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1 Introduction

Owing to economic globalization, product proliferation and technology progress, customer de-

mands and market prices have become highly uncertain across many industry sectors. As a

result, improving the reliability of forecasts for demands and prices has become very important

for the survival of many companies. At the same time, various supply chain management tools

and methods have become available to help companies streamline their supply chain operations.

An important such tool is that of quantity flexibility contracts. Such a contract allows the buyer

in a supply chain to postpone some of his purchases to a later date and at a favorable price after

an improved forecast of the customer demand becomes available. Thus the contract provides the

buyer with a cushion against demand uncertainty. The supplier on the other hand benefits by

having a smoother production schedule as a result.

A number of papers dealing with quantity flexible contracts have appeared in the literature.

Here we shall review them briefly, before developing our model of a quantity flexibility contract.

Eppen and Iyer (1997) study a special form of the quantity flexible contract, which allows the

retailer to return a portion of its purchase to the supplier. Bassok and Anupindi (1997) analyze

a single-product periodic review inventory system with a minimum quantity contract, which

stipulates that the cumulative purchase over the life of the contract must exceed a specified

minimum quantity to qualify for a price discount. They demonstrate that the optimal inventory

policy for the buyer is an order-up-to type and that the order-up-to level can be determined

by a newsvendor model. Anupindi and Bassok (1998) extend this work to the case of multiple

products. In this case, the supply contract requires that the total purchase amount in dollars

exceed a specified minimum to obtain the price discount. Tsay (1999) studies incentives, causes

of inefficiency, and possible ways of performance improvement in a quantity flexible contract.

In particular, Tsay investigates order revisions in response to new demand information, where

the information is a location parameter of the demand distribution. Tsay and Lovejoy (1998)

investigate the quantity flexible contracts in more complex settings of multiple players, multiple

demand periods, and demand forecast updates. They study issues relating to desired levels of

flexibility and local and systemwide performances.

Similar to the structure of quantity flexible contracts, a form of “Take-or-Pay” provision has
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been used in many long-term natural resources and energy supply contracts (Tsay 1999). A take-

or-pay contract is an agreement between a buyer and a supplier, which often specifies a minimum

quantity the buyer must purchase (take), and the maximum quantity the buyer can obtain (pay)

over the contract period. Brown and Lee (1997) note that capacity reservation agreements,

common in the semiconductor industry, have a similar structure. Brown and Lee examine how

much capacity should be reserved as take and how much capacity should be reserved for the

future as pay.

Related research has been carried out in the area of inventory management with demand

forecast updates. It is possible to classify this research into three categories. The first category

uses Bayesian analysis. Bayesian models were first introduced in the inventory literature by

Dvoretzky, Kiefer, and Wolfowitz (1956). Eppen and Iyer (1997) analyze a quick response program

in a fashion buying problem by using the Bayes Rule to update demand distributions. The use of

time-series models in demand forecast updating characterizes the second category, which includes

the papers by Johnson and Thompson (1975) and Lovejoy (1990). The third category is concerned

with forecast revisions. This approach is developed and used by Hausmann (1969), Sethi and

Sorger (1991), Heath and Jackson (1994), Donohue (2000), Yan, Liu, and Hsu (2003), Gurnani

and Tang (1999), Barnes-Schuster, Bassok, and Anupindi (2002), and Gallego and Özer (2001).

Sethi, Yan and Zhang (2001,2003), and others. We refer the readers to a more detailed review in

Sethi, Yan and Zhang (2001) and references therein.

In this paper, we develop a model to analyze a quantity flexible contract involving multiple

periods, rolling horizon demand and forecast updates. The contract permits the buyer to order

at two distinct time instants, one at the beginning of a period and another at a time before the

demand realizes at the end of the period. At the first instant, the buyer purchases q units of a

product at price p. This gives him an option to purchase up to δq units of the same product at

price pc > p at the second instant, where 0 < δ ≤ 1 is known as the flexibility limit. Since the

buyer may purchase any amount of the product in the spot market, the contract provides the

buyer with both price and quantity protection against price and demand uncertainties. With a

firm commitment of an amount q early on from the buyer, the contract is also appealing to the

supplier. Quantity flexibility contracts of the type modelled here have been used by a number
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of major manufacturers, in particular, in the computer industry, where demand uncertainties,

price fluctuations and dependence on parts suppliers are common. It is reported that since as

early as 1990, Sun Microsystems, IBM, and Hewlett Packard had been adopting contracts with a

flexibility limit for components and assemblies (Tsay and Lovejoy, 1998).

Our model differs from most of the existing models of quantity flexible contracts in the fol-

lowing ways: (i) we provide a model which takes both quantity flexible contract and spot market

purchase into consideration; (ii) the contract has a flexibility level which specifies the maximum

amount that can be purchased on contract; (iii) we model both speculative and reactive deci-

sions, in particular, how both speculative and reactive decision are related to the information

revisions, such as demand and price information updates; (iv) with stochastic comparison theory,

we characterize the impact on the optimal policy and the expected profit of the quality of forecast

updates; (v) we extend our results to the multiple period case.

The rest of the paper is organized as follows. In Section 2, we model a single-period contract

and some fundamental structural results. We establish the existence of an optimal solution for

our model. In Section 3, we provide explicit optimal solutions in some special cases. For the

cases of worthless and perfect information updates, respectively, we obtain closed-form solutions.

In Section 4, we use the stochastic comparison theory to establish results relating to the effect of

the quality of information revisions on the optimal solution. The model is extended to allow for

a finite number of periods in Section 5. The paper is concluded in Section 6. Proofs of all the

results obtained in the paper are relegated to Appendix.

2 The Model

In this section we design a one-period, two-stage quantity flexible supply contract between a

buyer and a supplier. In such a contract, the buyer has an option in the second stage to increase

his first-stage order by up to a certain percentage of the initial purchase. The specifics of the

contract are as follows.

Let t1, t2, t3 denote the epochs representing the start of stage 1, start of stage 2, and the end

of stage 2. At t1, the buyer purchases a quantity q of the product from the supplier at a unit

price p. This decision is based on the following:
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(i) The available information about the uncertain customer demand to be realized at t3.

(ii) The distribution of the spot market price at t2.

(iii) The buyer will have an updated demand information at t2.

(iv) The buyer has an option at t2 to purchase from the supplier an additional quantity qc not

exceeding δq, 1 ≥ δ > 0, at a unit price pc > p. We call δ as the flexibility limit.

(v) The buyer could purchase at t2 any amount qs of product in the spot market at the then

prevailing price.

(vi) The buyer loses revenue r for each unsatisfied customer demand at t3.

(vii) The unsold product is salvaged at a value of s per unit.

To complete the statement of the buyer’s problem, we introduce the following notation and

assumptions. We model the market price as the random variable P taking value in the interval

[pl, ph], ph ≥ pl > 0. To avoid trivial cases, we assume

r > max[ph, pc], s < min[pl, p]. (1)

We letD denote the random demand and I denote the signal that updates the demand distribution

at t2 . So, what we have available at t1 is the joint density φD,I(z, i), or simply φ(z, i), from which

we can derive the marginal density g(i). The signal I is observed at t2. If the observed value of I

is i, then we obtain the updated demand density as the conditional density h(z | i) = φ(z, i)/g(i)

for g(i) > 0. Let the distributions corresponding to the densities φ(z, i), g(i) and h(z | i) be

denoted by Φ(z, i), G(i), and H(z | i), respectively. For convenience in exposition, we assume

that the cumulative distribution Φ(z, i) and H(z | i) are strictly increasing in z.

We can now define the optimal profit π∗ of the buyer as

π∗ = max
q≥0

{
−pq + E

(
max
0≤qs

0≤qc≤δq

Π(q, qs, qc; I, P )

)}
, (2)

where

Π(q, qs, qc; I, P )

= E
[{
r(D ∧ (q + qs + qc)) + s(q + qs + qc −D)+ − pcqc − Pqs

}
|I, P

]
, (3)
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and the notations x+ = max{0, x} and x ∧ y = min{x, y}. The term pq is the purchase cost of

buying amount q at price p at t1. Similarly, pcqc is the cost of purchasing quantity qc from the

supplier at price pc, and Pqs represents the purchase cost of buying quantity qs from the market

at price P. The conditional expectation Π(q, qs, qc; I, P ) represents the buyer’s profit at t2 given

the signal I and the market price P . Therefore, the buyer’s problem is to determine the optimal

purchasing decisions (q∗, q∗s , q
∗
c ) that maximize the total expected profit. Clearly, q∗s and q∗c depend

on q, I and P . In order to highlight the above dependence, we sometimes write these contingent

decisions as q∗s(q, I, P ) and q∗c (q, I, P ), respectively. Note also that Π(q, qs, qc; I, P ) is a random

variable dependent on I and P.

To solve the problem, we first determine the optimal q∗s(q, I, P ) and q∗c (q, I, P ) for any given

q, I = i, and P = ps. That is, we first solve the problem

max
0≤qs

0≤qc≤δq

Π(q, qs, qc; i, ps), (4)

where

Π(q, qs, qc; i, ps) = E
([
r(D ∧ (q + qs + qc)) + s(q + qs + qc −D)+ − pcqc − psqs

]∣∣ i, ps

)

= r

∫ q+qs+qc

0

zh(z|i)dz + r(q + qs + qc)

∫ ∞

q+qs+qc

h(z|i)dz

+s

∫ q+qs+qc

0

[(q + qs + qc) − z]h(z|i)dz − pcqc − psqs. (5)

If the unit order cost p at time t1 is larger than the highest possible market price ph at time t2,

i.e., if ph ≤ p, then it is obvious that the best strategy is to purchase all of the required quantity

from the spot market, i.e., q∗ = 0 and q∗c = 0. To find out q∗s(0, i, ps) in this case, we must solve

max
0≤qs

[
r

∫ qs

0

zh(z|i)dz + rqs

∫ ∞

qs

h(z|i)dz + s

∫ qs

0

[qs − z]h(z|i)dz − psqs

]
.

This is a newsvendor problem and its solution is q∗s(0, i, ps) = H−1((r − ps)/(r − s)|i).

If ph < pc or δ = 0, then q∗c = 0. Both of these cases also reduce to a newsvendor problem.

Thus, since p < pc, it suffices to consider the following cases:

p < pc ≤ pl ≤ ph; p ≤ pl ≤ pc ≤ ph; pl ≤ p < pc ≤ ph. (6)

Strictly speaking, we should exclude the case p = pl = pc ≤ ph from the middle case above.

In the next section, we take up the buyer’s problem at time t2.
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3 Contingent Order Quantities at t2

In this section we solve for the contingent order quantities for every possible observation of the

signal I and the market price P at t2.We also characterize monotonicity properties of the solutions

with respect to these observations.

Proposition 3.1 For an observed value (i, ps) of (I, P ), we have the following solutions:

(i) If ps ≤ pc, then

q∗c (q, i, ps) = 0, q∗s(q, i, ps) =

[
H−1

(
r − ps

r − s

∣∣∣∣ i
)
− q

]+

.

(ii) If ps > pc, then

q∗c (q, i, ps) = (δq) ∧

[
H−1

(
r − pc

r − s

∣∣∣∣ i
)
− q

]+

,

q∗s(q, i, ps) =

[
H−1

(
r − ps

r − s

∣∣∣∣ i
)
− (1 + δ)q

]+

.

Let us explain the proposition in words. Statement (i) says that when the contract price pc is

higher than the prevailing market price ps, then the buyer purchases nothing on the contract at

time t2. Instead the buyer purchases the product from the spot market. The purchasing quantity

is determined by the difference of the critical fractile of the updated demand distribution and

the amount purchased at t1. The critical fractile is determined by the demand distribution, the

sales price r, the salvage value s, and the spot market price ps. When the market price ps is

higher than the contractual price pc, then the buyer purchases on the contract first, and considers

to purchase from the spot market only after exhausting the quantity flexibility provided in the

contract. Note that the buyer can purchase δq at most. Therefore, the marginal purchase price

can be the contract price pc or the spot market price ps. The buyer first exhausts its option to

purchase on the contract with the contract price pc as the marginal purchasing price in the critical

fractile calculation. Otherwise, in addition to exhausting the purchase option in the contract, the

buyer purchases a desired additional amount from the spot market with the spot market price ps

as the marginal price in the critical fractile calculation.

With an assumption that the demand D is stochastically monotone in the signal observation

i, we provide an explicit expression of the optimal purchase quantity with respect to i. Without
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loss of generality, we assume D to be stochastically increasing. For the case of a stochastically

decreasing demand, it is possible for us to redefine i so that the case of the stochastically decreasing

demand can be translated to the case of a stochastically increasing demand.

Proposition 3.2 Let the demand D be stochastically increasing in i. Then, for an observed

market price ps, there exist information thresholds Ī(q, pc), Î(q, pc), Ī(q, ps) and Î(q, ps) defined by

the relations

H−1

(
r − pc

r − s

∣∣∣∣ Ī(q, pc)

)
= q, H−1

(
r − pc

r − s

∣∣∣∣ Î(q, pc)

)
= (1 + δ)q, (7)

H−1

(
r − ps

r − s

∣∣∣∣ Ī(q, ps)

)
= q, H−1

(
r − ps

r − s

∣∣∣∣ Î(q, ps)

)
= (1 + δ)q, (8)

such that

(i) if ps ≤ pc, then

q∗c (q, i, ps) = 0,

q∗s(q, i, ps) =

{
0, if i ≤ Ī(q, ps),
H−1

(
r−ps

r−s

∣∣ i
)
− q, if i > Ī(q, ps);

(ii) if pc < ps, then Ī(q, pc) ≤ Î(q, pc) ≤ Î(q, ps), and

q∗c (q, i, ps) =





0, if i ≤ Ī(q, pc),

H−1
(

r−pc

r−s

∣∣ i
)
− q, if Ī(q, pc) < i < Î(q, pc),

δq, if i ≥ Î(q, pc),

q∗s(q, i, ps) =

{
0, if Î(q, pc) < i ≤ Î(q, ps),

H−1
(

r−ps

r−s

∣∣ i
)
− (1 + δ)q, if i ≥ Î(q, ps).

With the results obtained in Proposition 3.2, we can enhance our interpretation of the results

in Proposition 3.1. The statement of Proposition 3.2(i) says that if the realized market price is

lower than pc, then there is no reason to buy on contract. Moreover, when the demand is low,

indicated by a low value of i, then there is no need also to buy in the market. However, when

the demand is high as indicated by a value of i ≥ Ī(q, ps), then we can compute the newsvendor

amount, which is higher than the initial purchase quantity q because of the way we have defined

Ī(q, ps) in (8), and then buy the required difference in the market so that the total purchased

quantity equals the newsvendor amount.

7



In the case of Proposition 3.2(ii), the realized market price turns out to be higher than the

contractual price pc. So there will be some buying on contract if the demand turns out to be

not too low. Indeed, when i > Ī(q, pc), some quantity will be purchased on the contract, where

as i ≤ Ī(q, pc) means very low demand, implying that the initial order is quite adequate and no

amount needs to be purchased on contract. As i increases from Ī(q, pc) to Î(q, pc), the newsvendor

quantity increases from q to (1 + δ)q, and the difference between the newsvendor quantity and

the initial order quantity is purchased on the contract. Note that when i = Î(q, pc), the difference

is exactly δq, the maximum quantity that can be purchased on the contract. As i increases

further from Î(q, pc), the newsvendor quantity based on pc increases beyond δq, but the amount

purchased does not increase because of the given flexibility limit δ. Even so, there is no additional

purchase from the spot market to make up the difference. The reason is that the newsvendor

quantity corresponding to the market price ps, which is higher than pc, is still smaller than (1+δ)q

initially. But when i increases to Î(q, ps), the newsvendor quantity corresponding to ps equals

(1+δ)q. As a result, as i increases beyond Î(q, ps), the difference between the newsvendor quantity

and (1 + δ)q is purchased in the spot market.

Remark 3.1 Statements (i) and (ii) of Proposition 3.2 imply that when the demand increases

stochastically with i, then the optimal purchase quantity at time t2 is nondecreasing in the

observed signal.

Remark 3.2 When δ = 0, (ii) of Propositions 3.1 and 3.2 is not needed. In the special case

when δ = 0 and P has a geometric distribution, Proposition 3.1 reduces to the results obtained

by Gurnani and Tang (1999).

Remark 3.3 Note that (1) implies

r > max{EP, pc} and s < min{EP, p}. (9)

Regarding Proposition 3.1, since its proof is based on the classical newsboy problem, it can be

easily shown that if pc < r ≤ ps, then q∗s(q, i, ps) = 0, and if ps ≤ s < p, then q∗s(q, i, ps) = ∞.

These are the cases that do not occur under (1), but occur under (9). Going along the lines of

the proof of Proposition 3.2, we can show that Proposition 3.2 holds also for these cases.
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4 Optimal Purchase Quantity at t1

With the knowledge of the optimal reaction plan at t2 derived in the previous section, it is possible

to determine the purchase quantity q at time t1. This is done by substituting in (2) for qs and

qc, their respective optimal quantities q∗c (q, I, P ) and q∗s(q, I, P ), and solving the optimization

problem

π∗ = max
q≥0

{
− pq + E

[
Π(q, q∗s(q, I, p), q

∗
c (q, I, p); I, P )

]}
. (10)

This is a problem of maximizing an objective function with a single variable q. For given

values of the problem parameters and observations i and ps, it can be easily solved numerically.

One could also use the K-T theory to derive the first order conditions for a maximum. Such an

approach was used by Brown and Lee (1997) on a related problem.

For a further mathematical analysis of the problem, we need to simplify the distributions of the

random variables involved. To begin with, we shall assume that the market price is geometrically

distributed. Specifically we make the following assumption.

Assumption A. The market price P has the value pl with probability β and the value ph

with probability (1 − β). The conditional distribution of D given i is a decreasing function

of i.

It is clear from (10) that the initial order quantity q∗ depends on several factors including δ.

It is also easy to see that the “level” of flexibility is jointly determined by δ and q∗. The flexibility

level increases as δ increases and as q∗ increases. It is therefore important to know how q∗ relates

to δ. This is the subject of the following proposition.

Proposition 4.1 Under Assumption A, (i) the initial optimal order quantity q∗ is non-increasing

in δ and (ii) the optimal expected profit π∗ is non-decreasing in δ.

Remark 4.1 From (31) and (32) we know that if pl ≤ pc, then the initial optimal ordering

quantity q∗ can be uniquely solved by (31). In a similar way, by Proposition 3.2, we can also

prove that if pc ≤ pl, then the initial optimal ordering quantity q∗ can be uniquely obtained by
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solving the equation

−p+ β

∫ Ī(q,pl)

−∞

[(s− r)H(q|i) + r] g(i)di+ βpl[G(Î(q, pl)) −G(Ī(q, pl))]

+β

∫ Î(q,pl)

Î(q,pc)

{(1 + δ)[(s− r)H((1 + δ)q|i) + r] − pcδ} g(i)di

+β

∫ ∞

Î(q,pl)

[−pcδ + (1 + δ)pl]g(i)di

+(1 − β)

∫ Ī(q,pc)

−∞

[(s− r)H(q|i) + r] g(i)di+ (1 − β)pc[G(Î(q, pc)) −G(Ī(q, pc))]

+(1 − β)

∫ Î(q,ph)

Î(q,pc)

{(1 + δ)[(s− r)H((1 + δ)q|i) + r] − pcδ} g(i)di

+(1 − β)

∫ ∞

Î(q,ph)

[−pcδ + (1 + δ)ph]g(i)di = 0. (11)

Remark 4.2 We call dF (q∗, δ)/dδ, the flexibility value rate. Using (35), we have

d2F (q∗, δ)

dδ2
= (ph − pc)[1 −G(Î(q∗, ph))]

+

∫ Î(q∗,ph)

Î(q∗,pc)

[(s− r)H((1 + δ)q∗|i) + r − pc] g(i)di

−(1 + δ)(r − s)

(
q∗ + (1 + δ)

dq∗

dδ

)∫ Î(q∗,ph)

Î(q∗,pc)

h((1 + δ)q∗|i)g(i)di. (12)

Let δ̃ be the solution of
d2F (q∗, δ)

dδ2
= 0.

Then we know that the flexibility value rate is increasing on [0, δ̃] and non-increasing on (δ̃,∞).

Thus, δ̃ is the critical number that makes the flexibility value rate to be the largest. Although

the larger is the flexibility factor δ, the higher is the profit, when the buyer, however, considers

the expense of flexibility, he may prefer to choose δ̃ as the flexibility factor.

4.1 The Case of Worthless Information

The case of worthless information arises when the signal I observed at t2 does not have any impact

on the demand uncertainty. Mathematically, it means that the random variables I and D are

independent. Hence, H(z|i) = H(z) and Φ(z, i) = G(i)H(z). From Proposition 3.1, q∗c (q, i, ps)

and q∗s(q, i, ps) are independent of i. Therefore, in this subsection we denote them as q∗c (q, ps) and

q∗s(q, ps), respectively.
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Proposition 4.2 (Worthless Information). Assume that H(z|i) = H(z) and Φ(z, i) = G(i)H(z).

Then the optimal solution is as follows.

(A) If p ≤ pl, the optimal order quantities are

q∗ = H−1

(
r − p

r − s

)
, q∗c (q

∗, pl) = q∗s(q
∗, pl) = q∗c (q

∗, ph) = q∗s(q
∗, ph) = 0,

the optimal expected total order quantity is given by H−1((r−p)/(r−s)), and the optimal expected

profit is

(r − s)

∫ q∗

0

zh(z)dz.

(B) If p > pl, then we have the following three subcases:

(B.1) when βpl + (1 − β)pc ≥ p, the optimal order quantities are

q∗ = H−1

(
−p+ βpl + (1 − β)r

(1 − β)(r − s)

)
,

q∗c (q
∗, pl) = 0, q∗s(q

∗, pl) = H−1

(
r − pl

r − s

)
− q∗,

q∗c (q
∗, ph) = q∗s(q

∗, ph) = 0,

the optimal expected total order quantity is

βH−1

(
r − pl

r − s

)
+ (1 − β)H−1

(
−p+ βpl + (1 − β)r

(1 − β)(r − s)

)
,

and the optimal expected profit is

(r − s)

{
β

∫ q∗+q∗s (q∗,pl)

0

zh(z)dz + (1 − β)

∫ q∗

0

zh(z)dz

}
;

(B.2) when βpl +(1−β)pc < p < βpl +(1−β)ph +(1−β)δ(ph − pc), the optimal order quantities

are

q∗ =
1

1 + δ
H−1

(
(1 − β)(1 + δ)(r − pc) − p+ βpl + (1 − β)pc

(1 − β)(1 + δ)(r − s)

)
,

q∗c (q
∗, pl) = 0, q∗s(q

∗, pl) = H−1

(
r − pl

r − s

)
− q∗,

q∗c (q
∗, ph) = δq∗, q∗s(q

∗, ph) = 0,

the optimal expected total order quantity is

βH−1

(
r − pl

r − s

)
+ (1 − β)H−1

(
(1 − β)(1 + δ)(r − pc) − p+ βpl + (1 − β)pc

(1 − β)(1 + δ)(r − s)

)
,
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and the optimal expected profit is

(r − s)

{
β

∫ q∗+q∗s (q∗,pl)

0

zh(z)dz + (1 − β)

∫ (1+δ)q∗

0

zh(z)dz

}
;

(B.3) when p ≥ βpl + (1 − β)ph + (1 − β)δ(ph − pc), the optimal order quantities are

q∗ = 0, q∗c (q
∗, pl) = 0, q∗s(q

∗, pl) = H−1

(
r − pl

r − s

)
,

q∗c (q
∗, ph) = 0, q∗s(q

∗, ph) = H−1

(
r − ph

r − s

)
,

the optimal expected total order quantity is

βH−1

(
r − pl

r − s

)
+ (1 − β)H−1

(
r − ph

r − s

)
,

and the optimal expected profit is

(r − s)

{
β

∫ q∗s (q∗,pl)

0

zh(z)dz + (1 − β)

∫ q∗s (q∗,ph)

0

zh(z)dz

}
.

Let us provide intuitive insights into the various results obtained in Proposition 4.2. Case A

addresses the situation when the initial unit order cost is less than the lowest possible market

price. In this case, if the observed information is worthless, then the buyer gains nothing by

delaying his purchase to t2. Thus, the entire purchase is made at t1, and nothing is purchased at

t2. Indeed, in this case, the contract is of no value.

In Case B, we have (36). Clearly, q∗c (q
∗, pl) = 0 in this case.

In (B.1), the expected relevant price at t2 is clearly βpl + (1 − β)pc, and it is higher than the

initial price p. Therefore, the buyer will buy a sufficiently large quantity q∗ at the initial price p

so that he would not need to buy any quantity at all when the market price is high. Moreover, q∗

will not be too large to prohibit the buyer from taking advantage of buying in the market when

the spot price is low.

We now consider (B.2) and (B.3). Note that since δ > 0, the condition

p ≥ βpl + (1 − β)ph + (1 − β)δ(ph − pc) (13)

in (B.3) implies p > βpl+(1−β)pc. Thus, in both cases (B.2) and (B.3), βpl+(1−β)pc is lower than

the initial price p. In contrast to (B.1), it seems reasonable, therefore, to reduce or completely
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postpone the purchase to time t2 in (B.2) and (B.3). The (B.3) condition (13), however, also

implies p > βpl + (1 − β)ph. This says that the expected market price at t2 is lower than the

initial price p, which argues for a complete postponement of the purchase. Consequently, the

initial purchase quantity is zero, and the entire respective newsvendor quantity is bought from

the market depending on the prevailing market price at time t2.

This leaves us with (B.2), where we still have p > βpl + (1 − β)pc, but we do not have (13).

In other words, the high market price ph is not low enough for (13) to hold, and thus arguing

perhaps for a reduction in the initial purchase amount rather than a complete postponement. Let

us therefore consider an initial purchase of one unit at t1 and δ unit at t2. Clearly, the purchase of

δ unit at time t2 will take place at pl when the market price is low, and at pc when the market price

is high. Thus, the per unit expected cost of a reduced purchase at t1 followed by an additional

purchase up to the contracted amount is

[p+ βδpl + (1 − β)δpc]/(1 + δ).

On the other hand, a complete postponement of the purchase of a unit to time t2 has the expected

cost

[βpl + (1 − β)ph] .

Thus, if
p+ βδpl + (1 − β)δpc

1 + δ
< βpl + (1 − β)ph,

i.e., if

p < βpl + (1 − β)ph + (1 − β)δ(ph − pc)

= βpl + (1 − β)pc + (1 − β)(1 + δ)(ph − pc), (14)

then it is better to reduce the initial purchase than to postpone it completely. This is precisely

the result obtained in (B.2).

Remark 4.3 In order to get a simple representation for the optimal order quantities in terms of

the observed information i, one usually assumes that Φ(z, i) is a bivariate normal distribution.

Furthermore, if the correlation between D and I is zero, i.e., H(z) and G(i) are normal distri-

butions, then, when p > pl and δ = 0, (B.2) of Proposition 4.2 provides the same result as Part
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B of Proposition 4.1 of Gurnani and Tang (1999); when p > pl and δ = 0, (B.3) of Proposition

4.2 implies Part A of Proposition 4.1 of Gurnani and Tang (1999); and when p ≤ pl, our model

reduces to that of Brown and Lee (1997) and Proposition 4.2 is similar to Theorem 4 of Brown

and Lee for the case of worthless information.

Finally, comparing our results with Proposition 3.1 of Gurnani and Tang (1999), it is possible

to show that the difference between the profit with the contract and that without the contract is

(1 − β)(r − s)

∫ (1+δ)q∗

0

zh(z)dz, (15)

in (B.2) of Proposition 4.2. We denote this gap as the value of flexibility. Equation (15) indicates

that the value of flexibility is positive under the specified condition of (B.2) even when demand

information revision is worthless. In (B.1) and (B.3), the value of flexibility is zero.

4.2 The Case of Perfect Information Update

In this subsection we study the other extreme case when the information revision is perfect. The

perfect information revision represents a scenario in which the demand D can be completely

determined once I is observed. In other words, the demand D is a function of I, say, τ(I). Let

F (·) denote the distribution function of D. From our assumptions in Section 1, we have F (·) to

be strictly increasing on [0,∞). Parallel to Proposition 4.2, for the case of perfect information

revision, we present the following proposition.

Proposition 4.3 (Perfect Information) Assume that D = τ(I).

(A) If pl ≤ pc, then the optimal order quantity q∗ at time t1 is the solution of the equation

−p+ βpl + (1 − β)pc + (1 − β)(1 + δ)(ph − pc)

+[s− βpl − (1 − β)pc]F (q) − (1 − β)(1 + δ)(ph − pc)F ((1 + δ)q) = 0, (16)

and q∗ = 0 if there is no positive solution of (16). The optimal order quantities at t2 are

q∗c (q
∗, i, pl) = 0, q∗s(q

∗, i, pl) = [τ(i) − q∗]+ ,

q∗c (q
∗, i, ph) = [τ(i) − q∗]+ ∧ (δq∗), q∗s(q

∗, i, ph) = [τ(i) − (1 + δ)q∗]+, (17)
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the optimal expected total order quantity is (q∗ + ED), and the optimal expected profit is

rED − s

∫ q∗

0

zdF (z) − βpl

∫ ∞

q∗
zdF (z)

−(1 − β)

{
pc

∫ (1+δ)q∗

q∗
zdF (z) + ph

∫ ∞

(1+δ)q∗
zdF (z)

}
. (18)

(B) If pl > pc, then the optimal order quantity q∗ at t1 is the solution of the equation

−p− δpc + (1 + δ)[βpl + (1 − β)ph]

+(s− pc)F (q) + (1 + δ)[pc − βpl − (1 − β)ph]F ((1 + δ)q) = 0, (19)

and q∗ = 0 if there is no positive solution of (16). The optimal order quantities at t2 are

q∗s(q, i, pl) = [τ(i) − (1 + δ)q∗]+ , q∗s(q
∗, i, ph) = [τ(i) − (1 + δ)q∗]+,

q∗c (q
∗, i, pl) = q∗c (q

∗, i, ph) = [τ(i) − q∗]+ ∧ (δq∗).

The optimal expected total order quantity is (q∗ + ED) and the optimal expected profit is

rED − s

∫ q∗

0

zdF (z) − pc

∫ (1+δ)q∗

q∗
zdF (z)

−[βpl + (1 − β)ph]

∫ ∞

(1+δ)q∗
zdF (z).

Remark 4.4 If I is a normal random variable and D = aI+b with a > 0, then D is also a normal

random variable, and Φ(z, i) is a bivariate normal distribution with the correlation coefficient of

one. In particular, if δ = 0 and pl < p, then Case A of Proposition 4.3 provides the same results

as Proposition 3.2 in Gurnani and Tang (1999).

Proposition 4.4 With the condition pl ≤ pc, equation (16) has a solution q∗ > 0 if, and only if,

(14) holds.

Proposition 4.5 With the condition pl > pc, equation (19) has a solution q∗ > 0 if, and only if

−p− δpc + (1 + δ)[βpl + (1 − β)ph] > 0. (20)

Proposition 4.6 The flexibility value is either zero or a decreasing function of β in both the

worthless and the perfect information cases.

15



5 The Impact of the Forecast Accuracy

In this section we investigate the impact of the forecast accuracy on the ordering decisions. We

start with a related definition.

Definition 5.1 A random variable X is more increasing-convex than another random variable

Y , denoted as X ≥ic Y , if

E[ψ(X)] ≥ E[ψ(Y )] (21)

for all non-decreasing convex functions ψ(·).

Clearly, if E[X] = E[Y ] and X ≥ic Y , then we have

Var(X) ≥ Var(Y ). (22)

Thus, when E(X) = E(Y ), then X has a larger variance than Y if X is more increasing-convex

than Y. For further discussion on the increasing-convex ordering relation, the reader is referred

to Shaked and Shanthinkumar (1994) and Song (1994).

Consider two systems 1 and 2, which face demands D1 and D2, respectively. We assume all

other parameters to be the same for both systems. For simplicity, we also assume that both

systems observe the same signal I in updating their respective demands. To be specific, the

demands D1 and D2, following the onion-layer peeling model of Sethi, Yan and Zhang (2001),

can be written as

D1 = ϕ1(I, R1) and D2 = ϕ2(I, R2),

where R1 and R2 are independent random variables. Then, ϕk(i, Rk) represents the updated

demand based on the observed information i of I for system k, k = 1, 2. Furthermore, we say

that the demand forecast for system 2 is more accurate under the increasing-convex ordering

than the demand forecast for system 1, if ϕ1(i, R1) ≥ic ϕ
2(i, R2) for each observed value i. It

follows, therefore, that if E[ϕ1(i, R1)] = E[ϕ2(i, R2)] and ϕ1(i, R1) ≥ic ϕ
2(i, R2) for each i, then

the variance of the updated demand of system 1 is larger than that of system 2 for each i. In

this case, we can now prove the intuitive result that the expected profit of a system with more

accurate forecast than another’s is higher.
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Proposition 5.1 If for each observed value i of I, E[ϕ1(i, R1)] = E[ϕ2(i, R2)] and ϕ1(i, R1) ≥ic

ϕ2(i, R2), then the expected profit for system 1 is lower than that for system 2, ceteris paribus.

In order to investigate the impact of the forecast accuracy on the optimal expected total order

quantity, we introduce another definition to describe forecast accuracy.

Definition 5.2 Consider two non-negative random variables X and Y satisfying E[X] = E[Y ]

have distributions FX and FY with densities fX and fY . Suppose X and Y are either both

continuous or both discrete. We say X is more variable than Y , denoted by X ≥var Y , if

S(fX − fY ) = 2 with sign sequence +,−,+, (23)

that is, there exist 0 < α1 < α2 <∞ such that fX(t)−fY (t) > 0 when t ∈ (0, α1), fX(t)−fY (t) < 0

when t ∈ (α1, α2), and fX(t)− fY (t) > 0 when t ∈ (α2,∞). Here the notation S(f(t)) means the

number of sign changes of a function f(·) as t increases from 0 to ∞.

For further discussion on the property of more variability, see Song (1994) and Whitt (1985).

Note that (23) implies

S(FX − FY ) = 1 with sign sequence +,−.

Furthermore, from E[X] = E[Y ] and (23), it is possible to show that

E(X − E[X])2 > E(Y − E[Y ])2. (24)

See also Song (1994) and Ross (1996). As the variance measures the deviation of a random

variable from its mean, so (24) motivates why X is known to be more variable than Y if X and

Y satisfy (23).

Let T k be the total quantity ordered by system k, k = 1, 2. Note that T1 and T2 are random

variables. We have the following proposition.

Proposition 5.2 If ϕ1(i, R1) ≥var ϕ
2(i, R2) and δ = 0, then there is a positive θ such that (i)

when max
{

r−pl

r−s
, r−ph

r−s

}
≤ θ, we have E[T 1] ≤ E[T 2]; and (ii) when min

{
r−pl

r−s
, r−ph

r−s

}
≥ θ, we have

E[T 1] ≥ E[T 2].

Remark 5.1 There are many commonly used demand distributions having the relationship

ϕ1(i, R1) ≥var ϕ
2(i, R2). For example, ϕ1(i, R1) is uniform (a1 + i, b1 + i) and ϕ2(i, R2) is

uniform (a2 + i, b2 + i) with a1 < a2, b1 > b2 and a1 + b1 = a2 + b2.
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6 Multi-Period Problems

In this section we extend our analysis to the case of N periods, 1 ≤ N < ∞. To obtain the

notation in this case, we add the superscript m to the notation of Section 2 to refer to period

m, 1 ≤ m ≤ N. The only exception is s, which we replace by sN . In addition, we need to define

xm ≥ 0 to denote the ending inventory in period m after the demand in that period is satisfied to

the extent possible. Any shortage in period m is lost. Thus, the inventory xm, which is also the

beginning inventory in period (m+ 1), provides a coupling between period m and period m+ 1.

If the excess inventory xm were to be salvaged at the end of each period, there would be no such

coupling, and consequently the N -period problem would be just a sequence of N independent

one-period problems. What makes our extension a genuine multi-period problem is the presence

of the excess ending inventory in period m that can be used to satisfy demands in later periods.

The sequence in which various events occur is shown in Figure 1. To complete the statement

of the problem, we need some additional assumptions. These are as follows:

(i) The excess inventory xm at the end of period m, 1 ≤ m ≤ N − 1, incurs a unit holding

cost of hm in carrying the inventory to the next period and xN has the unit salvage value

sN .

(ii) Dm, 1 ≤ m ≤ N, are independent demands and Im, 1 ≤ m ≤ N, are independent forecast

updating signals.

(iii) We replace the assumption (1) by

rm > max[pm
h , p

m
c , h

m], 1 ≤ m ≤ N, and sN < min[pN
l , p

N ]. (25)

As before, (25) is imposed to avoid trivial cases.

With xm−1 as the initial inventory level in period m, the profit obtained in period m, 1 ≤

m ≤ N − 1 is given by

−pmqm + E
[
Πm(xm−1, qm, qm

s , q
m
c ; Im, Pm)

]
,
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Order Rm arrives

Review of inventory Xm+1

Im+1

1 observed

Period m Period m + 1

Order Rm−1 arrives

Im

1 observed

Order Rm+1 arrives

Demand Dm realized

Review of inventory Xm+1

Im+2

1 observed

Demand Dm+1 realized

Im

2 observed Im+1

2 observed

Demand Dm−1 realized

Review of inventory Xm

Order Qm+1 is made

Order Qm+1 revised

Rm+1 ≤ (1 + δ)Qm+1

Order Qm+1 is madeOrder Qm is made

Order Qm revised

Rm ≤ (1 + δ)Qm

Figure 1: A timeline for the execution of a quantity flexible contract

where

Πm(xm−1, qm, qm
s , q

m
c ; Im, Pm) (26)

= E
{[
rm(Dm ∧ (xm−1 + qm + qm

c + qm
s )) − hm(xm−1 + qm + qm

c + qm
s −Dm)+

−pm
c q

m
c − Pmqs]| (I

m, Pm)}

The profit obtained in the last period is

−pNqN + E
[
ΠN(xN−1, qN , qN

s , q
N
c ; IN , PN)

]
,

where

ΠN(xN−1, qN , qN
s , q

N
c ; IN , PN ) (27)

= E
{[
rN(DN ∧ (xN−1 + qN + qN

c + qN
s )) + sN(xN−1 + qN + qN

c + qN
s −DN)+

−pN
c q

N
c − PNqs

]∣∣ (IN , PN)
}
.

Let FN(xN−1) be the maximum profit in period N with the initial inventory level xN−1, that

is,

FN(xN−1) = max
qN≥0




−phq

N + E


 max

0≤qN
s <∞

0≤qN
c ≤δN qN

ΠN(xN−1, qN , qN
s , q

N
c ; IN , PN)







. (28)
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Similarly, let Fm(xm−1) be the maximum profit from period m to the last period with the initial

inventory level xm−1. Then

Fm(xm−1) = max
qm≥0

{
− pmqm + E

[
max

0≤qm
s <∞

0≤qm
c ≤δmqm

Πm(xm−1, qm, qm
s , q

m
c ; Im, Pm)

+E(Fm+1(xm−1 + qm + qm
c + qm

s −Dm)|(Im, Pm))
]}
. (29)

It is easy to verify that Fm(xm−1) is concave. Based on the concavity of Fm(xm−1), similar to

Proposition 3.1, we also have the following result.

Proposition 6.1 There are Qm∗, Qm∗
c (im, pm

l ), Qm∗
s (im, pm

l ), Qm∗
c (im, pm

h ) and Qm∗
s (im, pm

h ) such

that:

(A.1) If pm
l ≤ pm

c , then the optimal order at the beginning of period m is

qm∗ = (Qm∗ − xm−1)+,

and the optimal reaction at time tm is to order all additional required product from the spot

market if the market price is low, i.e., pm
l . Otherwise, order additional product on con-

tract, and to order an appropriate quantity from the spot market only when some additional

quantity beyond the quantity flexibility bound is needed. Specifically,

qm∗
c (qm∗, im, pm

l ) = 0, qm∗
s (qm∗, im, pm

l ) =
[
Qm∗

c (im, pm
l ) − qm∗ − xm−1

]+
,

qm∗
s (qm∗, im, pm

h ) = (δmqm∗) ∧
[
Qm∗

c (im, pm
h ) − qm∗ − xm−1

]+
,

qm∗
s (qm∗, im, pm

h ) =
[
Qm∗

s (im, pm
h ) − (1 + δm)qm∗ − xm−1

]+
.

(A.2) If pm
c ≤ pm

l , then the optimal order at the beginning of period m is

qm∗ = (Qm∗ − xm−1)+,

and the optimal reaction at time tm is to order additional product on contract and to order

an appropriate quantity from the spot market only when some additional quantity beyond

the quantity flexibility bound is needed. Specifically,

qm∗
c (qm∗, im, pm

l ) = (δmqm∗) ∧
[
Qm∗

c (im, pm
l ) − qm∗ − xm−1

]+
,

20



qm∗
s (qm∗, im, pm

l ) =
[
Qm∗

s (im, pm
l ) − (1 + δm)qm∗ − xm−1

]+
,

qm∗
c (qm∗, im, pm

h ) = (δmqm∗) ∧
[
Qm∗

c (im, pm
h ) − qm∗ − xm−1

]+
,

q∗s(q
m∗, im, pm

h ) =
[
Qm∗

s (im, pm
h ) − (1 + δm)qm∗ − xm−1

]+
.

Remark 6.1 Suppose that for each period, the market prices are iid, and demands are iid and

the demand forecasts are also iid. That is, for all m,

βm = β, Gm(·) = G(·) and Hm(·|·) = H(·|·).

Then the optimal purchase quantities are myopic. Specifically, there are pairs

(Q∗, Q∗
c(i, pl), Q

∗
s(i, pl), Q

∗
c(i, ph), Q

∗
s(i, ph))

such that for all m,

Qm∗ = Q∗, Qm∗
c (i, pl) = Q∗

c(i, pl), Qm∗
s (i, pl) = Q∗

s(i, pl),

Qm∗
c (i, ph) = Q∗

c(i, ph), Qm∗
s (i, ph) = Q∗

s(i, ph).

7 Concluding Remarks

We have studied single and multi-period quantity flexible contracts that allow an initial order at

the beginning of a period, a forecast revision in the middle of the period, and further purchases

on contract and in the spot market before the demand is realized at the end of the period.

The additional purchase quantity on the contract at a contractual price is limited by the specified

flexibility limit. Any amount, however, can be purchased on the spot market at the then prevailing

market price. The initial purchase quantity at a given price is based on the demand distribution,

the market price distribution, the contractual price and the flexibility level, and the possibility

of a forecast revision before additional final purchases. We provide optimal initial orders and the

optimal feedback quantities to be purchased following the demand forecast revisions. We provide

intuitive interpretations of our results. We examine the impact of the information quality and the

flexibility on the optimal decisions. We measure the value of flexibility and provide conditions

when this value is positive.
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We would like to mention that in our study of the problem of optimal management and design

of flexible contracts, we have made a number of simplifications. In our multi-period model, the

inventory carry-over from one period to the next provides the dynamics.. On the other hand,

we treat the case of lost sales, which does not carry over from one period to the next. There

is no fixed cost in our model, either in ordering or in exercising the contract. Any one of these

would make the model considerably more complex. Convexity of the value function would be lost.

Whether (s, S)-type policies would be optimal in this case remains to be seen. Finally, we allow

only two possible market prices, high and low, which are geometrically distributed. It would be of

interest to extend the model to allow for a market price having a general probability distribution

defined over a range of prices.

Appendix

In this appendix, we provide proofs of all of the propositions in the paper.

Proof of Proposition 3.1: We only prove (ii). As for (i), q∗c is obvious, and the proof of q∗s

follows easily in the same way as the proof of (ii). First note that

max
0≤qs<∞

0≤qc≤δq

Π(q, qs, qc; i, ps)

= max
0≤qs<∞
0≤qc≤δq

{
r

∫ q+qs+qc

0

zh(z|i)dz + r(q + qs + qc)

∫ ∞

q+qs+qc

h(z|i)dz

+s

∫ q+qs+qc

0

[q + qs + qc − z]h(z|i)dz − pcqc − psqs

}
.

It follows from simple calculations that [(1 + δ)q] ∧

[
H−1

(
r − ps

r − s

∣∣∣∣ i
)
∨ q

]
maximizes

−(r − s)

∫ t

0

(t− z)h(z|i)dz + (r − pc)t+ pcq

on the interval [q, (1 + δ)q], and [(1 + δ)q] ∨H−1

(
r − ps

r − s

∣∣∣∣ i
)

maximizes

−(r − s)

∫ t

0

(t− z)h(z|i)dz + (r − ps)t+ ps [(1 + δ)q] ∧

[
H−1

(
r − ps

r − s

∣∣∣∣ i
)
∨ q

]

on the interval ((1 + δ)q,∞). If ps > pc, then for any given qs ≥ 0 and qc ≥ 0, and any ε > 0,

r

∫ q+qs+qc

0

zh(z|i)dz + r(q + qs + qc)

∫ ∞

q+qs+qc

h(z|i)dz
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+s

∫ q+qs+qc

0

(q + qs + qc − z)h(z|i)dz − pc(qc − ε) − ps(qs + ε)

< r

∫ q+qs+qc

0

zh(z|i)dz + r(q + qs + qc)

∫ ∞

q+qs+qc

h(z|i)dz

+s

∫ q+qs+qc

0

[q + qs + qc − z]h(z|i)dz − ps(qs + qc).

Consequently, (q∗c (q, i, ps), q
∗
s(q, i, ps)) also maximize the function

r

∫ q+qs+qc

0

zh(z|i)dz + r(q + qs + qc)

∫ ∞

q+qs+qc

h(z|i)dz

+s

∫ q+qs+qc

0

(q + qs + qc − z)h(z|i)dz − pcqc − psqs

of (qc, qs) on the region [0, δq] × [0,∞). Therefore, the proof of (ii) is completed. �

Proof of Proposition 3.2: The inequalities relations among the information thresholds are

obvious from (7) and (8). Remaining parts of Statements (i) and (ii) follow directly from the cor-

responding results (i) and (ii) in Proposition 3.1, respectively, when D is stochastically increasing

in I. �

Proof of Proposition 4.1: We prove the results only in the case pl < pc < ph, as similar analysis

can be carried out for the others. It follows from Proposition 3.2 that

−pq + E

(
max

0≤qs<∞
0≤qc≤δq

Π(q, qs, qc; I, P )

)

= −pq + β

∫ Ī(q,pl)

−∞

[
(s− r)

∫ q

0

(q − z)h(z|i)dz + rq

]
g(i)di

+β

∫ ∞

Ī(q,pl)

{
(s− r)

∫ H−1((r−pl)/(r−s)|i)

0

[
H−1

(
r − pl

r − s

∣∣∣∣ i
)
− z

]
h(z|i)dz

+(r − pl)H
−1

(
r − pl

r − s

∣∣∣∣ i
)

+ plq

}
g(i)di

+(1 − β)

∫ Ī(q,pc)

−∞

[
(s− r)

∫ q

0

(q − z)h(z|i)dz + rq

]
g(i)di

+(1 − β)

∫ Î(q,pc)

Ī(q,pc)

{
(s− r)

∫ H−1((r−pc)/(r−s)|i)

0

[
H−1

(
r − pc

r − s

∣∣∣∣ i
)
− z

]
h(z|i)dz

+(r − pc)H
−1

(
r − pc

r − s

∣∣∣∣ i
)

+ pcq

}
g(i)di
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+(1 − β)

∫ Î(q,ph)

Î(q,pc)

{
(s− r)

∫ (1+δ)q

0

[(1 + δ)q − z]h(z|i)dz

+(r − pc)(1 + δ)q + pcq
}
g(i)di

+(1 − β)

∫ ∞

Î(q,ph)

{
(s− r)

∫ H−1((r−ph)/(r−s)|i)

0

[
H−1

(
r − ph

r − s

∣∣∣∣ i
)
− z

]
h(z|i)dz

+(r − ph)H
−1

(
r − ph

r − s

∣∣∣∣ i
)
− pcδq + ph(1 + δ)q

}
g(i)di. (30)

Denote the above expression as F (q, δ). Then using calculus, one can show that

∂F (q, δ)

∂q
= −p+ β

∫ Ī(q,pl)

−∞

[(s− r)H(q|i) + r] g(i)di+ βpl[1 −G(Ī(q, pl))]

+(1 − β)

∫ Ī(q,pc)

−∞

[(s− r)H(q|i) + r] g(i)di+ (1 − β)pc[G(Î(q, pc)) −G(Ī(q, pc))]

+(1 − β)

∫ Î(q,ph)

Î(q,pc)

{(1 + δ)[(s− r)H((1 + δ)q|i) + r] − pcδ} g(i)di

+(1 − β)

∫ ∞

Î(q,ph)

[−pcδ + (1 + δ)ph]g(i)di. (31)

Furthermore,

∂2F (q, δ)

∂q2
= β

∫ Ī(q,pl)

−∞

(s− r)h(q|i)g(i)di (32)

+(1 − β)(s− r)

{∫ Ī(q,pc)

−∞

h(q|i)g(i)di+

∫ Î(q,ph)

Î(q,pc)

(1 + δ)2h((1 + δ)q|i)g(i)di

}

and

∂2F (q, δ)

∂q∂δ
= (1 − β)

{
(pc − ph)G(Î(q, pc)) +

∫ Î(q,ph)

Î(q,pc)

[(s− r)H((1 + δ)q|i) + (r − ph)

+(s− r)(1 + δ)2qh((1 + δ)q|i)
]
g(i)di

}
. (33)

By the definitions of Î(q, ph) and Î(q, pc), we know that for i ∈ [Î(q, pc), Î(q, ph)],

(s− r)H((1 + δ)q|i) + r − ph ≤ 0. (34)

Hence, the result (i) follows from (32) and (33).

If q∗ > 0, then

∂F (q, δ)

∂q

∣∣∣∣
q=q∗

= 0.
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Note that q∗ depends on δ. Therefore,

dF (q∗, δ)

dδ
=

(
∂F (q, δ)

∂q

∣∣∣∣
q=q∗

)
dq∗

dδ
+
∂F (q∗, δ)

∂δ

= (1 + δ)(ph − pc)[1 −G(Î(q∗, ph))]

+(1 + δ)

∫ Î(q∗,ph)

Î(q∗,pc)

[(s− r)H((1 + δ)q∗|i) + r − pc] g(i)di. (35)

Similar to (34), we have that for i ∈ [Î(q, pc), Î(q, ph)],

(s− r)H((1 + δ)q|i) + r − pc ≥ 0.

Consequently, the result (ii) follows from (35). �

Proof of Proposition 4.2: We prove only (B.1) and (B.2), since the other results in the

proposition can be established similarly. Since p > pl in Case B, then in view of p < pc and (6),

we have

pl < p < pc ≤ ph. (36)

Thus,

H−1

(
r − ph

r − s

)
≤ H−1

(
r − pc

r − s

)
≤ H−1

(
r − p

r − s

)
< H−1

(
r − pl

r − s

)
. (37)

It suffices therefore to show that when βpl + (1 − β)pc ≥ p, q∗ given in (B.1) is a maximizer of

the function

V (q) , −pq + E [Π(q, q∗s(q, P ), q∗c (q, P ); I, P )] ;

and when βpl + (1 − β)pc < p and [−p+ βpl + (1 − β)pc + (1 + δ)(1 − β)(ph − pc)] > 0, q∗ given

in (B.2) is a maximizer of V (q).

First we look at the proof of (B.1). The proof is divided into three subcases:

Case B.1.1. q ≥ H−1((r − pl)/(r − s)). By Proposition 3.1,

q∗c (q, pl) = q∗s(q, pl) = q∗c (q, ph) = q∗s(q, ph) = 0.

Then,

V (q) = −pq + s

∫ q

0

(q − z)h(z)dz + r

∫ q

0

zh(z)dz + rq[1 −H(q)].
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This implies that

dV (q)

dq
= −p+ sH(q) + r[1 −H(q)]

= r − p− (r − s)H(q)

< r − p− (r − pl) < 0.

Hence, V (q) is decreasing in [H−1((r − pl)/(r − s)), ∞).

Case B.1.2. H−1((r − pc)/(r − s)) ≤ q ≤ H−1((r − pl)/(r − s)). It follows from Proposition

3.1 that

V (q) = −pq + Vl(r, s, pl) + βplq

+(1 − β)

[
s

∫ q

0

(q − z)h(z)dz + r

∫ q

0

zh(z)dz + rq(1 −H(q))

]
,

where

Vl(r, s, pl) = β
{
− (r − s)

∫ H−1((r−pl)/(r−s))

0

[
H−1

(
r − pl

r − s

)
− z
]
h(z)dz

+(r − pl)H
−1

(
r − pl

r − s

)}
.

Therefore,

dV (q)

dq
= −p+ βpl + (1 − β)[r − rH(q) + sH(q)]

≤ −p+ βpl + (1 − β)pc.

This implies that V (q) is increasing on the interval [H−1((r− pc)/(r− s)), q∗] and decreasing on

the interval [q∗, H−1((r − pl)/(r − s))].

Case B.1.3. q < H−1((r− pc)/(r− s)). Proceeding as in Case B.1.2, we can show that V (q)

is increasing on the interval [0, H−1((r − pc)/(r − s))].

Combining Cases 1-3 completes the proof for (B.1).

Now we look at (B.2). It’s proof is also divided into seven cases.

Case B.2.1. q < H−1((r − ph)/(r − s)) and (1 + δ)q < H−1((r − ph)/(r − s)). V (q) can be

written as

V (q) = −pq + Vl(r, s, pl) + βplq
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+(1 − β)
{
− (r − s)

∫ H−1((r−ph)/(r−s))

0

[
H−1

(
r − ph

r − s

)
− z
]
h(z)dz

+rH−1

(
r − ph

r − s

)
− pcδq − ph

[
H−1

(
r − ph

r − s

)
− (1 + δ)q

]}
.

Using the condition [−p+ βpl + (1 − β)pc + (1 + δ)(1 − β)(ph − pc)] ≥ 0, we see that

dV (q)

dq
= −p+ βpl + (1 − β)

[
− pcδ + ph(1 + δ)

]
≥ 0.

So V (q) is increasing for q satisfying q < H−1((r−ph)/(r−s)) and (1+δ)q < H−1((r−ph)/(r−s)).

Case B.2.2. q < H−1((r − ph)/(r − s)), (1 + δ)q ≥ H−1((r − ph)/(r − s)) and (1 + δ)q <

H−1((r − pc)/(r − s)). Under this case, V (q) can be written as

V (q) = −pq + Vl(r, s, pl) + βplq

+(1 − β)
{
− (r − s)

∫ (1+δ)q

0

[
(1 + δ)q − z

]
h(z)dz

+r(1 + δ)q − pcδq
}
.

Consequently,

dV (q)

dq
= −p+ βpl + (1 − β)

[
− (r − s)(1 + δ)H((1 + δ)q) + r(1 + δ) − pcδ

]
.

In the following, if (1+ δ)H−1((r− ph)/(r− s)) ≥ H−1((r− pc)/(r− s)), we go to Cases B.2.3

and B.2.5–B.2.7, and if (1 + δ)H−1((r − ph)/(r − s)) < H−1((r − pc)/(r − s)), we go to Cases

B.2.4–B.2.7.

Case B.2.3. q < H−1((r − ph)/(r − s)) and (1 + δ)q ≥ H−1((r − pc)/(r − s)). We have

V (q) = −pq + Vl(r, s, pl) + βplq

+(1 − β)
{
− (r − s)

∫ H−1((r−pc)/(r−s))

0

[
H−1

(
r − pc

r − s

)
− z
]
h(z)dz

+rH−1

(
r − pc

r − s

)
− pc

[
H−1

(
r − pc

r − s

)
− q
]}
.

Then,

dV (q)

dq
= −p+ βpl + (1 − β)pc < 0.
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Case B.2.4. H−1((r − ph)/(r − s)) ≤ q ≤ H−1((r − pc)/(r − s)), and (1 + δ)q < H−1((r −

pc)/(r − s)). We have

V (q) = −pq + Vl(r, s, pl) + βplq

+(1 − β)
{
− (r − s)

∫ (1+δ)q

0

[
(1 + δ)q − z

]
h(z)dz

+r(1 + δ)q − pcδq
}
.

Consequently,

dV (q)

dq
= −p+ βpl + (1 − β)

[
− (r − s)(1 + δ)H((1 + δ)q) + r(1 + δ) − pcδ

]
.

Case B.2.5. H−1((r − ph)/(r − s)) ≤ q ≤ H−1((r − pc)/(r − s)), and (1 + δ)q ≥ H−1((r −

pc)/(r − s)). We have

V (q) = −pq + Vl(r, s, pl) + βplq

+(1 − β)
{
− (r − s)

∫ H−1((r−pc)/(r−s))

0

[
H−1

(
r − pc

r − s

)
− z
]
h(z)dz

+rH−1

(
r − pc

r − s

)
− pc

[
H−1

(
r − pc

r − s

)
− q
]}
.

Then,

dV (q)

dq
= −p+ βpl + (1 − β)pc < 0.

Case B.2.6. H−1((r − pc)/(r − s)) < q ≤ H−1((r − pl)/(r − s)). We have

V (q) = −pq + Vl(r, s, pl) + βplq

+(1 − β)
{
− (r − s)

∫ q

0

[
q − z

]
h(z)dz + rq

}
.

Consequently,

dV (q)

dq
= −p+ βpl + (1 − β)

[
− (r − s)H(q) + r

]

< −p+ βpl + (1 − β)pc < 0.

Case B.2.7. q > H−1((r − pl)/(r − s)). We have

V (q) = −pq + β
{
− (r − s)

∫ q

0

[
q − z

]
h(z)dz + rq

}

+(1 − β)
{
− (r − s)

∫ q

0

[
q − z

]
h(z)dz + rq

}
.

28



Consequently,

dV (q)

dq
= −p+ β

[
− (r − s)H(q) + r

]
+ (1 − β)

[
− (r − s)H(q) + r

]

< −p+ βpl + (1 − β)pc < 0.

According to (1+δ)H−1((r−ph)/(r−s)) ≥ H−1((r−pc)/(r−s)) or (1+δ)H−1((r−ph)/(r−s)) <

H−1((r−pc)/(r− s)), (B.2) follows from Cases B.2.1–B.2.3 and B.2.5–B.2.7 or Cases B.2.1–B.2.2

and B.2.4–B.2.7, respectively. �

Proof of Proposition 4.3 The proof of the proposition is similar to the proof of Proposition

4.2. �

Proof of Proposition 4.4: Setting q = 0 in (16) and using (14) and the fact that F (0) = 0, we

obtain

−p+ βpl + (1 − β)pc + (1 − β)(1 + δ)(ph − pc)

+[s− βpl − (1 − β)pc]F (0) − (1 − β)(1 + δ)(ph − pc)F (0)

= −p+ βpl + (1 − β)pc + (1 − β)(1 + δ)(ph − pc) > 0. (38)

In view of limq→∞ F (q) = 1 and assumption (1), we have

−p+ βpl + (1 − β)pc + (1 − β)(1 + δ)(ph − pc)

+[s− βpl − (1 − β)pc] lim
q→∞

F (q) − (1 − β)(1 + δ)(ph − pc) lim
q→∞

F ((1 + δ)q)

= s− p < 0. (39)

Taking the derivative of the LHS of (16) with respect to q, we obtain

d
{

[s− βpl − (1 − β)pc]F (q) − (1 − β)(1 + δ)(ph − pc)F ((1 + δ)q)
}/

dq

= [s− βpl − (1 − β)pc] ·
dF (q)

dq
− (1 − β)(1 + δ)2(ph − pc) ·

dF (x)

dx

∣∣∣
x=(1+δ)q

. (40)

Since pl ≤ pc and s < pl as assumed in (1), we have

s− βpl − (1 − β)pc ≤ s− βpl − (1 − β)pl = s− pl < 0.

Thus, the derivative in (40) is strictly negative. The proposition follows from (38)-(40). �
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Proof of Proposition 4.5 : Setting q = 0 in (19) and using F (0) = 0 and (20), we have

−p− δpc + (1 + δ)[βpl + (1 − β)ph]

+(s− pc)F (0) + (1 + δ)[pc − βpl − (1 − β)ph]F (0)

−p− δpc + (1 + δ)[βpl + (1 − β)ph] > 0 (41)

and

−p− δpc + (1 + δ)[βpl + (1 − β)ph]

+(s− pc) lim
q→∞

F (q) + (1 + δ)[pc − βpl − (1 − β)ph] lim
q→∞

F ((1 + δ)q)
∣∣∣
q=∞

= −p+ s < 0. (42)

Furthermore, taking the derivative of the LHS of (19) with respect to q and using the facts

s < p < pc, ph ≥ pl, and the condition pl > pc, we obtain

d
{
− p− δpc + (1 + δ)[βpl + (1 − β)ph]

+(s− pc)F (q) + (1 + δ)[pc − βpl − (1 − β)ph]F ((1 + δ)q)
}/

dq

= (s− pc) ·
dF (q)

dq
+ (1 + δ)2[pc − βpl − (1 − β)ph] ·

dF (x)

dx

∣∣∣
x=(1+δ)q

< 0, (43)

The proposition follows from (41)-(43). �

Proof of Proposition 4.6: First consider the case of worthless information. Using Proposition

3.1 of Gurnani and Tang (1999) and Proposition 4.2, we know that the flexibility value is zero if

any one of the following conditions hold.

(i) p ≤ pl;

(ii) p > pl and βpl + (1 − β)pc ≥ p;

(iii) p > pl and p ≥ βpl + (1 − β)ph + (1 − β)δ(ph − pc).

Thus we only need to prove the proposition in case (B.2) of Proposition 4.2, i.e., when p > pl

and βpl + (1− β)pc < p < βpl + (1− β)ph + (1− β)δ(ph − pc). In this case the flexibility value is

obtained in (15), which is clearly decreasing in β.

Now consider the case of perfect information. We must treat the following four cases:
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(A.1) pl ≤ pc, p ≤ βpl + (1 − β)ph;

(A.2) pl ≤ pc, βpl + (1 − β)ph < p < βpl + (1 − β)ph + (1 − β)δ(ph − pc);

(A.3) pl ≤ pc, βpl + (1 − β)ph + (1 − β)δ(ph − pc) ≤ p;

(B) pl > pc.

The optimal solutions in the first three cases (A.1),(A.2), and (A.3) are given in Proposition

4.3(A) and the optimal solution in case B is given in Proposition 4.3(B). In (A.3), we know from

Proposition 4.4 that q∗ = 0, which implies that the flexibility value is zero. Below we will provide

the details of the proof only in case (A.1), since the proofs in cases (A.2) and (B) follow in the

same way.

In case (A.1), if there is no contract, then we would have δ = 0. Then the condition of the

case implies that the inequality (14) is satisfied with δ = 0. By Proposition 4.4, therefore, the

optimal q∗ in Proposition 4.3(A) would be given by solving (16) with δ = 0, which we write as

q∗0 = F−1

(
−p+ βpl + (1 − β)ph

−s+ βpl + (1 − β)ph

)
. (44)

Moreover from (17), the optimal order quantity at time t2 regardless of the market price would

be

[τ(i) − q∗0]
+, i = 1, 2.

By (44) we have

−p+ βpl + (1 − β)pc + (1 − β)(1 + δ)(ph − pc)

+[s− βpl − (1 − β)pc]F (q∗0) + (1 − β)(1 + δ)(pc − ph)F ((1 + δ)q∗0)

= (ph − pc)(1 − β)[F (q∗0) − (1 + δ)F ((1 + δ)q∗0)] < 0. (45)

Thus, the solution q∗ given by (16) with δ > 0 is smaller than q∗0 ordered in the absence of a

contract. In other words, the buyer purchases less at t1 when he has a contract (δ > 0). Then,

from Proposition 4.3(A) and equation (18), the difference of the expected profits with and without
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the contract is

(1 − β)

{
−pc

∫ (1+δ)q∗

q∗
zdF (z) + phsign((1 + δ)q∗ − q∗0)

∫ ((1+δ)q∗)∨q∗
0

((1+δ)q∗)∧q∗
0

zdF (z)

}

+(s− βpl)

∫ q∗
0

q∗
zdF (z), (46)

where

sign(x) =





1, if x > 0,
−1, if x < 0,
0, if x = 0.

From (46), we know that under (A.1), the contract improves the buyer’s expected profit. Fur-

thermore, the smaller the value of β is, the larger is the value of flexibility.

This completes the proof. �

Proof of Proposition 5.1: First we consider the case pc < pl < ph. Let Πk(q, qc, qs; I, P ) be the

conditional expected profit, as defined in (3), of system k at time t2 given I and P . If we could

show that for any given q ≥ 0 and any observed value (i, ps) of (I, P ),

max
0≤qs<∞
0≤qc≤δq

Π1(q, qs, qc; i, ps) ≤ max
0≤qs<∞
0≤qc≤δq

Π2(q, qs, qc; i, ps), (47)

then

E

(
max

0≤qs<∞
0≤qc≤δq

Π1(q, qs, qc; I, P )

)
≤ E

(
max

0≤qs<∞
0≤qc≤δq

Π2(q, qs, qc; I, P )

)
, (48)

and, in turn,

max
q≥0

{
−pq + E

(
max

0≤qs<∞

0≤qc≤δq

Π1(q, qs, qc; I, P )

)}

≤ max
q≥0

{
−pq + E

(
max

0≤qs<∞
0≤qc≤δq

Π2(q, qs, qc; I, P )

)}
.

Thus, we have the proposition if we prove (47). To this end, it is sufficient to show that for any

given q ≥ 0, qc ≥ 0, and qs, 0 ≤ qs ≥ δq,

Π1(q, qs, qc; i, ps) ≤ Π2(q, qs, qc; i, ps). (49)
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To prove (49), let Hk(z|i) and hk(z|i) be the conditional distribution and the conditional

density of Dk for system k given i, respectively. That is, Hk(z|i) and hk(z|i) are distribution and

density of ϕk(i, Rk), respectively. Note that by (5),

Πk(q, qs, qc; i, ps) =

∫ q+qc+qs

0

−(r − s)[q + qc + qs − z]hk(z|i)dz

+r(q + qc + qs) − psqs − pcqc

= −(r − s)

∫ ∞

q+qc+qs

[
z − (q + qc + qs)

]
hk(z|i)dz

+(r − s)E[ϕk(i, Rk)] + s(q + qc + qs) − psqs − pcqc. (50)

Note that [z − (q + qc + qs)]
+ is a non-decreasing convex function of z. Hence, in view of our

assumptions E[ϕ1(i, R1)] = E[ϕ2(i, R2)] and ϕ1(i, R1) ≥ic ϕ
2(i, R2), we have

Π1(q, qs, qc; i, ps) = −(r − s)

∫ ∞

q+qc+qs

[
z − (q + qc + qs)

]
h1(z|i)dz

+(r − s)E[ϕ1(i, R1)] + s(q + qc + qs) − psqs − pcqc

≤ −(r − s)

∫ ∞

q+qc+qs

[
z − (q + qc + qs)

]
h2(z|i)dz

+(r − s)E[ϕ2(i, R2)] + s(q + qc + qs) − psqs − pcqc

= Π2(q, qs, qc; i, ps). (51)

This proves (49) as required. Proceeding along these lines, we can show that the proposition

holds in the other cases as well. �

Proof of Proposition 5.2: Let q∗ks (q, i, ps) be the optimal order quantity by system k at time

t2, when the observed value of (I, P ) is (i, ps), k = 1, 2. It follows from Proposition 4.11 of Song

(1994) that for fixed q and I, there exists a θ(I) such that when

max

{
r − pl

r − s
,
r − ph

r − s

}
≤ θ, (52)

then

q∗1s (q, i, pl) ≤ q∗2s (q, i, pl), q∗1s (q, i, ph) ≤ q∗2s (q, i, ph), (53)

and when

min

{
r − pl

r − s
,
r − ph

r − s

}
≥ θ, (54)
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then

q∗1s (q, i, pl) ≥ q∗2s (q, i, pl), q∗1s (q, i, ph) ≥ q∗2s (q, i, ph). (55)

Let q∗k be the optimal order quantity by system k at t1, k = 1, 2. If q∗k > 0, then q∗k > 0

must be the solution of the following equation in q:

−p+ βpl + (1 − β)ph + β

∫ Ik
l
(q)

−∞

[
(s− r)Hk(q|i) + (r − pl)

]
g(i)di

+(1 − β)

∫ Ik
h
(q)

−∞

[
(s− r)Hk(q|i) + (r − ph)

]
g(i)di = 0, (56)

where Ik
l (q) and Ik

h(q) are defined by

Hk(q|Ik
l (q)) =

r − pl

r − s
and Hk(q|Ik

h(q)) =
r − ph

r − s
.

From the monotonicity of Hk(q|i) and (52), we have

I1
l (q) ≥ I2

l (q), I1
h(q) ≥ I2

h(q), (57)

and with (54) we have

I1
l (q) ≤ I2

l (q), I1
h(q) ≤ I2

h(q). (58)

By ϕ1(i, R1) ≥var ϕ
2(i, R2), if (52) holds for any i ≤ I1

h(q), then

H1(q|i) ≥ H2(q|i). (59)

Therefore,

∫ I1

l
(q)

−∞

[
(s− r)H1(q|i) + (r − pl)

]
g(i)di

≤

∫ I2

l
(q)

−∞

[
(s− r)H2(q|i) + (r − pl)

]
g(i)di (60)

and

∫ I1

h
(q)

−∞

[
(s− r)H1(q|i) + (r − ph)

]
g(i)di

≤

∫ I2

h
(q)

−∞

[
(s− r)H2(q|i) + (r − ph)

]
g(i)di. (61)
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Thus, the result q∗1 ≤ q∗2 follows directly from

0 = −p+ βpl + (1 − β)ph + β

∫ I2

l
(q∗2)

−∞

[
(s− r)H2(q∗2|i) + (r − pl)

]
g(i)di

+(1 − β)

∫ I2

h
(q∗2)

−∞

[
(s− r)H2(q∗2|i) + (r − ph)

]
g(i)di

> −p+ βpl + (1 − β)ph + β

∫ I1

l
(q∗2)

−∞

[
(s− r)H1(q∗2|i) + (r − pl)

]
g(i)di

+(1 − β)

∫ I1

h
(q∗2)

−∞

[
(s− r)H1(q∗2|i) + (r − ph)

]
g(i)di.

The first part of the proposition is proved. The second part can be proved in a similar way. �

Proof of Proposition 6.1: The proof is similar to the proof of Proposition 3.2. �
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