the modelling process.

The second step, feature selection, is described

in Section 3, which serves to select the main

variables to be processed in the third step.

Section 4 describes the classical identification

techniques used in the system modelling (third

step). Section 5 provides details on the applica-

tion field and the case studies and an analysis

and comparison of the best models and results.

Lastly, conclusions and future work are dis-

cussed.

2. Relevant internal structure extraction using

projection methods

Principal component analysis (PCA) (Esbensen

& Geladi, 2009), first found in Pearson’s re-

search (Pearson, 1901) and independently in

Hotelling’s (Hotelling, 1933), is a statistical

method describing multivariate data set varia-

tions as uncorrelated variables, each of which is

a linear combination of the original variables.

Its main goal is to derive new variables in

decreasing order of importance (variance),

which are linear combinations of the original

variables and are uncorrelated with each other.

It is a well-known technique that can be imple-

mented by a number of connectionist models

(Oja, 1982; Fyfe, 1993). The PCA aims to find

that orthogonal basis that maximizes the data’s

variance for a given dimensionality of basis. The

PCA is the most frequently reported linear

operation involving unsupervized learning for

data compression and feature selection.

The standard statistical method of EPP

(Friedman & Tukey, 1974; Corchado et al.,

2004; Caló, 2007) provides a linear projection

of a data set. The data projections make use of a

set of basis vectors that best reveals the relevant

structures of the data. The relevancy is mea-

sured as interestingness, which is usually defined

in terms of how far the distribution is from the

Gaussian distribution (Seung et al., 1998).

One neural implementation of EPP is max-

imum likelihood Hebbian learning (MLHL)
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(Corchado et al., 2004). MLHL has been widely

used in the field of pattern recognition (Corcha-

do & Fyfe, 2003; Corchado et al., 2004) as an

extension of PCA. It identifies interestingness

(Friedman & Tukey, 1974; Corchado et al.,

2004) by maximizing the probability of the

residuals under specific probability density func-

tions that are non-Gaussian under the analysis

of the fourth-order statistic, the kurtosis.

An extended version of this model is the

cooperative maximum likelihood Hebbian

learning (CMLHL) (Corchado & Fyfe, 2003).

CMLHL is based on MLHL with the addition

of lateral connections (Corchado & Fyfe, 2003)

derived from the rectified Gaussian distribution

(Seung et al., 1998). The resulting network can

find the independent factors of a data set but it

does so in a way that captures some type of

global ordering in the data set.

Consider an N-dimensional input vector (x),

an M-dimensional output vector (y) and a

weight matrix W, where the element Wij repre-

sents the relationship between input xj and out-

put yi. Then, as shown in Corchado and Fyfe

(2003), the CMLHL can be carried out as a four

steps procedure as follows:

Feed-forward step yi ¼
XN
j¼ 1

Wijxj; 8i ð1Þ

Lateral activation passing

yiðtþ 1Þ¼ yiðtÞ þ tðb� AyÞ½ �þ
ð2Þ

Feedback step ej ¼xj �
XM
i¼ 1

Wijyi; 8j ð3Þ

Weights changing step

DWij ¼ ZyjsignðejÞjejjp�1
ð4Þ

where Z is the learning rate, the rectification [ ]þ

is necessary to ensure that the y-values remain

within the positive quadrant; t is the ‘strength’

of the lateral connections, b the bias parameter

and p is a parameter related to the energy

function (Corchado & Fyfe, 2003; Corchado

et al., 2004).

A is a symmetric matrix used to modify the

response to the data whose effect is based on the

relation between the distances among the output

neurons. It is based on the cooperative distribu-

tion, but to speed learning up, it can be simpli-

fied to

Aði; jÞ¼ dij � cosð2pði� jÞ=MÞ ð5Þ
where dij is the Kronecker d and M is the

number of outputs (Figure 1).

The A matrix is used to modify the response

to the data based on the relation between the

distances between the outputs. The outputs are

thought of as located on a ring (‘wraparound’).

The network’s operation is the standard nega-

tive feedback operation with lateral connections.

It is illustrated in Figure 2 [equations (1)–(4)].

2.1. Lateral connections

Lateral connections have been derived from the

rectified Gaussian distribution (Seung et al.,

1998), which is a modified version of the standard

Gaussian distribution in which the variables are

constrained to be non-negative, enabling the use

of non-convex energy functions. The standard

Gaussian distribution may be defined by

pðyÞ¼Z�1e�bEðyÞ ð6Þ

EðyÞ¼ 1
2
yTAy� bTy ð7Þ

In which the quadratic energy function E(y) is

defined by the vector b and the symmetric

matrix A. The parameter b¼ 1=T is an inverse

temperature. Lowering the temperature concen-

trates the distribution at the minimum of the

energy function. The factor Z normalizes the

integral of p(y) to unity.

The cooperative distribution is chosen as its

modes are closely spaced along a non-linear con-

tinuousmanifold. The energy functions that can be

used are those that block the directions in which

the energy diverges towards negative infinity.

Thus, the matrix has to fit the following property:

yTAy>0; 8y : yi>0; i¼ 1 . . .N ð8Þ
In which, N is the dimensionality of y.
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The cooperative distribution in the case of N

variables is defined by

Aij ¼ dij þ 1

N
� 4

N
cos

2p
N

i� jð Þ
� �

ð9Þ

bi ¼ 1 ð10Þ

In which dij is the Kronecker d, and i and j, the

output neuron identifiers.

Matrix A modifies the response to the data

based on the relation between the distances

between the outputs. The projected gradient

method is used (Corchado et al., 2003), consist-

ing of a gradient step followed by a rectification

Figure 2: Lateral connections between neighbouring outputs.
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Figure 1: The A matrix for the rectified Gaussian network with 24 outputs. Black squares are

negative, white are positive and the shading in each square is proportional to the weight size.
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as specified in equation (2), in which the rectifi-

cation [ ]þ is necessary to ensure that the

y-values remain within the positive quadrant.

If the step size (t) is chosen correctly, this

algorithm will probably be shown to converge

to a stationary point of the energy function

(Bertsekas, 1999). In practice, this stationary

point is generally a local minimum.

The distribution mode can be approached by

gradient descent on the derivative of the energy

function equation (11) with respect to y:

Dy / � ›E

›y
¼ � ðAy� bÞ¼ b� Ay ð11Þ

The resulting model (CMLHL) can reveal the

independent factors of a data set in a way that

captures some type of global ordering in the

data set and displays it with greater sparsity

than other models.

Several versions of this model have success-

fully been applied to different data sets. Some of

them are artificial, such as the well-known bars

data set (Földiák, 1992; Corchado & Fyfe, 2003)

while others are real, such as data sets on bank-

ing, asteroids, algae (Corchado & Fyfe, 2003)

and knowledge management (Herrero et al.,

2010).

2.2. Fine tuning

The CMLHL fine-tuning process is based on the

effect of changing the t parameter, which is the

strength of the lateral connections between the

output neurons. Experiments were conducted

(Corchado & Fyfe, 2003) using the bars data

set (Földiák, 1992), which adds noise in a

graduated manner across the outputs. These

experiments showed that altering the strength

of the lateral connection parameter modulated

the ability of the neural network to ‘gather’

features together on the outputs. As predicted,

a low t value allows the neural model to code

horizontal and vertical bars around a mode. An

increase in the t value means that the weak

correlations between horizontal and vertical

bars begin to have an impact on the learning.

As the strength of the lateral connections be-

comes stronger, the bars are still learned around

a mode but at the same time orientations start to

separate. Subsequently, a separation emerges

between the two different orientations, which is

an interesting issue because all the data inputs to

the network consist of both horizontal and

vertical bars.

Increasing the t value further will force the

network to learn only one orientation of bars.

However, if the lateral connections are too

strong, then the coding of the bars may be

squashed into an area of the output space that

is too small for all of the bars to be coded

individually. The reason why one orientation of

bars is suppressed is due to the pixel overlap

between different orientations of bars. If the

lateral excitation between the output neurons is

strong enough, a single output neuron may be

able to switch its preference from a horizontal

bar to a vertical one. That orientation identifica-

tion was considered (Corchado & Fyfe, 2003) to

be a precursor of the creation of the concept of

horizontal=vertical in animals inhabiting a

mixed environment.

3. Feature selection and extraction

Feature selection and extraction (Guyon &

Elisseeff, 2003; Liu & Yu, 2005) includes feature

construction (Gavrilis et al., 2008), space dimen-

sionality reduction (Liu et al., 2009b), sparse

representations (Wright et al., 2009) and feature

selection (Liu et al., 2009a). All these techniques

are commonly used as pre-processing tools to

machine learning tasks including pattern recog-

nition. Although such problems have been

tackled by researchers for many years, there

has recently been a renewed interest in feature

extraction. A large number of new applications

with very large input spaces need space dimen-

sionality reduction critically for the efficiency

and efficacy of the predictors. Some of these

applications include new and classical topics

such as bioinformatics [DNA microarrays

(Kim & Cho, 2006; Gonzalez et al., 2009),

remote sensing multi- and hyperspectral ima-

gery (Malpica et al., 2008), pattern recognition

[e.g., handwriting recognition (Su et al., 2009)],
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text processing (Valeriana-Garcia et al., 2008),

Web mining (Chen et al., 2009), speech proces-

sing (Avci, 2007; Mostafa & Billor, 2009), artifi-

cial vision (Raducanu et al., 2010), medical

applications (Marinakis et al., 2009; Wolczows-

ki & Kurzynski, 2010), industrial applications

(Avci et al., 2009)].

The approach taken to feature selection is

based on space dimensionality reduction. It in-

itially uses a projection method called CMLHL

(Corchado & Fyfe, 2003), which is characterized

by its capability to enforce a sparser representa-

tion in each weight vector than other classical

methods, such as PCA or MLHL.

The internal structures of complex clustering

domains, such as high dimensional ones, may

hinder their own internal structures or patterns.

Such patterns may become visible if a change of

basis of the space is made, however, an a priori

decision as to which basis will reveal most

patterns requires foreknowledge of the un-

known patterns.

CMLHL is an EPP model aimed at solving

the previous difficult problem of identifying

structure in high-dimensional data by projecting

the data onto a low-dimensional subspace in

which its structure is searched for by eye. How-

ever, not all projections will reveal the data’s

structure equally well. Therefore, an index has

been defined that measures how ‘interesting’ a

given projection is; the data is represented in

terms of projections that maximize that index.

Interesting structure is usually defined with

respect to the fact that most projections of

high-dimensional data onto arbitrary lines

through most multi-dimensional data give al-

most Gaussian distributions (Diaconis & Freed-

man, 1984). Therefore, to identify ‘interesting’

features in data, directions should be looked for

onto which the data projections are as far from

the Gaussian as possible. CMLHL is based on

the analysis of the kurtosis, which is based on

the normalized fourth moment of the distribu-

tion and measures the heaviness of the tails of a

distribution. A bimodal distribution will often

have a negative kurtosis, meaning negative kur-

tosis can signal that a particular distribution

shows evidence of clustering.

4. System modelling using classical

identification algorithms

4.1. Identification criterion

The identification criterion consists in evaluat-

ing which of the group of candidate models is

the best adapted and the one that best described

the data set gathered for the experiment, i.e.,

given a certain modelMðy�Þ, its prediction error

may be defined by equation (12). As stated in

Ljung (1999), ‘a good model is one that makes

good predictions, and which produces small

errors when the observed data is applied’. The

estimated parametrical vector ŷN is obtained in

such a way that the prediction error e(t, y) is

minimized for data set Zt

eðt; y�Þ¼ yðtÞ � ŷðtjy�Þ ð12Þ
So, minimizing the error function VN(y,Z

N)

generates the estimated parametrical vector ŷ.
Typically, VN(y,Z

N) is calculated by the least-

squares criterion for the linear regression, i.e.,

by applying the quadratic norm ‘ðeÞ¼ 1
2 e

2

VNðy;ZNÞ¼ 1

N

XN
t¼ 1

1

2
ðyðtÞ � ŷðtjyÞÞ2 ð13Þ

ŷ¼ ŷNðZNÞ¼ argmin
y2DM

VNðy;ZNÞ ð14Þ

One of the available methodologies of model

structure is the black-box structures (Ljung,

1999), which has the advantage of only requir-

ing very few explicit assumptions on the pattern

to be identified, but that in turn makes it difficult

to quantify the model that is obtained. The

discrete linear models may be represented

through the union of both deterministic and

stochastic models. In equation (15), u(t) is the

input, y(t) is the output, G(q� 1) is the transfer

function from u(t) to y(t), H(q� 1) is the transfer

function from e(t) to y(t) and q, q� 1 are forward

and backward shift operators. The term e(t)

(white noise signal) includes the modelling er-

rors and is associated with a series of random

variables of mean null value and variance l

yðtÞ¼Gðq�1ÞuðtÞ þHðq�1ÞeðtÞ ð15Þ
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The structure of a black-box model depends

on how the noise influences the model (Ljung,

1999), that is, the term H(q� 1). Thus, if this

term is 1, then the finite impulse response (FIR)

(Fernandes et al., 2010) and output error (OE)

(Taghavi & Sadr, 2008; Gillberg & Ljung, 2010)

models are applicable; whereas if it is different

from 0 a great range of models are applicable;

the most common being: autoregressive with

external input (ARX) (da Silva et al., 2009;

Ismail et al., 2009), autoregressive moving aver-

age with external input (ARMAX) (Wang &

Cheng, 2009; Iqbal et al., 2010), box jenkins (BJ)

(Meiler et al., 2008; Mustafaraj et al., 2010)

and autoregressive moving average (ARMA)

(Datong et al., 2009; Huang et al., 2009).

This structure may be represented in the form

of a general model equations (16) and (18), where

B(q� 1) is a polynomial of degree nb, which can

incorporate pure delay nk in the inputs, and

A(q� 1), C(q� 1), D(q� 1) and F(q� 1) are autore-

gressive polynomials of degree na, nc, nd and nf,

respectively. In the same way, it is possible to use

a predictor expression, for the one-step prediction

ahead of the output ŷðtjyÞ. The value of na, nb, nc,
nd, nf and nk are parameterized

Aðq�1ÞyðtÞ¼ q�nk
Bðq�1Þ
Fðq�1Þ uðtÞ þ

Cðq�1Þ
Dðq�1Þ eðtÞ ð16Þ

ŷðtjyÞ¼ Dðq�1ÞBðq�1Þ
Cðq�1ÞFðq�1Þ uðtÞ

þ 1�Dðq�1ÞAðq�1Þ
Cðq�1Þ

� �
yðtÞ

ð17Þ

Aðq�1Þ¼
Xna
i¼ 1

1þ aiðq�iÞ;

Bðq�1Þ¼
Xnb
i¼ 1

biðq�iÞ;

Cðq�1Þ¼
Xnc
i¼ 1

1þ ciðq�iÞ;

Dðq�1Þ¼
Xnd
i¼ 1

1þ diðq�iÞ;

Fðq�1Þ¼
Xnf
i¼ 1

1þ fiðq�iÞ

ð18Þ

4.2. Modelling the laser-milling optimal

conditions

This study tries to find the best model for

estimating the optimal conditions in a high

precision laser-milling process. An identification

procedure should be used so the experimenta-

tion can be carried out for different cases.

As stated in Haber and Keviczky (1999a,

1999b), Ljung (1999), Nørgaard et al. (2000) and

Nelles (2001), the identification procedure in-

cludes establishing the identification techniques,

the selection of the model structure, the estima-

tion of the suitable polynomials degree, choosing

the identification criterion and the optimization

techniques to generate the final model.

Also, the identification procedure includes the

training and the validation stages, which ensures

that the selected model meets the necessary

conditions for estimation and prediction. In

order to validate the model, three tests were

performed: the residual analysis eðt; ŷðtÞÞ by

means of a correlation test between inputs, the

final prediction error (FPE) estimate as ex-

plained by Akaike (1969) and lastly the graphi-

cal comparison between desired outputs and the

outcome of the models through simulation 1 (or

k) steps before.

5. An industrial case study: choosing the

optimal operating conditions

In this study, a procedure to determine the

optimal operating conditions for a laser-milling

process is described. The procedure includes

three steps, as shown in Figure 3. After data set

gathering, in the first step, an analysis of the

data set is performed to identify if it is informa-

tive enough. If the gathered data set is not valid,

then it should be discarded and a new data set

should be considered. The second step is based

on feature selection to identify the most relevant

variables; its outcome is the dimensional re-

duced data set. Finally, the third step involves

searching for the model that best suits fits the

operating conditions; its outcome is the model

to be used, finding the best operating conditions

in each case.
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The procedure is validated against three,

common, real-world laser-milling problems in

the industry. The first one is copper, a material

used in the manufacture of electrodes for EDM.

The second one is aluminium, a material com-

monly used for highly complex moulds for

Figure 3: The flow chart of the proposed procedure.
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medical applications. The third one is hardened

steel, which is often used in the automotive

industry, where laser milling allows the deep

marking of serial numbers or barcodes for

quality control. These three materials cover a

broad range of industrial applications of laser

milling and micro-manufacturing.

Modelling the laser-milling process involves

several steps. After a data set is collected

through the use of sensors, an internal structure

analysis is carried out. The most significant

variables then have to be identified. Finally, the

model must be generated considering the most

important variables and the relationships found.

These steps are detailed below.

5.1. Data set generation

To describe the industrial problem, a test piece

has been designed. The test piece is an inverted

truncated pyramid profile that is to be laser

milled on a flat metallic piece of the three

selected materials. The truncated pyramid angles

are theoretically of 1351 and the depth (or

height) of the truncated pyramid is 1mm, but as

the laser parameters are not known for these

materials, both parameters will show an error on

the real machined pieces called angle error and

depth error, referred in this paper as y1 and y2,

respectively. The prediction of the geometrical

error through these two variables is enough to

assure the geometrical quality of the micro-tools

that will be machined by laser manufacturing.

The test piece was laser milled using a laser

with a pulse length of 10ms. Some parameters of

the laser process can be controlled: the laser

power (u1), the laser-milling speed (u2), the laser

spot diameter, the distance from the laser focus

to the piece (positioning along the Z-axis adjust-

ment), the machining strategy and the laser

pulse frequency (u3). It is important to note that

all these parameters are standard data provided

by the laser-milling centre, so the industrial

implementation of the model will be immediate.

For the data analysis, three other vari-

ables related to the milled material were also

considered: thermal conductivity, reflectivity

and density.

The experiment design included variation of

all the parameters mentioned above, with the

exception of laser spot diameter and machining

strategy, which were constant for all tests. Al-

most 100 different experiments were carried out,

which meant a large increase in the cost of the

study. After the laser milling of the test piece

previously described, the actual inverted pyra-

mid depth and the wall angle were measured by

means of proper optical measurements. These

measurements were compared with theoretical

values (1351 and 1mm, respectively) and the

difference between theoretical and experimental

values represents the geometrical errors of the

machined piece: angle error (y1) and depth error

(y2). Both geometrical errors – y1 and y2 – are

considered as output parameters of each experi-

ment.

5.2. The first two steps: extracting the relevant

internal structures and main variables

(feature selection)

5.2.1. Analysing the internal structure of a data

set As detailed in Section 2, PCA and

CMLHL are two methods for identifying the

internal structure of the data; both were applied

to this industrial problem. Both methods have

been applied to the three different case studies to

know if the data sets are informative enough

and also identified the most interesting under-

lying variables.

The following figures show the results of

applying PCA [Figures 4(a), 5(a) and 6(a)] and

CMLHL [Figures 4(b), 5(b) and 6(b)] in three

different cases study. The vertical and horizon-

tal axes forming these projections are combina-

tions of the variables contained in the original

data sets.

By using CMLHL [Figure 4(b)], it has been

obtained a more sparse representation than with

PCA [Figure 4(a)]. It can be easily seen how each

group is formed by another three sub-groups

and that the samples are clearly grouped and

separated. CMLHL has identified three differ-

ent groups or clusters [Figure 4(b)] order by

speed. After studying each cluster it is noted a

second classification, which is based on the
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speed and frequency as it is shown in the right

side of Figure 4(b).

CMLHL [Figure 5(b)] has identified several

clusters ordered by speed for aluminium com-

ponents. It is worthy to note that, again,

CMLHL is providing a more sparse visualiza-

tion than PCA [Figure 5(a)] and that this meth-

od has identified several clusters ordered by

speed and frequency, and inside each cluster

ordered by power.

As in the previous cases, it can be seen how

CMLHL [Figure 6(b)] has identified different

cluster ordered by speed. For this material, five

clusters have been identified and inside each

clusters it is possible to notice another classifica-

tion by frequency and power [Figure 6(b)]. Yet

again, the use of PCA [Figure 6(a)] is providing

a five cluster projection but in less sparse and

informative way than CMLHL [Figure 6(b)].

As it can be seen in the previous figures

(Figures 4–6), both methods have identified a

clear internal structure in the case of the three

different materials as several well-defined clus-

ters have been identified. It can be affirmed that

CMLHL provides, in general, a sparser repre-

sentation than PCA due to the combined use of

MLHL-based method and the application of

lateral connections. As it is clear that there are

several well-defined groups, the three data sets

describing each material are informative en-

ough, and it is possible to move to the second

step of this model.

5.2.2. Feature selection by CMLHL By ana-

lysing the results obtained by CMLHL [Figures

4(b), 5(b) and 6(b)] of the three materials in the

second step, it can be seen that, of the original

Figure 4: PCA projections (a) and CMLHL

projections (b) for a steel piece.
Figure 5: PCA projections (a) and CMLHL

projections (b) for an aluminium component.
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data sets, the most significant variables to be

processed in the third step are: power, speed

and frequency. This leads to the application of

the third phase or step of this process, which

accurately and efficiently optimizes the model of

the laser milling by applying several classical

modelling systems.

Thus, for these three materials, the date sets

describing each element are informative enough

(first step). The main variables to be analysed

(second step) in the third and final step of the

presented model are the power, the speed and

the frequency.

5.3. The third step: applying system

identification for modelling the laser milling

optimal conditions

The different model learning methods used were

implemented in Matlabr making use of its

toolboxes – function libraries for Matlab: the

system identification toolbox and the control

system toolbox. The experiment followed the

identification procedure detailed in Section 4.2:

the model structures were analysed to obtain the

models that best suite the data set. The Akaike

information criterion (AIC) was used to obtain

the best degree of the model and its delay for

each model structure. A total of 36 techniques

were carried out to obtain the models, including:

� The frequency response analysis based on

the spectrum analysis and the Fourier fast

transform (FFT) were used to determine the

data dynamics.

� The FIR method correlation analysis was

used to determine the steady state condi-

tions.

� The black-box models synthesis: up to 31

different combinations of model structure

and optimization technique were considered,

such as the least-squares method, the

QR factorization of ARX models and the

recursive normalized gradient algorithm of

RARMAX models (Söderström & Stoica,

1989; Ljung, 1999).

� Three different residual analysis based on

cross correlation were carried out: the resi-

dual analysis between the residual R̂N
e ðtÞ,

between the residual and the input R̂N
euðtÞ,

and the non-linear residual correlation

R̂N
e2u2ðtÞ.

To validate the obtained models, several differ-

ent indexes have been used. The indexes are

recognized and widely used measures in system

identification (Söderström & Stoica, 1989;

Ljung, 1999; Nørgaard et al., 2000).

� The percentage representation of the esti-

mated model. This index is calculated as the

normalized mean error for the one-step pre-

diction (FIT1), for the ten-step prediction

(FIT10) and with the 1-step prediction

(FIT). The FIT is known as simulation in

classical system identification.

� The graphical representation of the FIT1 –

ŷ1ðtjmÞ, – the FIT10 – ŷ10ðtjmÞ – and the FIT

– ŷ1ðtjmÞ.

Figure 6: PCA projections (a) and CMLHL

projections (b) for a copper piece.

12 Expert Systems c� 2011 Blackwell Publishing Ltd287c� 2011 Blackwell Publishing Ltd JExpert Systems, uly 2012, Vol. 29, No. 3



� The loss function or error function (V): the

numeric value of the mean-squared error

(MSE) that is computed with the estimation

data set.

� The generalization error value: the numeric

value of the normalized sum of squared

errors (NSSE) that is computed with the

validation data set.

� The FPE is calculated as the average gener-

alization error value computed with the

estimation data set.

The results of modelling each of the three

industrial processes are shown from Figures 7–

9 for copper, aluminium and steel, respectively.

The Figures 7–9 show the graphical representa-

tions for the best models found in each case. In

all of them, the X-axis represents the number of

samples used in the validation of the model,

while the Y-axis represents the normalized out-

put variable range – the normalization removes

just the mean value –, with the output variable

being the angle error – in degrees – or the depth

error – in millimeters – of the test piece. In all the

figures, the real operation condition is plotted as

a solid line, and the estimated output of the

model is plotted as a dotted line. The training

and the validation data sets include 78 and 20

samples, respectively.

For milling copper components, the best

models found for both the angle error (see

Table 1) and the depth error (see Table 2) are

the ARX and the OE models, which are found

to be totally equivalent according also to the

results in Figure 7. These models not only

present the lower loss function and generaliza-

tion error values, but also the higher system

representation indexes (FIT and FIT1). Finally,

the polynomials parameters for the OE and the

ARX models are presented in Tables 3 and 4,

respectively.

The same reasoning is followed for the alumi-

nium and the hardened steel components. The

best models found indexes values are presented

in Tables 5 and 6 for the aluminium components

and in Tables 9 and 10 for hardened steel, for the

angle and depth errors, respectively. In the case

of aluminium components, the best models

found are the OE and BJ models shown in

Tables 7 and 8.

From the graph (Figure 8), it can be con-

cluded that the BJ model is the best model for

simulating and predicting the behaviour of the

laser milled with an aluminium test piece for

both outputs: the angle error and the depth

error, as they meet the indicators and are cap-

able of modelling more than 99% of the true

measurements.

For hardened steel components, the best

models are presented in Tables 9 and 10 for the

angle error and the depth error, respectively;

while Figure 9 shows the one-step prediction
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Figure 7: Milling of copper components: (a) OE and ARX models for the angle error; (b) OE and

ARX models for the depth error. The real measurement (solid line), the simulated output and the one-

step prediction (dotted line) for OE and ARX models are shown.

c� 2011 Blackwell Publishing Ltd Expert Systems 13288 c� 2011 Blackwell Publishing LtdJExpert Systems, uly 2012, Vol. 29, No. 3



and the simulated output for the OE and the BJ

models.

From the graph [Figures 9(a) and 9(b)], it can

be concluded that the BJ model is the best model

for simulating and predicting the behaviour of

the laser-milled test piece of steal for angle error

better than the OE model. Also, the BJ and OE

models [Figure 9(c) and 9(d)] are capable of

simulating and predicting the behaviour of the

laser-milled piece of steal for depth error in the

same manner (see also Table 10). All these

models are capable of modelling more than

99% of the true measurements. The comparison

of the best models found is shown in Tables 9

and 10 by model function and type. The chosen

BJ and OE models are detailed in Tables 11

and 12.

The obtained models can be used not only to

predict the angle error and the depth error of the

test piece, but also to determine the optimal

conditions to minimize the error: considering

that it is a polynomial model, if all but one input

variable are fixed, the remaining variables could

be calculated and fixed to minimize the angle

error and the depth error of the test piece on the

flat metallic piece of copper, aluminium and

steel. So, in Figure 10, a graph of the errors in

the flat metallic piece of aluminium is shown

related to the others three input components:

power, speed and frequency.

Figure 10 shows the output response of the

two different errors: the angle error [Figure

10(a)] and depth error [Figure 10(b)] for differ-

ent input variable ranges. The angle error and

the depth can be zero for different values of

power and speed for a constant value of fre-

quency; i.e., it is possible to achieve an angle

error close to 0 for a laser power of 60% and a

0 2 4 6 8 10  12 14 16 18 20
–1

–0.5

0

0.5

Measured True (solid line) and
Estimate Output (dotted line)

0 2 4 6 8 10 12 14 16 18 20
–1

–0.5

0

0.5

Measured True (solid line) and
Estimate Output (dotted line)

0 2 4 6 8 10 12 14 16 18 20
–1

–0.5

0

0.5

1

1.5

Measured True (solid line) and
Estimate Output (dotted line)

0 2 4 6 8 10 12 14 16 18 20
–1

–0.5

0

0.5

1

1.5

Measured True (solid line) and
Estimate Output (dotted line)

a b

dc

Figure 8: Milling of aluminium components: (a) OE model for the angle error; (b) BJ model for the

angle error; (c) OE model for the depth error; (d) BJ model for the depth error. Representation of the

real measurement (solid line), the simulated output and the one-step prediction (dotted line) for OE

and BJ models.
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milling speed of 460mm=s. The X-axis shows

the variable range of power u1(t), from 50 to

100, as a percentage of the maximum power

performed by the laser (%) and the Y-axis

represents the variable range of speed u2(t), from

225 to 525, in mm=s. The variable frequency

u3(t) is fixed at 85 kHz. The errors of the test

piece are shown on the bars, which are distrib-

uted from � 0.41 to 0.11 and from � 0.05 to

0.25mm for the angle error y1(t) and the depth

error y2(t), respectively.

6. Conclusions and future work

This interdisciplinary research has presented a

detailed study for designing a three-step soft

computing procedure to identify the most ap-

propriate modelling system to solve a real-life

high precision industrial problem: the laser

milling of metal components. The procedure

has been validated with three different materi-

als: aluminium, copper and hardened steel. It is

worth mentioning that with classical and soft

computing techniques, two interesting variables

such as the angle error and the depth error have

been successfully modelled.

The purpose of this solution is to assist end-

users in choosing the correct operating condi-

tions of the tools, in this case, a laser mill. The

process data analysis included in this procedure

enables the users to apply this solution in

different scenarios (i.e., in dental milling, heater

system, incremental deformation, diagnostic

system, failure detection systems, water con-

sumption prediction, etc.). The expected results

include a reduced number of input variables due

to feature selection or extraction, using the most
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Figure 9: Milling hardened steel components: (a) OEmodel for the angle error; (b) BJ model for the

angle error; (c) OE model for the depth error; (d) BJ model for the depth error. Representation of the

real measurement (solid line), the simulated output and the one-step prediction (dashed line) for OE

and BJ models.
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informative features, so the complexity of the

model is relaxed. Previous contributions in the

literature are usually based in the prior process

knowledge – physical system information –,

which is not always feasible.

In the case of laser milling, the amount of

material removed is not only unknown as it

depends on the laser pulse characteristics,

but also difficult to estimate. Different ap-

proaches for estimating such variable – this is

the amount of material removed – have been

published, though they are based in a priori

specific knowledge of the system. Up to our

knowledge, these solutions were not valid as

Table 1: Milling of copper components

Model Performance indexes

Black-box OE model with nb1¼ 1, nb2¼ 4, nb3¼ 1, nf¼ 1, nk1¼ 1, nk2¼ 2,
nk3¼ 1. The model is estimated using the prediction error method; the
degree of the model selection is carried out from the best AIC criterion
(the structure that minimizes AIC)

FIT: 100%, FIT1: 100%
FIT10: 100%, V: 0.066
FPE: 1.1302, NSSE: 7.46e-31
Variance of e(t): 0.598

Black-box OE model with nb1¼ 1, nb2¼ 4, nb3¼ 1, nf¼ 1, nk1¼ 1, nk2¼ 3,
nk3¼ 1. The model is estimated using the prediction error method; the
degree of the model selection is carried out with the best AIC criterion
(the structure that minimizes AIC)

FIT: 100%, FIT1: 100%
FIT10: 100%, V: 0.011
FPE: 0.413, NSSE: 3.76e-30
Variance of e(t): 0.212

Black-box ARX model with na¼ 1, nb1¼ 1, nb2¼ 4, nb3¼ 1, nk1¼ 1,
nk2¼ 2, nk3¼ 1. The model is estimated using the least squares method,
QR factorization; the degree of the model selection is carried out with the
best AIC criterion (the structure that minimizes AIC)

FIT: 18.34%, FIT1: 11.13%
FIT10: 11.13%, V: 0.066
FPE: 0.1514, NSSE: 0.019

Black-box ARX model with na¼ 1, nb1¼ 1, nb2¼ 4, nb3¼ 1, nk1¼ 1,
nk2¼ 3, nk3¼ 1. The model is estimated using the least squares method,
QR factorization; the degree of the model selection is carried out with the
best AIC criterion (the structure that minimizes AIC)

FIT: 100%, FIT1: 100%
FIT10: 100%, V: 0.061
FPE: 0.139, NSSE: 1.68e-28
Variance of e(t): 0.22

Indicator values for several proposed models of the angle error.

Table 2: Milling of copper components

Model Performance indexes

Black-box OE model with nb1¼ 1, nb2¼ 4, nb3¼ 1, nf¼ 1, nk1¼ 1, nk2¼ 2,
nk3¼ 1. The model is estimated using the prediction error method; the
degree of the model selection is carried out from the best AIC criterion
(the structure that minimizes AIC)

FIT: 100%, FIT1: 100%
FIT10: 100%, V: 0.083
FPE: 1.42, NSSE: 1.21e-29
Variance of e(t): 0.755

Black-box OE model with nb1¼ 1, nb2¼ 4, nb3¼ 1, nf¼ 1, nk1¼ 1, nk2¼ 3,
nk3¼ 1. The model is estimated using the prediction error method; the
degree of the model selection is carried out with the best AIC criterion
(the structure that minimizes AIC)

FIT: 100%, FIT1: 100%
FIT10: 100%, V: 0.029
FPE: 1.047, NSSE: 2.63e-29
Variance of e(t): 0.538

Black-box ARX model with na¼ 1, nb1¼ 1, nb2¼ 4, nb3¼ 1, nk1¼ 1,
nk2¼ 2, nk3¼ 1. The model is estimated using the least squares method,
QR factorization; the degree of the model selection is carried out with the
best AIC criterion (the structure that minimizes AIC)

FIT: 43.58%, FIT1: 42.33%
FIT10: 42.33%, V: 0.101
FPE: 0.2315, NSSE: 0.0308

Black-box ARX model with na¼ 1, nb1¼ 1, nb2¼ 4, nb3¼ 1, nk1¼ 1,
nk2¼ 3, nk3¼ 1. The model is estimated using the least squares method,
QR factorization; the degree of the model selection is carried out with the
best AIC criterion (the structure that minimizes AIC)

FIT: 100%, FIT1: 100%
FIT10: 100%, V: 0.087
FPE: 0.198, NSSE: 3.60e-30
Variance of e(t): 0.313

Indicator values for several proposed models of the depth error.
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they used unobservable variables from the

process.

Nevertheless, this novel proposal allows hu-

man operators to provide values for a small

number of input variables out of the whole input

set and to obtain, by using in this case of study

the obtained model, the angle and the depth

values of the tool or piece, which are the final

operating parameters and the most difficult ones

to estimate. Thus, an important decrease in

Table 3: Milling of copper components

Parameters and polynomials

B1(q)¼ 0.03695 q� 1 F1(q)¼ 1þ 0.6718 q� 1

B2(q)¼ � 0.0001911 q� 3þ 0.000186 q� 4

� 0.0002806 q� 5þ 0.001646 q� 6
F2(q)¼ 1þ 0.5765 q� 1

B3(q)¼ � 0.01592 q� 1 F3(q)¼ 1þ 0.9986 q� 1

e(t) is white noise signal
with variance 0.21

Function and parameters that represent the behaviour of the laser-milled piece for the angle error. The degree of the OE

model polynomials are nb1¼ 1, nb2¼ 4, nb3¼ 1, nf¼ 1, nk1¼ 1, nk2¼ 3, nk3¼ 1. [1 4 1 1 1 3 1].

Table 4: Milling of copper components

Parameters and polynomials

A1(q)¼ 1þ 0.5261 q� 1 B1(q)¼ � 0.04465 q� 1

B2(q)¼ 0.0006061 q� 3

þ 0.0002783 q� 4þ 0.0001222 q� 5

� 0.001414 q� 6

B3(q)¼ 0.01051 q� 1

e(t) is white noise signal with variance 0.31

Function and parameters that represent the behaviour of the laser-milled piece for the depth. The degree of the ARX

model polynomials are na¼ 1, nb1¼ 1, nb2¼ 4, nb3¼ 1, nk1¼ 1, nk2¼ 3, nk3¼ 1. [1 1 4 1 1 3 1].

Table 5: Milling of aluminium components. Indicator values for several proposed models of the angle

error

Model Performance indexes

Black-box OE model with nb1¼ 2, nb2¼ 2, nb3¼ 1, nf¼ 2, nk1¼ 2, nk2¼ 2,
nk3¼ 1. The model is estimated using the prediction error method; the
degree of the model selection is carried out from the best AIC criterion
(the structure that minimizes AIC)

FIT: 30.73%, FIT1: 30.73%
FIT10: 30.73%, V: 0.117
FPE: 0.471, NSSE: 0.0617

Black-box OE model nb1¼ 3, nb2¼ 1, nb3¼ 1, nf¼ 2, nk1¼ 2, nk2¼ 1,
nk3¼ 1. The model is estimated using the prediction error method; the
degree of the model selection is carried out with the best AIC criterion
(the structure that minimizes AIC)

FIT: 51.76%, FIT1: 51.76%
FIT10: 51.76%, V: 0.1932
FPE: 0.80, NSSE: 0.0299

Black-box BJ model with nb1¼ 2, nb2¼ 2, nb3¼ 1, nc¼ 3, nd¼ 2, nf¼ 2,
nk1¼ 2, nk2¼ 2, nk3¼ 1. The model is estimated using the prediction error
method; the degree of the model selection is carried out with the best AIC
criterion (the structure that minimizes AIC)

FIT: 44.44%, FIT1: 64.41%
FIT10: 36.81%, V: 0.053
FPE: 0.588, NSSE: 0.016

Black-box BJ model with nb1¼ 3, nb2¼ 1, nb3¼ 1, nc¼ 3, nd¼ 2, nf¼ 2,
nk1¼ 2, nk2¼ 1, nk3¼ 1. The model is estimated using the prediction error
method; the degree of the model selection is carried out with the best AIC
criterion (the structure that minimizes AIC)

FIT: 99.53%, FIT1: 99.41%
FIT10: 99.53%, V: 0.104
FPE: 1,46, NSSE: 4.49e-6
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operation start-up costs is obtained, represent-

ing the main advantage of this proposal.

The main drawback of this process is that it

cannot be completely automated because the

need of experts taking part in the whole proce-

dure as in some steps unsupervized learning is

applied. Finally, it is remarkable the high preci-

sion of the obtained models as they have been

found with negligible error in mostly all the

cases. This is especially truth for the copper

components, while for the aluminium and steel

components the errors are lightly higher. It is

Table 6: Milling of aluminium components. Indicator values for several proposed models of the depth

error

Model Performance indexes

Black-box OE model with nb1¼ 2, nb2¼ 2, nb3¼ 1, nf¼ 2, nk1¼ 2, nk2¼ 2,
nk3¼ 1. The model is estimated using the prediction error method; the
degree of the model selection is carried out from the best AIC criterion
(the structure that minimizes AIC)

FIT: 61.09%, FIT1: 61.09%
FIT10: 61.09%, V: 0.296
FPE: 1.18, NSSE: 0.0526

Black-box OE model with nb1¼ 1, nb2¼ 3, nb3¼ 1, nf¼ 2, nk1¼ 1, nk2¼ 3,
nk3¼ 1. The model is estimated using the prediction error method; the
degree of the model selection is carried out with the best AIC criterion
(the structure that minimizes AIC)

FIT: 92.98%, FIT1: 92.98%
FIT10: 92.98%, V: 0.174
FPE: 0.874, NSSE: 0.0017

Black-box BJ model with nb1¼ 2, nb2¼ 2, nb3¼ 1, nc¼ 3, nd¼ 2, nf¼ 2,
nk1¼ 2, nk2¼ 2, nk3¼ 1. The model is estimated using the prediction error
method; the degree of the model selection is carried out with the best AIC
criterion (the structure that minimizes AIC)

FIT: 68.12%, FIT1: 63.02%
FIT10: 58.29%, V: 0.138
FPE: 1.52, NSSE: 0.047

Black-box BJ model with nb1¼ 1, nb2¼ 3, nb3¼ 1, nc¼ 3, nd¼ 2, nf¼ 2,
nk1¼ 1, nk2¼ 3, nk3¼ 1. The model is estimated using the prediction error
method; the degree of the model selection is carried out with the best AIC
criterion (the structure that minimizes AIC)

FIT: 100%, FIT1: 100%
FIT10: 100%, V: 0.0237
FPE: 0.45, NSSE: 1.96e-20

Table 7: Milling of aluminium components

Parameters and polynomials

B1(q)¼ � 0.00552 q� 2� 0.006068 q� 3� 0.003629 q� 4 D(q)¼ 1� 1.804 q� 1þ 0.9627 q� 2

B2(q)¼ � 0.0001954 q� 1 F1(q)¼ 1þ 0.4775 q� 1þ 0.1816 q� 2

B3(q)¼ 0.004336 q� 1 F2(q)¼ 1� 0.4527 q� 1þ 0.8147 q� 2

C(q)¼ 1� 1.553 q� 1þ 0.555 q� 2þ 0.262 q� 3 F3(q)¼ 1� 0.554 q� 1þ 0.0992 q� 2

e(t) is white noise signal with variance 0.78

Function and parameters that represent the behaviour of the laser-milled piece for the angle error. The degree of the BJ

model polynomials are nb1¼ 3, nb2¼ 1, nb3¼ 1, nc¼ 3, nd¼ 2, nf¼ 2, nk1¼ 2, nk2¼ 1, nk3¼ 1. [3 1 1 3 2 2 2 1 1].

Table 8: Milling of aluminium components

Parameters and polynomials

B1(q)¼ � 0.00909 q� 1 D(q)¼ 1� 0.2621 q� 1 � 0.7457 q� 2

B2(q)¼ 0.001451 q� 3� 0.001019 q� 4� 0.0001008 q� 5 F1(q)¼ 1� 0.3072 q� 1þ 0.7465 q� 2

B3(q)¼ � 0.01077 q� 1 F2(q)¼ 1� 0.1005 q� 1þ 0.5109 q� 2

C(q)¼ 1þ 0.243 q� 1þ 0.7044 q� 2� 0.4622 q� 3 F3(q)¼ 1þ 0.9133 q� 1þ 0.53 q� 2

e(t) is white noise signal with variance 0.23

Function and parameters that represent the behaviour of the laser-milled piece for the depth error. The degree of the BJ

model polynomials are nb1¼ 1, nb2¼ 3, nb3¼ 1, nc¼ 3, nd¼ 2, nf¼ 2, nk1¼ 1, nk2¼ 3, nk3¼ 1. [1 3 1 3 2 2 1 3 1].
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Table 9: Milling hardened steel components

Model Performance indexes

Black-box OE model with nb1¼ 2, nb2¼ 1, nb3¼ 1, nf¼ 2, nk1¼ 1, nk2¼ 1,
nk3¼ 1. The model is estimated using the prediction error method; the
degree of the model selection is carried out from the best AIC criterion
(the structure that minimizes AIC)

FIT: 44.04%, FIT1: 44.04%
FIT10: 44.04%, V: 0.02
FPE: 0.23, NSSE: 7.71e-4

Black-box OE model nb1¼ 1, nb2¼ 1, nb3¼ 1, nf¼ 2, nk1¼ 1, nk2¼ 1,
nk3¼ 1. The model is estimated using the prediction error method; the
degree of the model selection is carried out with the best AIC criterion
(the structure that minimizes AIC)

FIT: 21.2%, FIT1: 21.2%
FIT10: 21.2%, V: 0.023
FPE: 0.162, NSSE: 0.0015

Black-box BJ model with nb1¼ 1, nb2¼ 1, nb3¼ 1, nc¼ 2, nd¼ 2, nf¼ 2,
nk1¼ 1, nk2¼ 1, nk3¼ 1. The model is estimated using the prediction error
method; the degree of the model selection is carried out with the best AIC
criterion (the structure that minimizes AIC)

FIT: 100%, FIT1: 100%
FIT10: 100%, V: 0.12
FPE: 0.27, NSSE: 2.73e-31

Black-box BJ model with nb1¼ 2, nb2¼ 1, nb3¼ 1, nc¼ 2, nd¼ 2, nf¼ 2,
nk1¼ 1, nk2¼ 1, nk3¼ 1. The model is estimated using the prediction error
method; the degree of the model selection is carried out with the best AIC
criterion (the structure that minimizes AIC)

FIT: 100%, FIT1: 100%
FIT10: 100%, V: 0.97
FPE: 1,75, NSSE: 4.17e-30

Indicator values for several proposed models of the angle error.

Table 10: Milling hardened steel components

Model Performance indexes

Black-box OE model with nb1¼ 1, nb2¼ 2, nb3¼ 1, nf¼ 2, nk1¼ 1, nk2¼ 2,
nk3¼ 1. The model is estimated using the prediction error method; the
degree of the model selection is carried out from the best AIC criterion
(the structure that minimizes AIC)

FIT: 100%, FIT1: 100%
FIT10: 100%, V: 0.051
FPE: 0.636, NSSE: 1.08e-27

Black-box BJ model with nb1¼ 1, nb2¼ 3, nb3¼ 1, nc¼ 2, nd¼ 1, nf¼ 1,
nk1¼ 1, nk2¼ 2, nk3¼ 1. The model is estimated using the prediction error
method; the degree of the model selection is carried out with the best AIC
criterion (the structure that minimizes AIC)

FIT: 100%, FIT1: 100%
FIT10: 100%, V: 0.07
FPE: 1.331, NSSE: 1.24e-28

Black-box BJ model with nb1¼ 2, nb2¼ 2, nb3¼ 2, nc¼ 2, nd¼ 1, nf¼ 1,
nk1¼ 2, nk2¼ 2, nk3¼ 1. The model is estimated using the prediction error
method; the degree of the model selection is carried out with the best AIC
criterion (the structure that minimizes AIC)

FIT: 65.16%, FIT1: 59.98%
FIT10: 63.32%, V: � 0.12
FPE:0.471, NSSE:0.0014

Indicator values for several proposed models of the depth error.

Table 11: Milling hardened steel components

Parameters and polynomials

B1(q)¼ 0.01269 q� 1 D(q)¼ 1þ 1.208 q� 1þ 0.3098 q� 2

B2(q)¼ 0.0004895 q� 1 F1(q)¼ 1þ 0.4094 q� 1� 0.16 q� 2

B3(q)¼ 0.01366 q� 1 F2(q)¼ 1� 1.678 q� 1þ 0.7838 q� 2

C(q)¼ 1þ 1.541 q� 1þ 1.02 q� 2 F3(q)¼ 1� 1.1 q� 1þ 0.7671 q� 2

e(t) is white noise signal with variance 0.08

Function and parameters that represent the behaviour of the laser-milled piece for the angle error. The degree of the BJ

model polynomials are nb1¼ 1, nb2¼ 1, nb3¼ 1, nc¼ 2, nd¼ 2, nf¼ 2, nk1¼ 1, nk2¼ 1, nk3¼ 1. [1 1 1 2 2 2 1 1 1].
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expected that these models would be outper-

formed introducing different training techni-

ques, which are left as future work.

Future work will focus on the study and

application of this model to other kinds of

materials of industrial interest, such as cast

single-crystal nickel super-alloys for high-pres-

sure turbine blades, and also on the application

of this model to the optimization of different but

similar industrial problems, such as laser clad-

ding, laser super-polishing and laser drilling.

Another interesting application and real-world,

large-scale scenario is in medical therapeutics

(odonto-stomatology) for bucco-dental rehabi-

litation and restoration in the processing and

manufacturing of bucco-dental prosthesis, such

as partial crowns, inlays and onlays, and partial

and complete prosthesis fitted on structures of

different metals, such as titanium, chrome co-

balt, noble metals, etc., in which the optimizing

of the registering and mapping of the surgical

field to be operated on is required.

In addition, the analysis of different connec-

tionist models will be applied for feature selection.
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RADUCANU, B., Ã.J. VITRI and A. LEONARDIS (2010) On-
line pattern recognition and machine learning techni-
ques for computer-vision: theory and applications,
Image and Vision Computing, 28, 1063–1064.

SEUNG, H., N. SOCCI and D. LEE (1998) The rectified
Gaussian distribution, Advances in Neural Informa-
tion Processing Systems, 10, 350–356.
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