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Abstract

The Department of Homeland Security (DHS) provides funding to 50 states, the District of Columbia, and
seven US territories through a consolidated program called the Homeland Security Grant Program
(HSGP). There has been much controversy about the lack of structure in HSGP and the method it employs
to allocate funds to the states and territories. Slice is a threat–response multi-criteria decision model that
systematically evaluates the threats and responses of securing the states and territories. The Analytic
Hierarchy Process (AHP) and probability elicitation methods are used to capture the objective and
subjective judgments used in Slice. The probability calibration and entropy methods are used along with
the utility theory to obtain a composite weighted score for each state and territory. These weighted scores
are combined with the population scores in a structured framework to determine the amount of funding for
the states and territories.

Keywords: multi-criteria decision-making; threat–response analysis; homeland security funding; analytic hierarchy

process; probability calibration; entropy method; utility theory

1. Introduction

The attacks of September 11, 2001 have drastically heightened the US Government’s fears of
possible terrorist threats. The range of possible attack scenarios is undeniably complex and their
probabilities are extremely difficult to quantify. There has been no shortage of recommendations
from both federal and state governments as to the best strategy for protecting the United States.
The Department of Homeland Security (DHS) was established to provide the unifying core for
the vast national network of organizations and institutions involved in efforts to secure the United
States. The DHS leverages resources within federal, state, and local governments by coordinating
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the transition of multiple agencies and programs into a single, integrated agency focusing on
protecting the homeland. DHS assists state and local jurisdictions to prevent, respond to, and
recover from incidents of terrorism involving chemical, biological, radiological, nuclear, or
explosive weapons, and cyber attacks. DHS allocates its national budget between 50 states, the
District of Columbia, and seven US territories through a consolidated program called the
Homeland Security Grant Program (HSGP). There has been much controversy about the lack of
structure in HSGP and the method it employs to allocate funds to the states and territories.
Approximately $2.5 billion each year is allocated through the SHGP among the states and

territories. Financial allocations in 2003 and 2004 were based on a formula that consisted of
guaranteeing each state a 0.75% amount of total program appropriations and the remainder of
appropriations based on the state’s population percentage of the national population. In 2005,
Congress required DHS to allocate funding in the same manner as in 2004. In 2006, DHS decided
to allocate funding to states based on risk and need, rather than on population. Each state would
receive no less than 0.25% of total program appropriation. The current approach evaluates both
risks to assets as well as risks to populations and geographic areas. Coats et al. (2006) and Kersten
(2005) argue that this minimum state allocation process is inefficient and results in uneven per
capita allocations. In addition to this inefficiency, the minimum state allocation process sends
funds to more rural areas at less risk (Roberts, 2005).
Tensions between different branches of government over homeland security funding allocation

criteria and mechanisms are abundant. Evaluating multiple programs competing for scarce
resources and selecting those programs that will satisfy conflicting objectives is a difficult and
complex task. This process is even more complex in the government sectors because it may reflect
political issues resulting in the exclusion of technical or more rational considerations. Almost all
stakeholders agree that a more rational funding system based on threat, vulnerability and risk of
terror attack, and population is needed (Brunet, 2005; Reese, 2005; Clarke and Chenoweth, 2006).
However, the critical question remains unanswered, how much money should states and
territories receive for terrorism prevention and preparedness?
The primary goal in multi-criteria decision-making (MCDM) is to provide a set of criteria

aggregation methodologies for considering the preferential system and judgments of decision
makers (DMs) (Doumpos and Zopounidis, 2002). This is a difficult task requiring the
implementation of complex processes. Although intuition and simple rules are still popular
decision-making methods, they may be dangerously inaccurate for complex decisions such as
homeland security. Roy (1990) argues that solving MCDM problems is not searching for an
optimal solution, but rather helping DMs master the complex judgments and data involved in
their problems and advance toward an acceptable solution. Multi-criteria analysis is not an off-
the-shelf recipe that can be applied to every problem and situation. Methods should be chosen
carefully according to the quantity and quality of the available judgments and data, the nature of
the problem, and the expectations of the DMs. The development of MCDM models is often
dictated by real-life problems. Therefore, it is not surprising that methods have appeared in a
rather diffuse way, without any clear general methodology or basic theory (Vincke, 1992).
Traditionally, MCDM frameworks fall into three categories: the multi-objective value analysis

(Keeney and Raiffa, 1976), the outranking method (Vincke, 1992), and the interactive methods
(Vanderpooten and Vincke, 1989). The selection of a framework depends on the nature of the
problem including the type of choices, measurement scales, importance weights, dependency
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among the criteria, and the type of uncertainty (Vincke, 1992). The integration of several
mathematically sound techniques can reduce the difficulties in the selection of an appropriate
framework. Finding the ‘‘best’’ MCDM framework is an elusive goal that may never be reached
(Triantaphyllou, 2000). Pardalos and Hearn (2002) discuss the importance of exploring ways of
combining criteria aggregation methodologies to enable the development of models that consider
the DM’s preferential system in complex problems. Belton and Stewart (2002) also argue the need
for integrating frameworks in MCDM.
Slice1 is a MCDMmodel that systematically considers the threats and responses of securing the

states and territories into a structured framework to determine the amount of funding for the
states and territories. Slice is not intended to imply a deterministic approach to homeland security
funding allocation. Homeland security funding is a complex problem requiring compromise and
negotiation between stakeholders from various branches of government. Slice creates an even
playing field to pursue consensus. The analytical processes in Slice help DMs decompose complex
MCDM problems into manageable steps, making this model accessible to a wide variety of
situations. Although technical details of Slice are complex, the basic concepts are not difficult to
understand. As such, the DMs can use available analytical tools and techniques with some
assistance from the experts (Schoemaker and Russo, 1993). The objective and subjective
judgments captured by Slice are processed with the Analytic Hierarchy Process (AHP),
Probability Calibration, the Entropy Method, and Utility Theory to obtain a composite weighted
score for each state and territory. These weighted scores are combined with population scores in a
structured framework to determine the amount of funding for the states and territories and to
create an even playing field for pursuing consensus.

2. Procedure and model description

Slice utilizes environmental scanning to identify and quantify the relevant threats and responses
associated with each state and territory receiving funding from the DHS. Environmental scanning
is the acquisition and use of information about opportunities and threats in an organization’s
external environment, the knowledge of which would assist management in planning the
organization’s future course of action (Aguilar, 1967; Albright, 2004). Environmental scanning is
an early warning system that scans the environment systematically and identifies new and
unexpected threats and responses. Effective environmental scanning provides the strategic
intelligence needed for Slice to understand and assess current and potential threats and responses.
A nine-step procedure systematically evaluates potential threats and responses by calculating an
allocation score associated with each recipient. The allocation scores are then used in the model to
allocate federal homeland security funds to each state and territory. Details for calculating these
scores are presented in the next section. The nine steps associated with Slice are as follows:

(1) Define program-related weights.
(2) Identify threats and responses within each program.

1The model is referred to as ‘‘Slice’’ because it attempts to provide each state or territory with their share (slice) of the

total program budget (pie).
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(3) Define subjective weights associated with the threats and responses.
(4) Develop a set of subjective probabilities for the threats and responses.
(5) Calibrate the subjective probabilities of the threats and responses.
(6) Revise the subjective weights of the threats and responses with their intrinsic weights.
(7) Measure the risk-aversion constant of the threats and responses.
(8) Calculate the allocation score of each recipient.
(9) Allocate funds according to the normalized allocation and population scores.

Each of these steps is described below.
(1) Define program-related weights: Initially, the subjective weights representing the relative

importance of the HSGPs for the threats ðW 0
ci
) and responses ðW 0

bi
Þ are determined. In the past,

such weights have been assessed directly by DMs using a scale ranging from 05unimportant to
15 important (David, 1986, 1993). Slice uses AHP (Saaty, 1989, 1994; Saaty and Vargas, 2001) to
calculate these weights. An advantage of AHP is its capability to measure the consistency of the
DM while making pairwise comparisons of the relative importance of the programs. AHP is a
widely used technique and an earlier survey listed well over 200 applications of AHP in the
literature (Zahedi, 1986). Assuming that c1, c2, . . ., cg are the g programs that contribute to the
overall goal of homeland security, the DM’s goal is to assess their relative importance.
First, the DM compares each possible pair cj, ck of programs and provides judgments about

which programs are more important and by how much. AHP quantifies these judgments and
represents them in a g� g matrix:

A ¼ ðajkÞ ðj; k ¼ 1; 2; . . . ; gÞ:

If cj is judged to be of equal importance as ck, then ajk 5 1; if cj is judged to be more important
than ck, then ajk41; and if cj is judged to be less important than ck, then ajko1.

ajk ¼ 1=akj; ajk 6¼ 0:

Because the entry ajk is the inverse of the entry akj, the matrix A is a reciprocal matrix. ajk
reflects the relative importance of cj compared with program ck. Next, the vector w representing
the relative weights of each of the g programs can be found by computing the normalized
eigenvector corresponding to the maximum eigenvalue of matrix A. An eigenvalue of A is defined
as l which satisfies the following matrix equation: A w5 l w, where l is a constant, called the
eigenvalue, associated with the given eigenvector w. Saaty (1983) has shown that the best estimate
of w is the one associated with the maximum eigenvalue (lmax) of the matrix A. Because the sum
of the weights should be equal to 1.00, the normalized eigenvector is used.
AHP encourages DMs to be consistent in their pairwise comparisons. Saaty (1983) suggests a

measure of consistency for the pairwise comparisons. When the judgments are perfectly
consistent, the maximum eigenvalue, lmax, should equal g, the number of programs that are
compared. In general, the responses are not perfectly consistent, and lmax is greater than n. The
larger the lmax, the greater is the degree of inconsistency. Saaty (1983) defines the consistency
index (CI) as (lmax� g)/(g� 1), and provides a random index (RI) table for matrices of order 3 to
10. The RIs are based on a simulation of a large number of randomly generated weights. Saaty
(1983) recommends the calculation of a consistency ratio (CR), which is the ratio of CI to the RI
for the same order matrix. A CR of 0.10 or less is considered acceptable. When the CR is
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unacceptable, the DM is made aware that the pairwise comparisons are logically inconsistent and
is encouraged to revise them.
There has been some criticism of AHP in the operations research literature. Harker and Vargas

(1987) show that AHP does have an axiomatic foundation, the cardinal measurement of
preferences is fully represented by the eigenvector method, and the principles of hierarchical
composition and rank reversal are valid. On the other hand, Dyer (1990a) has questioned the
theoretical basis underlying AHP and argues that it can lead to preference reversals based on the
alternative set being analyzed. In response, Saaty (1990a) explains how rank reversal is a positive
feature when new reference points are introduced. Slice employs the geometric aggregation rule to
avoid the controversies associated with rank reversal (Dyer 1990a, b, Harker and Vargas 1990,
Saaty 1990b). Alternatively, AHP can be easily replaced with any other appropriate weight
assessment method in Slice.
(2) Identify threats and responses within each program: A major difficulty in MCDM is when

decision criteria are grouped into opposite categories, usually called ‘‘cost’’ and ‘‘benefit’’ criteria.
In this study, a ‘‘threat’’ is considered a cost criteria and a ‘‘response’’ is considered a benefit
criteria. Threats have an increasing effect in Slice while responses have a reducing effect in the
model. In general, higher probabilities of occurrence for threats results in more funding while
higher probabilities of occurrence for responses results in less funding for a recipient. For
example, a higher probability of occurrence for a threat factor such as ‘‘Threat of attack on
skyscrapers’’ should result in more funding to a state or territory. In contrast, a higher probability
of occurrence for a response factor such as ‘‘Responsiveness of disaster recovery plans’’ should
result in less funding to a state or territory.
(3) Define subjective weights associated with the threats and responses: Next, the subjective

importance weights associated with the threats ð �W 00
cij
Þand responses ð �W 00

bij
Þ are determined. Again,

AHP is used to simplify this subjective estimation process by confining the DMs’ judgments
concerning the pairwise comparisons of threats and responses within each program. Direct
derivation could be used to derive the W0s objectively and directly from the W00s in small problems.
However, in large problems, direct derivation is cumbersome and infeasible as AHP requires
n2 � n

2
pairwise comparisons where n is the number of factors to be compared (Saaty, 1990a).

The measure of inconsistency provided by AHP allows for the examination of inconsistent priorities.
(4) Develop a set of subjective probabilities for the threats and responses: Next, the probability of

occurrence for the potential threats ðPm
cij
Þ and responses ðPm

bij
Þ associated with the grant programs

are estimated by the DMs. The probability estimation process takes place once a year concurrent
with the fund allocation process. Such subjective assessments are often used in strategic decision
making (McGlashan and Singleton, 1987). Slice utilizes probabilistic phrases, like ‘‘impossible,’’
‘‘possible,’’ and ‘‘certain’’ to elicit required information and then convert them into numeric
probabilities as suggested by many researchers (Beyth-Marom, 1982; Brun and Teigen, 1988;
Budescu and Wallsten, 1985; Lichtenstein and Newman, 1967; Tavana et al., 1997). Alternatively,
the DM may use numeric probabilities instead of the probabilistic phrases. The subjective
probability associated with a factor is assumed binomial in Slice. Binomial probabilities are
commonly used in strategic decision making because the DM can simplify the problem by
analyzing possible outcomes as either occurring or not occurring. For example, Schoemaker
(1993) assigns binomial probabilities to factors such as ‘‘Dow Jones Industrial Average falling
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below 1500 mark by 1990’’ or ‘‘Election of a Democrat as US president by 1990.’’ Vickers (1992)
also assigns binomial probabilities to similar factors such as ‘‘Japanese car manufacturers gain at
least 30% of the European market share’’ and ‘‘The incorporation of East Europe into Europe by
1993’’ in order to examine the future of the European automobile industry. The main motivation
for using the binomial probabilities is to reduce the complexity of the model.
(5) Calibrate the subjective probabilities of the threats and responses: Next, Slice calibrates the

subjective probabilities found in the previous step according to the following procedure. Defining
Pm
cij

as the probability of occurrence of a threat factor such as the probability of attack on
skyscrapers in state or territory m, ð1� P1

cij
Þð1� P2

cij
Þ . . . ð1� Pq

cij
Þ is the probability of no attack

on skyscrapers in any state or territory. Then, Pcij ¼ 1� ð1� P1
cij
Þð1� P2

cij
Þ . . . ð1� Pq

cij
Þ is the

probability of at least one attack in the entire set of the states and territories. Now, let P�cijbe an
independent expert assessment of the probability of a skyscraper attack in the entire set of states
and territories. DPcij ¼ P�cij � Pcij is the discrepancy between this independent expert assessment
and the probability of a skyscraper attack computed from the probabilities of skyscraper attack in
the states and territories.
Pcij can then be revised to be equal to P�cij by finding the value of x such that

P�cij ¼ 1� ð1� xP1
cij
Þð1� xP2

cij
Þ . . . ð1� xPq

cij
Þ. In other words, the probability of a skyscraper

attack in each state or territory is revised upward or downward so that the revised Pcij ¼ P�cij . If
P�cij > Pcij , the probabilities are revised upward so that x41 and if P�cij > Pcij , the probabilities
are revised downward so that xo1.
(6) Revise the subjective weights of the threats and responses with their intrinsic weights: Next, the

objective importance weights associated with the threats ðŴ 00
cij
Þ and responses ðŴ 00

bij
Þ are

determined. Slice uses the entropy method to determine the importance weights associated with
the threats and responses without the direct involvement of the DMs in terms of the probabilities
of potential threats ðPm

cij
Þ and responses ðPm

bij
Þ. The essential idea is that the objective importance

of a threat or response is a direct function of the information conveyed by the threat or response
relative to the entire set of q states and territories. This means that the greater the dispersion in the
probabilities, the more important the threat or response. In other words, the most important
threats or responses are those that have the greatest discriminating power between the states and
territories.
In this method, a set of objective importance weights associated with the threats and responses

are determined without the direct involvement of the DMs. However, this is a complete
contradiction to the notion that weights should represent the relative importance the DMs attach
to the threats or responses. Therefore, the subjective weights representing the judgments of DMs
obtained by the AHP are multiplied by the values of weights (intrinsic weights) obtained by the
entropy method. The final result, once normalized, is used in Slice to represent the importance
weight of the threats and responses.
Each threat or response is an information source; therefore, the more information a threat or

response reveals, the more relevant it is. Zeleny (1982) argues that this intrinsic information must
be used in parallel with the subjective weights the DMs assigns to various threats and responses.
In other words, the overall importance weight of a threat ðW 00

cij
Þ or response ðW 00

bij
Þ is directly

related to the intrinsic weight of the threat ðŴ 00
cij
Þ or response ðŴ 00

bij
Þ, reflecting the average intrinsic

information provided by the probabilities, and the subjective weights of the threat ð �W 00
cij
Þ or

response ð �W 00
bij
Þ, reflecting the subjective importance weights assigned by the DM.

M. Tavana / Intl. Trans. in Op. Res. 14 (2007) 267–290272

r 2007 The Authors.
Journal compilation r International Federation of Operational Research Societies 2007



The more different the probabilities of a threat or response are for a set of states and territories,
the larger is the contrast intensity of the threat or response, and the greater is the amount of
information transmitted by that threat or response. A similar procedure is applied to calculate the
intrinsic weight of the responses. Assuming that the vector pcij ¼ ðp1cij ; . . . ; pqcijÞ characterizes the ith
program, the jth threat, and the qth state or territory, the entropy measure for a given i and j is:

eðpcijÞ ¼ �K
Xq
k¼1

pkcij
pcij

ln
pkcij
pcij
; ð1Þ

where pcij ¼
Pq

k¼1 p
k
cij
; i ¼ 1; 2; . . . ; g and j ¼ 1; 2; . . . ;Nci , and K40, ln is the natural logarithm,

0)pkcij)1, and eðpcijÞ*0. When all pkcijare equal for a given i and j, then pkcij=pcij ¼ 1=q, and
eðpcijÞ assumes its maximum value, which is emax 5 ln q. By setting K5 1/emax, we achieve
0)eðpcijÞ)1 for all pcij ’s. This normalization is necessary for meaningful comparisons. In
addition, the total entropy is defined as

E ¼
XNci

j¼1
eðpcijÞ:

The smaller eðpcijÞ is, the more information the jth threat transmits in the ith program, and the
larger eðpcijÞ is, the less information it transmits. When eðpcijÞ ¼ emax ¼ ln q, the jth threat in the ith
program transmits no useful information. Next, the intrinsic weight is calculated as follows:

Ŵ 00
cij
¼ 1

Nci � E
½1� eðpcijÞ�; ð2Þ

where Nci is the total number of threats for program i.
Because Ŵ 00

cij
is inversely related to eðpcijÞ, 1� eðpcijÞ is used instead and normalized to ensure

0)Ŵ 00
cij
)1 and

PNci

j¼1 Ŵ
00
cij
¼ 1. The higher eðpcijÞ, the less information content is provided by the

jth threat in the ith program. When the information content of the jth threat in the ith program is
low, the corresponding intrinsic weight ðŴ 00

cij
Þ should be low. Thus, the intrinsic weight is assumed to be

inversely related to the entropy. Therefore, Slice uses 1� eðpcijÞ in the definition of the intrinsic weight.
The more different the probabilities Pk

cij
are, the larger Ŵ 00

cij
is and the more important the jth

threat in the ith program is. When all the probabilities, Pk
cij
, are equal for the jth threat in the ith

program, then, Ŵ 00
cij
¼ 0 for that threat. However, this is not true if the probabilities Pk

cij
are equal

for all the threats j. In that case, the weights are assumed to be equal or Ŵ 00
cij
¼ 1=Nci where Nci is

the number of threats for a given program. Entropy multiplies the intrinsic weight ðŴ 00
cij
Þ by the

subjective weight ð �W 00
cij
Þ and normalizes the product to calculate the overall importance weight of

the jth threat in the ith program ðW 00
cij
Þ,

W 00
cij
¼

Ŵ 00
cij
: �W 00

cijPNci

j¼1
Ŵ 00: �W 00

cij

: ð3Þ

There are two other methods for calculating the intrinsic weights of the threats and responses.
Diakoulaki et al. (2000) proposes a method based on the correlation between the columns of the
decision matrix. The other method measures the importance of each threat or response as a
member of a coalition by means of the Shapley value (Grabisch and Roubens, 1999). Slice uses the
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entropy method suggested by Zeleny (1982, Ch. 7) because it is readily available in MCDM,
provides consistent results, and is easily accepted by DMs (Pomero and Brba-Romero, 2000, Ch. 4).
(7) Measure the risk-aversion constant of the threats and responses: Assuming the DM is averse

to risk and his or her utility function is exponential, the DM’s risk-aversion constant is calculated
as ðrcijÞ for each threat and ðrbijÞ for each response. Certainty equivalence (CE), probability
equivalence (PE), gain equivalence (GE), and loss equivalence (LE) are among the various
techniques that could be used to measure the risk-aversion constant (Hershey et al., 1989). We
prefer using CE as it is suggested by Bodily (1985). According to CE, the DM is offered a scenario
where there are two possible outcomes. The first has an outcome of 1.0 with a probability of 0.5
and the second has an outcome of 0 with a probability of 0.5, where 1 represents the occurrence
and 0 represents the non-occurrence of a threat or response. Given the expected value of
0.50(1)10.50(0)5 0.50 for the above scenario, the DM is asked to provide his or her CE between
0 and 0.50. CE5 0 represents complete risk-aversion (r51) while CE5 0.50 represents complete
risk-neutrality (r5 0). Assuming CE is equal to p and the DM’s utility function is given by

uðpÞ ¼ 1

r
ð1� e�rpÞ, the value of r that satisfies the given CE using e�rp � 0:5e�r ¼ 0:5 can be

found. This equation is derived by setting the utility of the CE, uðpÞ ¼ 1

r
ð1� e�rpÞ, equal to the

expected utility of the scenario, expected utility5 0.5u(1)10.5u(0). It is always recommended to
use more than one kind of question or approach to assure that the risk-aversion constant
represents the feelings of the DM.

TheDM’s risk-aversion constant (r) is assumed to be greater than 0, representing aversion toward
risk. Slice does not consider r5 0, which represents risk neutrality, or ro0, which represents
preference toward risk, a behavior which is not evident in real life (Gupta and Cozzolino, 1974).

(8) Calculate the allocation score of each recipient: Next, the allocation score (Am) of each
recipient is calculated by dividing the total threats (Cm) of a program by its total responses (Bm)
multiplied by the standard deviation of the allocation scores (Sm). The allocation score is a
measure of the overall threats and responses in a recipient’s environment. The larger the value of
the allocation score, the more dollars are allocated to the recipient. The total threats and
responses are in turn calculated by summing the multiplication of the relative weight of each
program to the relative weight of each threat or response within that program and the calibrated
subjective probability of that threat or response for the selected recipient.

The standard deviation is a composite measure of the spread of the weights and probabilities
associated with the threats and responses within a program. The higher the standard deviation,
the more uncertainty is associated with the environment. The recipient with a higher standard
deviation, representing greater unknowns and uncertainties in its environment, receives more
funding than a recipient with a lower standard deviation and a more predictable and certain
environment. All the weights, probabilities, and scores used in our model are organized in a
tabular form and are presented in Table 1.

The mathematical details of the weighted sum model used to calculate the allocation scores is
presented next. Given:

Am 5 The allocation score of the mth recipient
Cm 5 The total weighted threats of the mth recipient
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Bm 5 The total weighted responses of the mth recipient
Sm 5 The standard deviation of the mth recipient
Vm

c 5 The variance of the threats for the mth recipient
Vm

b 5 The variance of the responses for the mth recipient
W 0

ci
5 The ith program weight associated with the threats

W 0
bi

5 The ith program weight associated with the responses
�W 00
cij

5 The subjective weight of the jth threat in the ith program
�W 00
bij

5 The subjective weight of the jth response in the ith program

Table 1

Representation of the relevant information used in Slice

Program

weight

Threat

weight

Risk-aversion

constant

Recipient 1 . . . Recipient q

Costs

Program 1 W 0
c1

Threat 1 W 00
c11

rc11 P1
c11

. . . Pq
c11

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

Threat Nc1 W 00
c1Nc1

rc1Nc1
P1
c1Nc1

Pq
c1Nc1

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

Program g W 0
cg

Threat 1 W 00
cg1

rcg1 P1
cg1

. . . Pq
cg1

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

Threat Ncg W 00
cgNcg

rcgNcg
P1
cgNcg

. . . Pq
cgNcg

Total weighted threat (Cm) C1 . . . Cq

Program

weight

Response

weight

Risk-aversion

constant

Recipient 1 . . . Recipient q

Benefits

Program 1 W 0
b1

Response 1 W 00
b11

rb11 P1
b11

. . . P
q
b11

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

Response Nb1 W 00
b1Nb1

rb1Nb1

P1
b1Nb1

. . . P
q
b1Nb1. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

Program g W 0
bg

Response 1 W 00
bg1

rbg1 P1
bg1

. . . P
q
bg1

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

Response Nbg W 00
bgNbg

rbgNbg
P1
bgNbg

. . . P
q
bgNbg

Total weighted responses (Bm) B1 . . . B4

Standard deviation (Sm) S1 . . . Sq

Allocation score (Am) A1 . . . Aq
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Ŵ 00
cij

5 The intrinsic weight of the jth threat in the ith program
Ŵ 00

bij
5 The intrinsic weight of the jth response in the ith program

W 00
cij

5 The overall weight of the jth threat in the ith program
W 00

bij
5 The overall weight of the jth response in the ith program

Pm
cij

5 The mth probability of occurrence of the jth threat in the ith program
Pm
bij

5 The mth probability of occurrence of the jth response in the ith program
rcij 5 The risk-aversion constant of the jth threat in the ith program
rbij 5 The risk-aversion constant of the jth response in the ith program
m 5 1, 2, . . ., q
i 5 1, 2, . . ., g
q 5 The number of recipients
g 5 The number of programs

and j5 1, 2, . . ., Nci for the threats where Nci is the number of threats in the ith program and j5 1,
2, . . ., Nbi for the responses where Nbi is the number of responses in the ith program, Slice
calculates the allocation score (Am) as

Am ¼ Cm

Bm

� �
Sm; ð4Þ

where

Cm ¼
Xg
i¼1

W 0
ci

XNci

j¼1
W 00

cij
� 1

rcij
lnð1� Pm

cij
þ Pm

cij
e�rcij Þ

� � !
; ð5Þ

Bm ¼
Xg
i¼1

W 0
bi

XNbi

j¼1
W 00

bij
� 1

rbij
lnð1� Pm

bij
þ Pm

bij
e�rbij Þ

� � !
; ð6Þ

Sm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vm

c þ Vm
b

p
; ð7Þ

Vm
c ¼

Xg
i¼1

W 0
ci

XNci

j¼1
� 1

rcij
lnð1� Pm

cij
þ Pm

cij
e�rcij Þ � Cm

� �2

W 00
cij

" #
; ð8Þ

Vm
b ¼

Xg
i¼1

W 0
bi

XNbi

j¼1
� 1

rbij
lnð1� Pm

bij
þ Pm

bij
e�rbij Þ � Bm

� �2

W 00
bij

" #
; ð9Þ

Xg
i¼1

W 0
ci
¼ 1; ð10Þ

M. Tavana / Intl. Trans. in Op. Res. 14 (2007) 267–290276

r 2007 The Authors.
Journal compilation r International Federation of Operational Research Societies 2007



Xg
i¼1

W 0
bi
¼ 1; ð11Þ

XNci

j¼1
W 00

cij
¼ 1; ð12Þ

XNbi

j¼1
W 00

bij
¼ 1; ð13Þ

0)Pm
cij
)1; ð14Þ

0)Pm
bij
)1: ð15Þ

(9) Allocate funds according to the normalized allocation and population scores: Assuming that T
dollars are available for distribution among the states and territories, D dollars are allocated in
proportion to the normalized allocation scores, and the remaining S dollars are allocated in
proportion to the normalized population of the states and territories.
The recipients with larger allocation scores receive a larger percentage of the budgeted D dollars

while the recipients with smaller allocation scores receive a smaller percentage of the budget. First,
the allocation scores are normalized so that the normalized allocation scores ð �AmÞ add up to one

ð
Pq

m¼1
�Am ¼ 1Þ. To ensure that proportionality is conserved, Slice uses �Am ¼ AmPq

m¼1 A
m

to develop

a normalized vector for �Am where 0 < �Am < 1. To determine the optimal proportions of D and
S, an allocation table is constructed based on varying percentages for D and S with a 1%
increment. In the allocation table, in one extreme 0% of the budget is allocated to S and 100% to
D, and on the other extreme 100% of the budget is allocated to S and 0% to D. The root mean
squared error (RMSE) of the alternative proportions is used to determine the optimal proportions
for D and S.
Next, the allocation table is represented by matrix (Tmk). Each row of the matrix expresses the

total allocation dollars for recipient m relative to the h allocation proportions under
consideration. Let dk be the weight of D and therefore sk 5 1� dk be the weight of S. Given
dk 5 d1, d2, . . ., dh, Dd5 dk11� dk is defined as the increment used to develop the h allocation
proportions. For example, with Dd5 0.01, allocation proportions such as d5 {0.00, 0.01, . . .,
1.00} are considered while s5 {1.00, 0.99, . . ., 0.00}. For each dk, recipient m receives a total of
Tmk 5Dmk1Smk where Dmk dollars is allocated based on the adjusted allocation scores and the
remaining Smk dollars are allocated according to the population of the states and territories.
The RMSE of the alternative proportions are used to determine the optimal proportions of D

and S. RMSE is the square root of the deviation of the allocation dollars (Tmk) from the ideal
amount (max Tk) across all m recipients for all h allocation proportions under consideration

RMSEk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPq
m¼1 Tmk �maxTkð Þ2

q

s
: ð16Þ

The optimal proportions of D and S are used in the allocation procedure described earlier to
distribute the total T dollars made available by DHS for the state homeland security grant
program (SHGP).
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3. Pilot study

A pilot study was conducted to allocate $2,518,763,121 to the states and territories based on their
need for homeland security. Eight DMs, all experts in national security, participated in this study.
Four DMs had an average of 6.2 years of homeland security work and/or committee experience.
All were elected officials with graduate degrees in law and humanities. Two DMs were consultants
with an average of 12.5 years of homeland security experience and doctoral degrees. The last
two DMs were homeland security employees for a large city in the Northeast, both with an
average of 8.4 years of homeland security experience and graduate degrees. Initially, the DMs
discussed the six HSGP programs (SHSP, UASI, LETPP, CCP, EMPG, and MMRS) and the
58 states and territories. After careful consideration of the states and territories, the DMs agreed
to use Slice to determine funding for the 50 states, the District of Columbia, and Puerto Rico.
There was a consensus that the Virgin Islands, American Samoa, Guam, and the Northern
Mariana Islands each should receive 0.2% ($5,037,526) of the budget and that the Republic
of the Marshall Islands and the Federated States of Micronesia each should receive 0.002%
($50,375) of the budget. Using this formula, $20,250,855 was allocated to the six territories. The
remaining $2,498,512,266 was reserved for the 50 states, the District of Columbia, and Puerto
Rico.
Next, the DMs developed a set of threats and responses related to the six HSGP programs by

participating in a series of brainstorming sessions. For example, SHSP provides planning,
equipment, training, exercise, and management and administrative funding to emergency
prevention, preparedness, and response personnel in states and territories. An example of a
threat for this program is the threat of an attack on nuclear power plants. An example of a
response is the responsiveness of the military or National Guard. A state with a high probability
of attack on their nuclear power plants should receive more funding while a state with a high level
of military and National Guard presence should receive less funding. After several brainstorming
sessions, our DMs were able to reach a fairly clear consensus on 56 threats and responses
associated with the six assistance programs (see Table 2).
Next, the DMs assessed the relative weight associated with each program. The importance

weighting of the assistance programs were captured with the AHP and Expert Choice software
(Expert Choice, 2004). Once the initial weights were determined, the group received anonymous
feedback that included the individual and group weights for the six programs. The group
members were asked to reconsider their judgments to achieve some consistency and consensus.
Using this feedback mechanism, a consensus of the weights for each of the threats and the
responses in each program was obtained (see Table 3). Similarly, the DMs used Expert Choice to
derive the initial weights for each of the threats and responses. The group received anonymous
feedback that included the individual and group weights for the threats and responses. Some DMs
changed their subjective weights after reviewing the group and individual averages.
Next, the DMs developed a set of probabilities of occurrence for each threat and response

associated with the state or territory under consideration. Then, an independent group of experts
estimated a probability of occurrence for each threat and response for the country as a whole. The
state or territory probabilities of occurrence were calibrated against these independent probability
estimates. Table 4 represents a selected group of states with their calibrated probabilities of
occurrence for each of the threats and responses. For example, there is a 0.9% probability of
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Table 2

The threats and responses used in the pilot study

Program Threat Description

SHSP NPP Threat of attack on nuclear power plants

CHP Threat of attack on chemical plants

MLB Threat of attack on military bases

SFB Threat of attack on state/federal centers/buildings

NMP Threat of attack on national monuments/parklands

AST Threat of attack on airports/seaports/train stations

UASI FIN Threat of attack on financial institutions

SKY Threat of attack on skyscrapers

TRS Threat of attack on mass transit

LETPP ARN Threat of attack on public arenas

WTR Threat of attack on water supply

CIT Threat of credit card fraud/identity theft

CML Threat of counterfeiting money/money laundering

REC Threat of accessing law enforcements data/records electronically

CCP NDS Threat of natural disaster

CYB Threat of cyber attack

LCS Threat of attack on local communications systems

CRM Threat of hike in crime rate

EMPG BRT Threat of attack on bridges and tunnels

PWG Threat of attack on power grid

ORF Threat of attacks on oil refineries

BRD Threat of breach of security in international borders and coastlines

MMRS CHM Threat of chemical attack

BIO Threat of biological attack

EPD Threat of pandemic/global epidemic

RAD Threat of radiological attack

Program Response Description

SHSP MNG Responsiveness of military and national guards

CBR Responsiveness of chemical, biological, radiological/nuclear, explosive detection/

decontamination facilities

MRP Responsiveness of nuclear meltdown response plans

IPD Responsiveness of information analysis and infrastructure protections directorates

CST Responsiveness of cyber security training programs

SEC Responsiveness of airport/seaport/train station security

UASI DRP Responsiveness of disaster recovery plans

SEQ Responsiveness of security enhancement equipment

STA Responsiveness of adequate surface transportation alternatives

MTS Responsiveness of mass transit security

CRP Responsiveness of financial institution crisis response program

LETPP LEP Responsiveness of law enforcement personnel

ICS Responsiveness of interoperable communication systems

EPP Responsiveness of training programs for emergency preparedness

SCT Responsiveness of surveillance and counter-surveillance technology

CCP ERT Responsiveness of community emergency response teams

MVO Responsiveness of multiple volunteer organizations
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Table 2. (Contd.)

Program Response Description

NWP Responsiveness of neighborhood watch programs

EDT Responsiveness of education and training for the community

FMC Responsiveness of fire corps and medical reserve corps

CCC Responsiveness of active state citizens corps councils

EMPG EMS Responsiveness of emergency management systems

IMS Responsiveness of national incident management systems

RES Responsiveness of first responders

REP Responsiveness of coordinated regional evacuation plan

MMRS MMR Responsiveness of metropolitan medical response systems jurisdictions

CPA Responsiveness of chemical production plant compliance agencies

TRF Responsiveness of treatment facilities

EMT Responsiveness of local emergency medical technicians and paramedics

DVS Responsiveness of drug/vaccine stockpiles

Table 3

Weights and the risk-aversion constants used in the pilot study program

Program (program weight) Threat Initial weight Intrinsic weight Overall weight Risk-aversion constant

SHSP (0.350) NPP 0.300 0.411 0.594 1.801

CHP 0.200 0.163 0.157 3.281

MLB 0.100 0.141 0.068 0.822

SFB 0.200 0.090 0.086 6.922

NMP 0.100 0.048 0.023 0.403

AST 0.100 0.147 0.071 1.279

UASI (0.300) FIN 0.300 0.300 0.269 1.801

SKY 0.200 0.351 0.210 0.822

TRS 0.500 0.349 0.522 6.922

LETPP (0.150) ARN 0.400 0.273 0.515 6.922

WTR 0.250 0.103 0.122 4.551

CIT 0.100 0.068 0.032 1.279

CML 0.100 0.261 0.123 0.403

REC 0.150 0.294 0.208 1.801

CCP (0.050) NDS 0.500 0.105 0.270 6.922

CYB 0.150 0.436 0.336 1.279

LCS 0.150 0.302 0.233 0.822

CRM 0.200 0.157 0.162 1.801

EMPG (0.100) BRT 0.500 0.134 0.321 6.922

PWG 0.200 0.153 0.146 0.822

ORF 0.200 0.398 0.382 0.403

BRD 0.100 0.315 0.151 0.403

MMRS (0.050) CHM 0.400 0.277 0.403 6.922

BIO 0.300 0.343 0.374 3.281

EPD 0.200 0.235 0.171 1.801

RAD 0.100 0.144 0.052 0.822
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attack on the nuclear power plants in the state of Alabama while there is a 0.4% probability of
attack on the nuclear power plants in the state of Arizona. These probabilities are fairly small
because they were calibrated with the probability of each event for the country as a whole.
Based on the entropy concept, the intrinsic weight of each threat and response was calculated

according to the contrast intensity of the calibrated probabilities of occurrence. The overall weight
for each threat and response was then calculated by multiplying the initial weight times the
intrinsic weight. In addition, a risk-aversion constant was derived for each of the threats and the
responses. The certainty equivalence concept was used to determine the risk-aversion constants.
Each DM was asked to estimate his or her certainty equivalence for each threat and the response.
The group average certainty equivalences were used to determine the risk-aversion constant of
each threat and response in the model (see Table 3).
Finally, Table 5 presents the allocation dollars to the states and territories. These funds are

allocated based on a 28% weight for the allocation scores and a 72% weight for the population

Program (program weight) Response Initial weight Intrinsic weight Overall weight Risk-aversion constant

SHSP (0.350) MNG 0.350 0.082 0.213 6.922

CBR 0.250 0.073 0.135 4.551

MRP 0.100 0.492 0.364 1.801

IPD 0.050 0.105 0.039 0.822

CST 0.050 0.108 0.040 0.403

SEC 0.200 0.141 0.209 3.281

UASI (0.300) DRP 0.350 0.063 0.136 13.863

SEQ 0.150 0.088 0.082 2.438

STA 0.100 0.469 0.290 1.279

MTS 0.250 0.226 0.350 3.281

CRP 0.150 0.154 0.143 2.438

LETPP (0.150) LEP 0.400 0.169 0.305 6.922

ICS 0.300 0.068 0.092 4.551

EPP 0.200 0.571 0.516 1.801

SCT 0.100 0.192 0.087 1.279

CCP (0.050) ERT 0.350 0.105 0.259 4.551

MVO 0.250 0.103 0.182 3.281

NWP 0.100 0.115 0.081 0.822

EDT 0.050 0.243 0.085 0.403

FMC 0.150 0.252 0.266 2.438

CCC 0.100 0.181 0.127 1.801

EMPG (0.100) EMS 0.350 0.412 0.540 6.922

IMS 0.300 0.194 0.218 4.551

RES 0.250 0.168 0.157 1.279

REP 0.100 0.227 0.085 0.403

MMRS (0.050) MMR 0.350 0.097 0.195 4.551

CPA 0.250 0.166 0.239 3.281

TRF 0.150 0.200 0.172 2.438

EMT 0.150 0.301 0.259 1.801

DVS 0.100 0.235 0.135 0.822

Table 3. (Contd.)
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Table 4

Calibrated probabilities of occurrence (for selected states and District of Columbia) used in the pilot study

AL AZ CA DC DE FL KY NY OH TX WI WY

Threat

NPP 0.009 0.004 0.011 0.000 0.000 0.015 0.000 0.015 0.009 0.011 0.009 0.000

CHP 0.002 0.006 0.016 0.004 0.004 0.014 0.006 0.010 0.014 0.019 0.006 0.002

MLB 0.010 0.010 0.027 0.017 0.003 0.020 0.013 0.010 0.003 0.020 0.003 0.003

SFB 0.004 0.008 0.006 0.016 0.002 0.006 0.008 0.006 0.004 0.008 0.008 0.002

NMP 0.006 0.008 0.012 0.012 0.004 0.009 0.006 0.010 0.010 0.009 0.010 0.005

AST 0.002 0.004 0.018 0.016 0.004 0.012 0.008 0.008 0.006 0.010 0.006 0.002

FIN 0.002 0.010 0.015 0.013 0.008 0.013 0.008 0.017 0.008 0.015 0.008 0.002

SKY 0.003 0.006 0.011 0.014 0.005 0.009 0.006 0.014 0.008 0.011 0.005 0.002

TRS 0.007 0.007 0.019 0.019 0.005 0.014 0.007 0.021 0.012 0.016 0.009 0.002

ARN 0.005 0.012 0.012 0.012 0.002 0.017 0.010 0.017 0.007 0.020 0.007 0.002

WTR 0.008 0.008 0.017 0.013 0.004 0.013 0.021 0.017 0.013 0.017 0.008 0.004

CIT 0.022 0.022 0.037 0.015 0.015 0.029 0.022 0.029 0.022 0.037 0.022 0.007

CML 0.016 0.016 0.032 0.020 0.028 0.024 0.008 0.036 0.024 0.032 0.012 0.004

REC 0.016 0.020 0.032 0.036 0.008 0.024 0.012 0.036 0.004 0.028 0.004 0.004

NDS 0.026 0.013 0.035 0.022 0.013 0.040 0.018 0.022 0.013 0.035 0.013 0.004

CYB 0.007 0.007 0.063 0.063 0.007 0.063 0.007 0.063 0.042 0.056 0.014 0.014

LCS 0.010 0.007 0.030 0.010 0.003 0.026 0.010 0.026 0.020 0.030 0.010 0.003

CRM 0.016 0.022 0.025 0.006 0.025 0.028 0.009 0.019 0.009 0.022 0.006 0.009

BRT 0.005 0.005 0.018 0.003 0.003 0.008 0.003 0.010 0.010 0.023 0.005 0.003

PWG 0.008 0.006 0.019 0.002 0.002 0.014 0.004 0.008 0.012 0.017 0.017 0.004

ORF 0.019 0.000 0.034 0.000 0.004 0.000 0.015 0.000 0.023 0.038 0.004 0.019

BRD 0.000 0.019 0.022 0.000 0.011 0.025 0.000 0.022 0.003 0.025 0.003 0.000

CHM 0.003 0.003 0.009 0.010 0.004 0.009 0.003 0.012 0.007 0.009 0.003 0.003

BIO 0.002 0.001 0.006 0.007 0.003 0.004 0.002 0.006 0.003 0.003 0.002 0.001

EPD 0.003 0.005 0.013 0.010 0.007 0.013 0.005 0.012 0.005 0.012 0.003 0.003

RAD 0.002 0.002 0.003 0.005 0.003 0.003 0.002 0.005 0.003 0.005 0.002 0.002

Response

MNG 0.015 0.015 0.040 0.015 0.010 0.035 0.015 0.020 0.010 0.035 0.010 0.010

CBR 0.004 0.005 0.012 0.005 0.007 0.009 0.007 0.011 0.007 0.011 0.007 0.005

MRP 0.025 0.017 0.025 0.000 0.000 0.034 0.000 0.050 0.025 0.025 0.025 0.000

IPD 0.009 0.009 0.000 0.016 0.020 0.004 0.009 0.004 0.004 0.002 0.009 0.020

CST 0.005 0.011 0.014 0.012 0.004 0.007 0.002 0.016 0.005 0.012 0.007 0.002

SEC 0.002 0.006 0.006 0.002 0.002 0.010 0.002 0.006 0.004 0.014 0.002 0.002

DRP 0.004 0.004 0.015 0.007 0.009 0.015 0.007 0.015 0.007 0.015 0.007 0.013

SEQ 0.005 0.006 0.003 0.006 0.012 0.001 0.005 0.003 0.003 0.001 0.005 0.012

STA 0.000 0.003 0.015 0.018 0.010 0.010 0.003 0.015 0.005 0.005 0.000 0.010

MTS 0.001 0.005 0.011 0.008 0.008 0.009 0.001 0.008 0.007 0.009 0.004 0.001

CRP 0.007 0.003 0.011 0.002 0.002 0.011 0.010 0.008 0.010 0.015 0.011 0.003

LEP 0.008 0.008 0.013 0.016 0.016 0.016 0.011 0.019 0.013 0.019 0.008 0.005

ICS 0.009 0.011 0.017 0.014 0.020 0.014 0.009 0.014 0.014 0.017 0.011 0.011

EPP 0.029 0.010 0.039 0.039 0.010 0.039 0.010 0.058 0.019 0.029 0.019 0.010

SCT 0.005 0.003 0.001 0.007 0.007 0.002 0.005 0.002 0.003 0.001 0.006 0.007

ERT 0.006 0.006 0.013 0.003 0.004 0.013 0.012 0.013 0.013 0.012 0.007 0.003

MVO 0.004 0.009 0.017 0.007 0.007 0.017 0.011 0.017 0.017 0.017 0.006 0.004

NWP 0.014 0.016 0.002 0.018 0.014 0.004 0.014 0.004 0.008 0.002 0.014 0.018
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Table 4. (Contd.)

AL AZ CA DC DE FL KY NY OH TX WI WY

EDT 0.007 0.005 0.017 0.002 0.002 0.002 0.005 0.015 0.020 0.010 0.002 0.002

FMC 0.005 0.005 0.015 0.002 0.003 0.010 0.007 0.010 0.010 0.015 0.008 0.002

CCC 0.006 0.007 0.015 0.002 0.002 0.006 0.006 0.009 0.011 0.009 0.002 0.002

EMS 0.004 0.007 0.021 0.025 0.004 0.007 0.004 0.028 0.004 0.018 0.004 0.004

IMS 0.003 0.003 0.001 0.006 0.006 0.001 0.003 0.001 0.001 0.001 0.003 0.007

RES 0.012 0.012 0.006 0.006 0.001 0.004 0.012 0.001 0.012 0.012 0.012 0.009

REP 0.008 0.008 0.002 0.016 0.016 0.002 0.008 0.002 0.004 0.002 0.008 0.008

MMR 0.003 0.005 0.012 0.013 0.008 0.010 0.007 0.013 0.008 0.012 0.007 0.005

CPA 0.001 0.004 0.011 0.004 0.004 0.002 0.004 0.009 0.006 0.010 0.006 0.002

TRF 0.008 0.008 0.030 0.004 0.004 0.019 0.008 0.019 0.015 0.034 0.011 0.004

EMT 0.009 0.009 0.030 0.039 0.004 0.022 0.004 0.039 0.026 0.022 0.004 0.004

DVS 0.004 0.004 0.016 0.016 0.004 0.014 0.002 0.014 0.006 0.012 0.002 0.008

Table 5

Allocation scores and dollars for a 28–72% split model

State Cm Bm Sm Am �Am Population Normalized

population

Allocation $ Population $ Total $

AL 0.0031 0.0037 0.0059 0.0049 0.0166 4,447,100 0.0156 11,618,741 28,047,547 39,666,288

AK 0.0021 0.0026 0.0055 0.0043 0.0145 626,932 0.0022 10,139,272 3,954,016 14,093,288

AZ 0.0030 0.0029 0.0039 0.0040 0.0134 5,130,632 0.0180 9,393,170 32,358,536 41,751,706

AR 0.0022 0.0023 0.0040 0.0037 0.0124 2,673,400 0.0094 8,690,032 16,860,946 25,550,978

CA 0.0076 0.0062 0.0093 0.0114 0.0384 33,871,648 0.1188 26,852,987 213,626,105 240,479,092

CO 0.0026 0.0018 0.0036 0.0052 0.0175 4,301,261 0.0151 12,262,508 27,127,751 39,390,259

CT 0.0030 0.0030 0.0046 0.0047 0.0157 3,405,565 0.0119 11,007,597 21,478,659 32,486,257

DE 0.0020 0.0023 0.0043 0.0037 0.0125 783,600 0.0027 8,737,478 4,942,110 13,679,588

DC 0.0042 0.0043 0.0082 0.0081 0.0272 572,059 0.0020 19,022,757 3,607,936 22,630,693

FL 0.0061 0.0060 0.0083 0.0085 0.0285 15,982,378 0.0560 19,934,809 100,799,736 120,734,544

GA 0.0039 0.0036 0.0048 0.0051 0.0173 8,186,453 0.0287 12,085,357 51,631,384 63,716,741

HI 0.0027 0.0015 0.0049 0.0092 0.0309 1,211,537 0.0042 21,618,728 7,641,079 29,259,807

ID 0.0011 0.0016 0.0032 0.0022 0.0073 1,293,953 0.0045 5,125,749 8,160,871 13,286,620

IL 0.0060 0.0076 0.0125 0.0099 0.0333 12,419,293 0.0435 23,319,862 78,327,609 101,647,470

IN 0.0029 0.0019 0.0040 0.0061 0.0204 6,080,485 0.0213 14,240,058 38,349,192 52,589,250

IA 0.0019 0.0027 0.0036 0.0026 0.0086 2,926,324 0.0103 6,019,915 18,456,120 24,476,035

KS 0.0025 0.0027 0.0044 0.0041 0.0139 2,688,418 0.0094 9,757,271 16,955,664 26,712,934

KY 0.0026 0.0017 0.0035 0.0053 0.0177 4,041,769 0.0142 12,364,362 25,491,153 37,855,515

LA 0.0047 0.0040 0.0073 0.0085 0.0287 4,468,976 0.0157 20,044,947 28,185,518 48,230,465

ME 0.0012 0.0015 0.0031 0.0025 0.0084 1,274,923 0.0045 5,870,062 8,040,850 13,910,912

MD 0.0043 0.0040 0.0058 0.0062 0.0210 5,296,486 0.0186 14,680,307 33,404,565 48,084,872

MA 0.0042 0.0038 0.0055 0.0061 0.0206 6,349,097 0.0223 14,445,976 40,043,309 54,489,285

MI 0.0043 0.0037 0.0053 0.0062 0.0210 9,938,444 0.0348 14,674,964 62,681,068 77,356,033

MN 0.0036 0.0033 0.0051 0.0055 0.0186 4,919,479 0.0172 13,001,710 31,026,809 44,028,518

MS 0.0033 0.0027 0.0051 0.0062 0.0208 2,844,658 0.0100 14,557,932 17,941,058 32,498,990

MO 0.0031 0.0027 0.0039 0.0046 0.0155 5,595,211 0.0196 10,808,720 35,288,603 46,097,323

MT 0.0015 0.0016 0.0036 0.0034 0.0113 902,195 0.0032 7,890,283 5,690,080 13,580,364

NE 0.0022 0.0028 0.0046 0.0036 0.0120 1,711,263 0.0060 8,367,909 10,792,816 19,160,724

NV 0.0031 0.0018 0.0066 0.0114 0.0383 1,998,257 0.0070 26,827,605 12,602,867 39,430,472

NH 0.0021 0.0031 0.0041 0.0028 0.0094 1,235,786 0.0043 6,547,714 7,794,016 14,341,729
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scores (according to the year 2000 census data). The root mean squared errors given in Table 6
were used to determine the optimal 28–72% split after reviewing all possible allocations ranging
from 0% to 100%.

Table 5. (Contd.)

State Cm Bm Sm Am �Am Population Normalized

population

Allocation $ Population $ Total $

NJ 0.0065 0.0054 0.0083 0.0100 0.0338 8,414,350 0.0295 23,622,581 53,068,714 76,691,295

NM 0.0023 0.0012 0.0047 0.0088 0.0298 1,819,046 0.0064 20,814,128 11,472,595 32,286,724

NY 0.0066 0.0081 0.0114 0.0092 0.0310 18,976,457 0.0665 21,691,381 119,683,181 141,374,562

NC 0.0038 0.0043 0.0066 0.0058 0.0196 8,049,313 0.0282 13,732,842 50,766,452 64,499,294

ND 0.0013 0.0022 0.0036 0.0020 0.0069 642,200 0.0023 4,804,615 4,050,310 8,854,925

OH 0.0044 0.0041 0.0063 0.0068 0.0227 11,353,140 0.0398 15,909,507 71,603,457 87,512,963

OK 0.0029 0.0026 0.0051 0.0058 0.0196 3,450,654 0.0121 13,723,642 21,763,032 35,486,674

OR 0.0025 0.0015 0.0032 0.0051 0.0173 3,421,399 0.0120 12,106,276 21,578,523 33,684,799

PA 0.0062 0.0072 0.0106 0.0091 0.0306 12,281,054 0.0431 21,385,496 77,455,745 98,841,241

RI 0.0014 0.0027 0.0045 0.0024 0.0080 1,048,319 0.0037 5,595,958 6,611,674 12,207,632

SC 0.0038 0.0048 0.0083 0.0066 0.0222 4,012,012 0.0141 15,522,263 25,303,478 40,825,741

SD 0.0009 0.0035 0.0186 0.0048 0.0161 754,844 0.0026 11,231,600 4,760,748 15,992,348

TN 0.0033 0.0036 0.0048 0.0045 0.0152 5,689,283 0.0199 10,613,624 35,881,908 46,495,532

TX 0.0074 0.0054 0.0089 0.0122 0.0411 20,851,820 0.0731 28,728,998 131,510,964 160,239,962

UT 0.0013 0.0015 0.0028 0.0024 0.0080 2,233,169 0.0078 5,606,888 14,084,440 19,691,328

VT 0.0015 0.0030 0.0036 0.0018 0.0060 608,827 0.0021 4,182,732 3,839,829 8,022,561

VA 0.0050 0.0041 0.0067 0.0082 0.0276 7,078,515 0.0248 19,317,813 44,643,697 63,961,510

WA 0.0048 0.0045 0.0074 0.0079 0.0267 5,894,121 0.0207 18,687,243 37,173,807 55,861,050

WV 0.0017 0.0016 0.0031 0.0031 0.0104 1,808,344 0.0063 7,287,607 11,405,099 18,692,706

WI 0.0029 0.0035 0.0046 0.0038 0.0128 5,363,675 0.0188 8,957,540 33,828,322 42,785,862

WY 0.0014 0.0020 0.0040 0.0028 0.0094 493,782 0.0017 6,581,268 3,114,248 9,695,516

PR 0.0027 0.0035 0.0053 0.0041 0.0137 3,808,610 0.0134 9,570,651 24,020,636 33,591,287

Total 1.0000 285,230,516 1.0000 699,583,434 1,798,928,831 2,498,512,266

Table 6

Root mean squared error (RMSE) of the alternative allocation percentages

Allocation score (%) Population score (%) RMSE

0 100 22,320,720

10 90 20,401,648

20 80 19,223,712

28 72 18,911,220

30 70 18,925,807

40 60 19,548,207

50 50 21,009,280

60 40 23,150,777

70 30 25,803,843

80 20 28,827,579

90 10 32,117,464

100 0 35,599,788

Note: Bold type indicates optimal allocation.
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4. Evaluation of the subjective judgments and ratings

As a part of the evaluation of Slice, the eight DMs who participated in the pilot study provided their
assessment by completing a survey containing a set of dependent variables. Our choice of dependent
variables was influenced primarily by Bharati and Chaudhury’s (2004) decision satisfaction model,
Benbasat and Lim’s (1993) meta-analysis, DeLone and McLean’s (1992) usability model, Gallupe
et al.’s (1988) effectiveness model, and Limayem and DeSanctis’s (2000) decisional guidance model.
Collectively, these studies point to the importance of the quality of the decision process and decision
quality as key antecedents of users’ satisfaction with the use of decision support systems.
Three scales were created: decision process (eight items), decision quality (six items), and overall

value-added (four items). Where feasible, items were adapted from items used in previous studies
(e.g., Aldag and Power, 1986; Bharati and Chaudhury, 2004; Davis, 1989; DeLone and McLean,
1992; Gallupe et al., 1988; Niederman and DeSanctis, 1995; Srinivasan, 1985; Watson et al.,
1988). All items are presented in the Appendix. Each item was evaluated using a 7-point rating
scale where 15 strongly disagree, 45neutral, and 75 strongly agree.
The means (and standard deviations) on the three scales are decision process5 5.81 (0.50),

decision quality5 5.85 (0.59), and overall value-added5 6.22 (0.53). All the reliability coefficients
(Cronbach’s a) exceeded 0.70 and can be considered good (Nunnally, 1978; p. 245). For the eight
decision process items, a5 0.89; for the six decision quality items, a5 0.86; and for the four
overall value-added items, a5 0.85. The high a coefficients reflect the high inter-item correlations
both within and between scales. This reflects the presence of halo in the data. That is, the DMs
tend to form a general impression about Slice, and this general impression influences their ratings
of all the items on all the scales.
The Pearson correlations among the three scales are all high and significant (po0.05). For

decision process and decision quality, r5 0.80. For decision process and overall value-added,
r5 0.94. For decision quality and overall value-added, r5 0.82. This means that both decision
process and decision quality are strong predictors of overall value-added with decision process
being a slightly stronger predictor. The multiple regression results show decision process to be the
stronger predictor when both decision process and decision quality are entered into the equation
simultaneously. However, these results are not especially meaningful because of the high multi-
collinearity. Further evidence of this phenomenon is found by observing the average inter-item
correlation among items on the same scale (average r5 0.54, a ‘‘convergent’’ correlation) versus the
average inter-item correlation among items from different scales (average r5 0.52, a ‘‘discrimi-
nant’’ correlation). In sum, the ratings across the three scales appear to be positive and reflect an
overall favorable impression among the DMs about the usefulness of Slice. It is also noteworthy
that none of the eight DMs had a mean rating on any of the three scales that was 4 (neutral) or
below. That is, all reactions were slightly to very favorable. For example, on value-added, the eight
raters’ average scores ranged from 5.25 to 7.00 and seven of the raters’ scores were 6.00 or higher).

5. Conclusion and managerial implications

The pilot study illustrated that DMs viewed Slice very favorably on decision process, decision
quality, and overall value-added. It appears that Slice was evaluated favorably because DMs
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viewed it helpful in enhancing the quality of the decision-making process. These perceptions can
enhance DMs’ confidence in the decision and their belief that those affected by the decisions will
view the process and outcomes as fair.
In summary, the structured framework presented in this study has some obvious attractive

features. First, the generic nature of Slice allows for the subjective and objective evaluation of a
finite number of states and territories on a finite number of threats or responses by a group of
DMs. Second, the information requirements of Slice are stratified hierarchically allowing DMs to
focus on a small area of the large problem. Third, the built-in inconsistency checking mechanism
of AHP helps to identify inconsistencies in judgments at very early stages of the computation
process. Fourth, Slice does not dispel subjectivity; it calibrates the subjective weights with the
objective weights determined through the entropy method; and it calibrates the subjective
probabilities though probability elicitation by extracting expert knowledge about the probability
of future events. Fifth, Slice takes into consideration the risk-averse attitude of the DMs through
utility maximization.
As Russo and Schoemaker (1989) note, considerable research indicates that DMs can maximize

their chances of making the best choice(s) if they find a systematic way to evaluate all the evidence
favorable or unfavorable to each alternative, such as the subjective linear model described here.
Still, in most applied settings, it is not possible to demonstrate the accuracy of subjective linear
models. In contrast, where the same decision is made repeatedly, data on the outcomes of past
decisions are available, and one expects the future to resemble the past. In this setting, objective
linear models such as multiple regression can be used to determine the optimal set of predictors. For
many decisions, including the one described here, there are no objective outcomes of past decisions.
For example, there is no objective index that can be used to evaluate whether the fund allocation
resulting from Slice or from the current approach is optimal. In such situations, rigorous subjective
linear models such as Slice are likely to provide the best hope for optimizing the quality of decisions
and the acceptability of those decisions to organizational stakeholders and public.
The final allocation scores depend heavily on the subjective judgments and ratings provided by

the DMs. Therefore, it is imperative that these judgments and ratings be perceived as reasonably
accurate and fair. If the rating process is viewed by the stakeholders and public as biased,
inaccurate, or contaminated by self-serving motives, then fund allocation decisions will be viewed
as unfair. In developing subjective judgments and ratings, two types of rating errors can occur.
Some rating errors are unintentional. For example, two DMs who agree on the threat of attack on
skyscrapers might assign different weights to that event because they interpret the rating scale
differently. However, some rating errors such as assigning a higher probability of occurrence to
one home state or territory are intentional and reflect self-serving or political motives. In this case,
DMs may have the ability to make accurate judgments, but they are unwilling to do so. DMs can
play political games and distort their judgments to achieve a desired goal (Kozlowski et al., 1998).
Kozlowski et al. (1998) have noted that politics and associated judgment distortions are more
likely when (a) there is a direct link between the judgments and desired rewards as in fund
allocation decisions, (b) there is a lack of surveillance of DM behavior, and (c) there is a
widespread perception that others will distort their judgments. Kozlowski et al. (1998) describe
several actions that organizations can take to minimize the role of politics in judgments and
ratings. These recommendations include (a) having key DMs serve as role models by providing
fair evaluations and discouraging political game playing, (b) allowing other DMs to suggest
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potential improvements to the system itself, (c) ensuring that the evaluation criteria are widely
viewed as relevant, (d) using multiple DMs, and (e) making DMs accountable for their
evaluations by having to explain the reasons for their judgments. When DMs are motivated to
provide accurate judgments, training can enhance the accuracy of the judgments. Hauenstein
(1998) reviewed the empirical research in this area and described key elements in successful DM
accuracy training. A facilitator should also guide rating sessions to ensure that the same process is
applied systematically to all states and territories. In general, it has been shown that facilitation
enhances the effectiveness of groups using group decision support systems (Khalifa et al., 2002).
Finally, using a structured, step-by-step approach like Slice is not intended to imply a

deterministic approach to homeland security funding allocation. Homeland security funding is a
complex problem requiring compromise and negotiation between stakeholders from various
branches of government. Slice creates an even playing field to pursue consensus. While Slice
enables DMs to crystallize their thoughts and organize data by simultaneously considering both
inherently subjective criteria and more objective criteria, it should be used very carefully. As with
any decision analysis model, the researchers and practicing managers must be aware of the
limitations of subjective estimates.
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Appendix

Decision process items

� The quality of the decision-making process in Slice was good.
� The analysis of the states and territories in Slice showed careful consideration.
� The group’s decision-making process in Slice was effective.
� The group’s decision-making process in Slice was very structured and systematic.
� The group made suggestions and provided input in Slice.
� Everyone in the group contributed during the decision-making process in Slice.
� The group experienced little conflict during the discussions with Slice.
� I was satisfied with the decision-making process using Slice.

Decision quality items

� The decision we made using Slice was a good one.
� People who would be affected by the decision made using Slice will probably be satisfied with it.
� The quality of the decision we made using Slice was very good.
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� I am confident about the decision we made using Slice.
� I agree with the final decision that the group made using Slice.
� Everyone in the group felt comfortable with the final decision that we made using Slice.

Overall items – value added

� Slice provided valuable assistance as we made our decisions.
� Slice effectively supported our decision-making.
� Slice enhanced the quality of our group’s decision.
� Overall, I find Slice to be useful.
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