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We consider a two-period airline yield management problem where customers may act 

strategically. Specifically, we allow for the possibility that a customer may decide to defer 

purchase in the hope that a ticket cheaper than those currently on offer will become available. 

We also allow for the possibility that some customers will buy a more expensive ticket if the 

cheaper tickets are not available. We show how to find optimal booking limits in the presence of 

such strategic customer behavior. We also explicitly incorporate the fact that, once a booking 

limit has been reached, demand distributions are now censored distributions. 

Introduction 

During any given period, an airline has an inventory of seats available for sale in different fare 

classes. Using purchase patterns and projections of future sales in the various fare classes, an airline will 

typically move inventory between classes in order to maximize expected revenue. Littlewood (1972) 

considered a one-period model with two fare classes. Belobaba (1989) developed the expected marginal 

seat revenue (EMSR) approach which extended Littlewood’s one-period model to the case of multiple 

fares. Pfeifer (1989), Bodily and Weatherford (1995), Belobaba and Weatherford (1996) and 

Weatherford et al. (1993) analyze single-period models where a customer may buy a more expensive 

ticket if cheaper ones are not available. Sen and Zhang (1999) analyze a single-period model with two 

fare classes where it is assumed that a certain fraction of customers will purchase the more expensive 

item if cheaper ones are not available. For this case, they provide a procedure for finding the booking 

limit (the limit on the number of items that can be sold at a cheaper price) that maximizes the 

company’s expected revenue. 

An airline, of course, has many opportunities for the reallocation of seats to fare classes. Single- 

period models are certainly valuable and provide insight. However, ideally, models that take advantage 

of the fact that allocations can be made during different periods are desirable. Belobaba’s EMSR model 



can be repeatedly applied to allow for multiple periods. The early approaches to deal with the flexibility 

in resetting booking limits simply reapplied the static one- period models, in what has been termed 

advanced static approaches (Weatherford and Bodily, 1992). Robinson (1995) develops an optimal 

multi-period approach using Monte Carlo integration. Robinson assumes that customers arrive in 

sequential fare order, low to high, in each of the periods with demands across periods assumed to be 

independent. This approach allows for the realization that posted fares are not monotonic as currently 

closed cheaper fares are often available in the future. Both the re-application of single-period 

approaches or multi-period approaches like Robinson’s assume that demands in each fare class are 

independent and that customers do not behave strategically. 

A separate stream of research that does not incorporate diversion has used dynamic 

programming formulations to develop optimal dynamic allocations. Hersh and Ladany (1978) and 

Ladany and Bedi (1977) use dynamic programming in allocating seats on a two-segment flight. Gerchak 

et al. (1985) develop a model equivalent to a two fare airline model, with Lee and Hersh (1993) 

developing extensions for more than two fares. Lee and Hersh break the decision horizon into numerous 

stages such that only one request is received per period, enabling a finite state space. The work of Lee 

and Hersh, in particular their use of numerous short periods, has formed the basis of considerable 

further research.  

Anderson and Wilson (2003) investigated the effect on revenue when customers behave 

strategically (defer purchase in the hope that a cheaper ticket will become available) but booking limits 

are set assuming that demands in each period for each fare class are independent. In this paper, we 

start to address the problem of how to modify the booking limits to make allowance for such strategic 

behavior. Following Robinson (1995), we assume customers arrive in fare order within a period. We 

allow for diversion as discussed by Pfeifer (1989) and include the realization that demands between 

periods (and fare classes) are potentially dependent as a function of diversion and potential strategic 

behavior. 

Optimal Two-Period Model 

We will analyze the situation where there are two periods and two fare classes. As in Robinson 

(1995), we assume that low fare customers arrive before high fare customers in each period. However, 

we now extend that approach by assuming that a fraction of customers in the first period who cannot 

get a low fare will purchase the high fare and a fraction will wait until the second period in the hope that 

a low fare will become available. In the second and final period we assume that a fraction of customers 



who cannot get a low fare will buy a higher fare. Optimal results for the single period, two fare class 

problem are relatively recent (Sen and Zhang, 1999) and will provide the foundation for solving the two-

period problem. Assume that in period i,a fraction di (i=1,2) of customers will purchase the more 

expensive ticket if the cheaper one is not available. We allow for consumer strategic behavior by 

assuming that a fraction w will wait until period 2 if a cheap fare is not available in period 1. The capacity 

at the beginning of period 1 will be denoted C and the capacity at the beginning of period 2 denoted c, 

with C-c>0 the seats sold in period 1. There are two fare classes with revenues of r1 and r2, where r1<r2. 

For i, jϵ1, 2, the demand for fare class j in period i will be denoted by Di,j. The corresponding density 

function will be denoted by fi,j(·). 

In the second period the optimal booking limit is a function of the remaining capacity and of the 

first period booking limit if that limit was reached. The procedure for finding the optimal booking limits 

for the second period is outlined in Section 2.1. The distribution of capacity at the beginning of the 

second period is derived in Section 2.2. The procedure for finding the optimal booking limit in the first 

period is provided in Section 2.3. 

Booking Limits and Expected Returns for Period 2 

Suppose the booking limit for period 1 is l1. Then, given this l1, the optimal booking limit in 

period 2 is a function of the capacity at the end of period 1 and whether or not lower fare demand in the 

first period exceeded the booking limit. Let l2(c) denote the booking limit in period 2 if the capacity at 

the end of period 1 is c and the booking limit l1 was not reached in period 1. In this case, there are no 

customers who wait until period 2 in the hope of obtaining a cheaper fare as plenty of these fares were 

available in period 1. Let l1(c, l1) denote the optimal booking limit in period 2 if all l1 of the cheap fares 

are sold in period 1 and c seats remain going into period 2. For this case, some of the customers unable 

to obtain a cheaper fare in period 1 will try again in period 2. The precise number of such customers is, 

however, unknown because the number of lower fare customers in period 1 is censored at l1.  

Consider the case where the booking limit for the cheaper fare is l1 in period 1, D1,1 is less than l1 

and there is capacity c going into the second period. Then the optimal booking limit, l2(c), for the 

cheaper fare in period 2 is either 0, c or the value of l2 that satisfies the following equation (rearrange 

expression (9) of Sen and Zhang, 1999): 



(1) 

 

Now, suppose that l1 is the booking limit in period 1, that all of these seats are sold and that 

there are c unsold seats going into the second period. In this situation, all that is known about the 

demand for the cheaper seats in period 1 is that it was at least l1. The conditional distribution function 

for the number of customers, Y, who will wait until the second period is  

(2) 

 

Differentiate the above to see that the density function for Y is given by 

(3) 

 

The demand for cheaper fares in period 2 is D2,1 plus the demand from those customers who 

wait for period 2. Obtaining the optimal booking limit for the second period now becomes a one- period 

problem and can be found from (1) by replacing D2,1 with D2,11Y. Denote this random variable by 

D2,1(l1). Replace P[D2,1<2] in (1) with  



(4) 

 

(5) 

 

Now the optimal booking limit in period 2, l2(c, l1), is a function of both l1 and the number of 

available seats. Use (4) and (5) in (1) to see that l2(c, l1) is either 0, c or the value of l2 that satisfies the 

following equation: 

(6) 

 

If the capacity going into the second period is c and the booking limit is not reached in period 1, 

then the expected revenue for the second period can be written as  

(7) 

 

If the capacity is c going into the second period and the booking limit l1 is reached in period 1, 

then the expected return in the second period is given by (7) with D2,1 and l2(c) replaced by D2,1(l1) and 

l2(c, l1), respectively. The above is straightforward to calculate and explicit formulas can be found in Sen 

and Zhang (1999). 



Example 

2.1.1. Example Assume that 40% of customers are willing to wait from period to period for 

cheaper fares, and 10% of customers are willing to buy more expensive fares if cheaper ones are sold 

out. Plane capacity is 50 with demand being normally distributed with μ=15 and σ=3 for each fare class 

in each period, i.e. total demand has μ =60 and σ =6. 

Figure 1 shows optimal period 2 booking limits as a function of remaining capacity and first 

period booking limits when first period demand met the booking limit. Figure 2 shows the expected 

revenues under the same setting. As expected, revenues and booking limits increase as more capacity is 

available. As l1 increases, fewer customers are expected to wait until the second period. Consequently, 

the pool of potential diverters to the more expensive fare becomes smaller which means the optimal 

booking limit in period 2 increases. 



 

 



 

Figure 3 shows expected revenue and optimal booking limits (OBL) as a function of remaining 

capacity when first period demand is less than booking limits (D1,1<l1). Here revenues and booking limits 

are not a function of l1 as no customers need to wait and simply increase with available capacity. 

2.2. Density functions for capacity 

The capacity, C(l1), remaining at the beginning of the second period is given by:  

(8) 

 

Let g1(c, l1) denote the density function for C(l1) conditioned on the assumption that D1,1<l1 and 

C(l1)>0 and let g2(c, l1) denote the density conditioned on D1,1>l1 and C(l1)>0, i.e. 



(9) 

 

and, 

(10) 

 

The denominations in (9) and (10) are given by 

(11) 

 

and 

 

(12) 

 

respectively. 

If D1,1>l1, then there are C-l1 seats available at the higher price and seats will only be available for 

period 2 if D1,2+d1(D1,1-l1), the demand for the more expensive fares in period 1, is less than C-l1. If this 

happens, then C(l1)<c only if C-l1-D1,2-d1(D1,1-l1)<c. Consequently, computing the denominator in (10) 

requires integration over the regions I and II shown in Fig. 4.  



(13) 

 

Differentiate the above with respect to c and use (10) to see that 

(14) 

 

If D1,1<l1, then C(l1)=C-D1,1-min(C-D1,1, D1,2) and seats will be available in period 2 only if C-D1,1-

D1,2>0. In this case, the number of seats will be less than c if C-D1,1-D1,2<c. The shape of the region 

represented by the previous two inequalities and D1,1<l1 depends on the value of c. From Figs 5 and 6, 

there are two cases to be considered in finding the value of g(c, l1) depending on the value of c. 

Case 1: c<C-l1. From (8) and Fig. 5 

(15) 

 

Differentiate with respect to c and use (9) to see that 



(16) 

 

 

 

Case 2: c>C-l1. From (9) and Fig. 6 

(17) 

 

Differentiate the above and use (9) to see that  



(18) 

 

The Two-Period Expected Return 

Suppose the booking limit for the first period is l1 and that optimal booking limits l2(c) and l2(c, 

l1) for the second period are found using the procedure in Section 2.1. We will show how to write the 

expected return for both periods assuming l1 is the first period booking limit. Finding the optimal l1 then 

becomes a one-dimensional numerical search. 

The expected revenue for the first period can be written as  

(19) 

 

The above is straightforward to calculate and explicit formulas can be found in Sen and Zhang 

(1999). 

If demand for the cheaper fares in the first period does not reach the booking limit l1, then no 

customers need wait until period 2 to obtain a cheap fare. Otherwise, a fraction w of those who could 

not get a cheap fare will wait until the second period. The contribution to total expected revenue from 

the former case is given by 

(20) 

 

while that from the latter is provided by 



(21) 

 

For each value of c, all of the expected values in the integrands of (20) and (21) can be explicitly 

calculated in a manner similar to calculating (19). Explicit formulas for g1(c, l1) and g2(c, l1) have been 

provided in Section 2.2. Thus, evaluating (20) and (21) is a straightforward numerical procedure.  

The expected return for the two periods is given by adding (19), (20) and (21). 

Example Continued 

Continuing the example of Section 2.1.1, using the same parameters, Figs 7 and 8 display the 

total expected revenue as a function of the booking limit in period 1 for a series of ranges for the 

fractions that wait and divert. For the case where the fraction diverting in both periods is 0.1, Fig. 7 

displays optimal booking levels and expected revenue as a function of the fraction willing to wait, where 

this fraction varies from 0.4 to 0.1. As the fraction willing to wait decreases, period 1 optimal booking 

limits increase from 5 to 10. 

For the case where the fraction willing to wait is 0.1, Fig. 8 displays optimal booking levels and 

expected revenue as a function of the fraction buying-up. For fractions willing to divert >0.2, the optimal 

booking limit in period 1 is zero. 

If no strategic consumer behavior is assumed, then the sequential application of static single- 

period models, referred to as advanced static allocation (Weatherford and Bodily, 1992), would suggest 

a booking limit of 20. (In applying EMSR to a two-period model, the idea is to combine both periods into 

one, arrive at a booking limit and then revisit at period 2 when the first period demand has been 

observed.) Figures 7 and 8 illustrate that optimal booking limits decrease dramatically as a function of 

strategic behavior. The service provider is motivated to become more restrictive in its capacity 

allocation, initially releasing less inventory at lower prices as the level of strategic behavior increases. 

Table 1 summarizes expected revenues if the airline had used EMSR type rules in the presence 

of strategic behavior. As the table indicates, not accounting for strategic behavior results in revenue 

losses in excess of 10% under certain parameter settings. 



 

 

 



Conclusion 

Finding optimal booking limits for multi-period perishable asset revenue management models 

has proven to be a difficult task. Many of the multi-period models in the literature are heuristic in 

nature. Allowing customers to behave strategically by either diverting to another product or waiting to 

see whether or not a cheaper product will become available adds greatly to the modeling complexity. 

Anderson and Wilson (2003) showed that if customers behave strategically and firms allocate capacity 

via traditional approaches (independent product classes with non- strategic behavior) revenue losses to 

service providers can exceed 7%. Customer diversion for one- period models has been investigated by a 

number of researchers. The contribution of this work is to demonstrate that finding optimal booking 

limits for a two-period model where customers may wait can be reduced to solving a number of 

straightforward one-dimensional problems. 
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