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Abstract
During speech perception, listeners make judgments about the phonological category of sounds by
taking advantage of multiple acoustic cues for each phonological contrast. Perceptual experiments
have shown that listeners weight these cues differently. How do listeners weight and combine
acoustic cues to arrive at an overall estimate of the category for a speech sound? Here, we present
several simulations using mixture of Gaussians (MOG) models that learn cue weights and
combine cues on the basis of their distributional statistics. We show that a cue-weighting metric in
which cues receive weight as a function of their reliability at distinguishing the phonological
categories provides a good fit to the perceptual data obtained from human listeners, but only when
these weights emerge through the dynamics of learning. These results suggest that cue weights can
be readily extracted from the speech signal through unsupervised learning processes.
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1. Introduction
In every domain of perception, multiple sources of information must be combined. A classic
example is depth perception, where the distance of an object from an observer is indicated
by a number of cues including stereopsis, perspective, binocular disparity, shading, motion,
and many others (see Kaufman, 1974, for an extensive list). We use the term cue here to
refer to any source of information that allows the perceiver to distinguish between different
responses. Each cue provides a continuous estimate of depth, and to get an accurate
estimate, observers must combine information across them.

This raises the question of how much weight or importance should be assigned to each cue.
An emerging consensus is that cues are weighed as a function of the reliability of the
estimates they provide (Jacobs, 1999; Landy & Kojima, 2001; Ernst & Banks, 2002) and
that cue reliability can be learned (Atkins et al., 2001). Some depth cues, like stereopsis,
provide robust estimates (Johnston, Cumming, & Landy, 1994), whereas other cues, like
shading are relatively poor (Bülthoff & Mallot, 1988). Weighting cues based on their
reliability (Kalman, 1960; Jacobs, 2002) offers a formal approach for estimating these
weights and using them to arrive at a combined estimate. Using this method, the weight of
an individual cue at a specific depth is determined by:
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(1)

where w is the weight of the cue and σ2 is the variance of the estimate provided by that cue
at a given depth (i.e. how accurately that cue allows the observer to estimate depth). The
overall depth estimate, X, can then be calculated as a linear combination of the weighted cue
estimates:

(2)

This approach has been shown to be consistent with observers’ performance in a number of
tasks (Jacobs, 1999; Battaglia, Jacobs, & Aslin, 2003; Ernst & Banks, 2002).

Weighting-by-reliability works well when cue integration can be described as the linear
combination of continuous cues and when their variance is roughly Gaussian. However, for
many perceptual problems, the causal factors that give rise to the cues are not themselves
continuous. In these cases, the perceptual system faces the joint problem of recovering both
a continuous estimate of the perceptual cue and also the underlying categories that shaped it.

Speech perception provides an excellent example of this. In speech, phonological
dimensions like voicing (which distinguishes voiced sounds like /b, d, g/ from voiceless
sounds like /p, t, k/) are often determined by a large number of continuous acoustic cues. For
example, cues to word-initial voicing include voice onset time (VOT; Liberman, Harris,
Kinney, & Lane, 1961), vowel length (VL; Summerfield, 1981; Miller & Dexter, 1988),
pitch (Haggard, Ambler, & Callow, 1970), and F1 onset frequency (Stevens & Klatt, 1974).
Understanding how listeners combine these cues, often described behaviorally using trading
relations (a shift in the identification function for one cue with changes in another cue), is
central to understanding speech perception (see Repp, 1982, for a review of trading relations
in speech).

While these cues are continuous, their statistical distributions are shaped into clusters of cue-
values by the phonological categories of the language. The listener’s goal is to determine the
underlying phonological category from these cues, not necessarily a continuous estimate
(although there is evidence that listeners also estimate continuous values and the likelihood
of a category; see McMurray, Tanenhaus & Aslin, 2002; Schouten, Gerrits, & van Hessen,
2003; Massaro & Cohen, 1983). Thus, the goal for speech perception is slightly different
than the goal for depth perception. In depth perception, observers must recover the best
estimate of the depth (i.e. determine a quantity along a metric dimension), whereas the goal
in speech perception is to recover the best estimate of a discrete underlying category.

The presence of categories makes it difficult to apply the weighting-by-reliability approach
directly, as variance along the cue dimension itself does not map onto how well that cue
supports categorization. For example, if we look at the frequency distribution of values for
VOT in Fig. 1A, there are clusters of cue-values corresponding to voiced sounds (VOTs
near 0 ms) and voiceless sounds (VOTs near 50 ms). This clustering makes a simple
computation of reliability from the variance in the estimator of a cue impractical. However,
it also enables us to compute a different metric of reliability. That is, the relevant variance
for speech perception is the variance in the ability of the cue to support categorization. In a
sense, the variance of VOT as an estimator of voicing is a function of both the variability
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within the categories and the distance between them. Thus, the reliability of a cue or
dimension can only be determined with respect to the underlying phonological categories.

Given that the distributional statistics of cues must be learned in order to compute weights
based on their reliability, it is fundamental to take into account what is known about
development. Thus, whatever solution we adopt to the problem of cue weighting should be
based on knowledge and representations that are developmentally plausible. In particular, as
we will describe below, the acquisition of speech discrimination abilities may derive from a
similar estimation of distributional statistics. The goal of the present work is to adapt the
weighting-by-reliability approach in a way that is consistent with the process of speech
development.

1.1. Models of cue integration in speech
Formal approaches to cue integration in speech preceded the weighting-by-reliability
approach used in depth perception, and thus, do not incorporate an explicit notion of
reliability in their solutions to this problem. The Fuzzy Logical Model of Perception (FLMP;
Oden & Massaro, 1978; Massaro & Oden, 1980) provides one of the best formal approaches
and has successfully modeled a range of cue integration problems. In its mappings between
dimensions and categories, it is clear that some notion of weighting emerges. However, it
does not completely solve the problem of cue weighting for two reasons. First, it assigns
independent weights to different regions of the same dimensions (e.g. VOTs between 0–10
may get substantial weight, but VOTs between 10 and 20 may get less), creating a sparse
data problem (i.e. how does a listener deal with a new value along a familiar dimension?).
Second, and more importantly, the weights are fit to perceptual data, rather than estimated
from the structure of the speech input. Listeners’ responses in speech tasks certainly reflect
their own cue weightings, thus, these weighting will be implicitly incorporated into FLMPs
integration rules. However, this does not provide an explanation for why listeners would
weight one cue over another and does not allow us predict perceptual data from acoustic
measurements alone.

Nearey and colleague’s normal a posteriori probability (NAPP) models offer a similar
approach to cue integration (Nearey & Hogan, 1986; Nearey & Assmann, 1986; Nearey,
1997). NAPP models use discriminant analysis to assign tokens to categories based on a set
of acoustic cues. Like FLMP, these classifications can be probabilistic, allowing the output
of the model to be compared to listeners’ identification rates. However, unlike FLMP,
NAPP models use measurements from production data along with the intended categories to
classify tokens. As in FLMP, the training categories (i.e. the intended production) capture
some of the differential variability between dimensions, suggesting that NAPP models may
also show implicit weighting effects.

Both NAPP models and FLMP treat cue integration as a category-dependent process. In
order for listeners to weight cue dimensions in this way, they would have to know which
tokens belong to which category. However, since category membership is not available to
listeners’ from the acoustic input, the problem of acquiring categories, as well as learning
cue weights, might be better characterized as an unsupervised clustering process
(McMurray, Toscano, & Aslin, 2009a; Maye, Werker & Gerken, 2002). Infants tune their
phonological discrimination abilities to the native language well before any words are
known (e.g. Werker & Tees, 1984; Werker & Curtin, 2005 for a review), and, thus, the
development of speech categories must be at least partially category-independent. Given
this, it makes sense to seek a category-independent way to describe cue integration and
weighting that is sensitive to this unsupervised developmental process.
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1.2. Weighting cues in speech
The weighting-by-reliability approach and NAPP models appear to offer some insights for
solving the problem of cue weighting, as they allow us to estimate cue weights
independently of perception. While, as stated above, the cue-weighting method used in
depth perception is not adequate for acoustic cues in speech, it does offer some intuitions
about how to proceed. In addition, NAPP models suggest that the distributional statistics of
acoustic cues can provide the information needed to weight them. Thus, combining the
strengths of these two approaches may yield a more complete model.

Fig. 1B shows several possible categories imposed on a given dimension. The top-left panel
shows a dimension that would appear reliable: the categories are far apart and have low
variability. Conversely, if categories are close together and have high within-category
variability (bottom right panel) this dimension should receive little weight. For more
ambiguous cases (top right and bottom left), determining reliability is a function of both the
distance between the categories and within-category variability, weighed by their respective
variances. In support of this, Clayards, Tanenhaus, Aslin, and Jacobs (2008) demonstrated
that artificially manipulating the variance of an acoustic cue changes how listeners weight it
perceptually.

These intuitions can be captured formally, by treating each cluster as an independent
Gaussian distribution. In this case, we can partial out the overall variance along a dimension
into the component due to the difference between category means, and the variance within
each category. This leads to a simple way to estimate the reliability of a dimension:

(3)

Here, μ1 and μ2 are the means of each category (e.g. /b/ and /p/), and σ1 and σ2 are their
standard deviations. This metric would provide listeners with an estimate of cue reliability
that is similar to the one provided by the weighting-by-reliability method used in vision. It is
similar to standard statistical measures that compare the variance between groups, (μ1 –
μ2)2, to the variance within groups, σ1σ2. When both σs are equal, this is a pairwise F-ratio.

This solution requires that listeners are sensitive to the distributional statistics of acoustic
cues and that cue weights can be based on and learned from this information. There is
growing consensus that listeners are sensitive to these statistics, and, further, that infants use
statistical learning mechanisms to acquire speech sound categories. Maye and colleagues,
for example, have demonstrated that after a brief exposure to statistically structured input,
infants discriminate speech sounds consistent with the number of clusters along dimensions
like VOT (Maye, Werker & Gerken, 2002; Maye, Weiss & Aslin, 2008; see also Teinonen,
Aslin, Alku, & Csibra, 2008). Thus, at the coarsest level of analysis, listeners are likely to
have access to and can learn from the statistics necessary for cue weighting.

However, attempts to implement this approach computationally suggest that statistical
category learning is not trivial (e.g. de Boer & Kuhl, 2003; McMurray et al., 2009a). In
particular, when the number of categories is not known (since languages can carve up the
same dimensions in many ways) and the input is not tagged with the underlying category,
there is no analytic solution to the problem of estimating the parameters that describe the
means, variances and frequencies of the speech categories. Thus, while at a first
approximation, our intuitive modification of the weighting-by-reliability approach seems
reasonable, it is significantly underdeveloped from the perspective of learnablity.
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The purpose of the present work is to bridge this gap and adapt the weighting-by-reliability
approach to the problem of cue integration in speech. Recently McMurray et al. (2009a)
presented a mixture of Gaussians (MOG) model that solves many of the problems of
unsupervised learning of phonological categories. This model offers a computational-level
description (Marr, 1982) of speech sound categorization while also including a mechanistic
account of the developmental process. Here, we extend this model to multiple dimensions,
and demonstrate how the weighting-by-reliability approach can be implemented in it. In
doing so, we reveal some surprising findings about the role of learning processes in
statistical cue weighting and the role of context in shifting apparent cue weights.

2. Model architectures
2.1. Mixture of Gaussians models of speech categories

A distribution of acoustic cues can be described as a mixture of probability distributions, in
which the likelihood of a given cue value (x) is the product of two factors: (1) the prior
probability of each category and (2) the conditional probability of x given each category.
This latter probability is usually described as a continuous distribution of cue-values, given
the parameters of that category. In typical instantiations, for a particular category, the values
of a particular cue cluster around the category mean in a Gaussian distribution (although
other distributions are possible).

A number of recent studies have modeled the distribution of speech cues using this
framework (e.g. McMurray et al., 2009a; de Boer & Kuhl, 2003; Vallabha et al., 2007).
Generally, cues in these models are represented by a set of Gaussian distributions (Fig. 2A)
each defined by three parameters: frequency of occurrence (ϕ), mean (μ), and standard
deviation (σ) (Fig. 2B). Thus, the likelihood of a particular cue-value (x) for each Gaussian
is:

(4)

and the overall likelihood is the sum of the likelihoods for each Gaussian:

(5)

Here, K represents the number of Gaussians in the mixture. For example, the likelihood of a
VOT of 30 ms is the sum of the relatively high probability that it arose from a /p/ (μ≈50,
σ≈15) and the lower probability it came from a /b/ (μ≈0, σ≈5).

The fact that this model explicitly represents parameters like μ and σ makes it an ideal
platform for implementing the variation of the weighting-by-reliability approach described
in Equation 3. However, it also raises the critical question of how to determine the mixture’s
parameter values. One option would be to simply set the values of K, ϕ, μ, and σ for each
category using values extracted from acoustic measurements. However, there is no analytic
solution to parameter estimation in a mixture model when the underlying categories for each
data point are unknown, and expectation maximization and similar learning algorithms have
a difficult time estimating the number of categories in this situation (de Boer & Kuhl, 2003).
Simply assigning values on the basis of such measurements, then, assumes that listeners
have access to some learning mechanism that is not guaranteed to exist.
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McMurray et al. (2009a) demonstrated how gradient descent can be used to model the
gradual acquisition of speech categories when learning is unsupervised and the number of
categories is not known. Their model uses large values of K (e.g. 20), with the expectation
that ϕs will be reduced to near zero for unneeded categories. The idea here is that, over
training, K itself doesn’t change, but, because most Gaussians will have very small values
for ϕ, the mixture will functionally behave as if K was only 2 (for a two-category dataset).
Parameters are updated via maximum likelihood estimation using the derivatives of the
probability density function with respect to each parameter. (See Appendix A for these
learning rules.) A crucial innovation from this model is the use of a winner-take-all update
rule for ϕ such that only one Gaussian updates its ϕ-value on any given trial. This allows the
model to suppress unneeded categories and arrive at the correct solution. Without it, the
model does not determine the correct number of categories (see McMurray et al., 2009a).
This winner-take-all competition is similar to competitive learning approaches used in other
unsupervised category learning models like SUSTAIN (Love, Medin, & Gureckis, 2003) as
well as various neural network models (McMurray et al., 2009b; Rumelhart & Zipser, 1985).
McMurray et al. (2009a) describe how this simple solution allowed 97/100 models in their
simulations to arrive at the correct two-category solution for a corpus of VOT
measurements, and they demonstrate that the timecourse of learning shows many parallels
with infant speech development.

This implementation raises two issues for the cue weighting approach we’ve described.
First, since there are more than two categories (even if only two will be used eventually),
our weighting metric must be able to handle many categories and factor out unused ones.
Second, because this model is based on gradient descent, the learning procedure is not
guaranteed to find the globally optimal parameter values based on the distributional statistics
of the data (i.e. it may settle in a local minimum). This raises the question of whether the
dynamics of learning affect cue weighting. If learning leads to non-optimal representations
in the model that reflect human behavior, it would suggest that listeners may be behaving in
a way that is not entirely consistent with the statistics of the input. We examine both of these
issues in our simulations.

2.2. Cue integration in a mixture of Gaussians
The mixture of Gaussians (MOG) framework allows us to incorporate underlying categories
into the reliability estimates described above because it explicitly represents those
categories, allowing us to relate the distance between µs to the corresponding σs. The cue
weighting strategy we’ve discussed would allow us to combine estimates from different cues
into a single overall estimate whose inputs are weighted by the reliability of the individual
cues. We also consider, as a comparison, an alternative approach in which multiple cues are
represented in a multi-dimensional MOG with individual cues along separate dimensions
(e.g. two-dimensional Gaussians for two cues). In this case, weighting emerges implicitly.
(This is not necessarily a criticism of the model; indeed, this property is useful since it
allows us to model cue integration without having to specify an additional function for
determining cue weights.) This multi-dimensional model, which is highly parameterized and
can represent distributions completely, serves as a baseline model for comparison with a
more constrained cue-weighting model.

2.2.1. Cue-weighting model—In order to compute a cue weight, we must know the
variability in the estimate for a given cue-value. Equation 3 describes one way to do this in
the specific case of a two-category cue. However, many phonological contrasts contain more
than two categories (e.g. voicing in Thai; place of articulation in English). In addition, using
the unsupervised learning approach from McMurray et al., (2009a), the model will have
many more possible categories than the number of categories in the data. Thus, at some
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points during learning, it may not be possible to know which Gaussian will become a
particular adult category.

Thus, we use a weighting metric that captures a more general case in which the cue
dimension may have any number of categories. In our model, the weight of an individual
acoustic cue (i) is:

(6)

This metric is similar to Equation 3. However, it allows for any number of categories by
summing all of the pairwise comparisons between the parameters of the Gaussians in the
mixture (i.e. each pair of Gaussians, m and n, from 1 to K) and then halving this sum so that
each pair does not contribute twice to the weight.

Two features are worth noting. First, pairs of Gaussians whose means are far apart will
increase the weight of the cue, but this is balanced by the within-category variability of
those Gaussians. If within-category standard deviations are large, the weight of the cue will
be smaller. Thus, as with Equation 3, this metric is similar to measures like d′ or the t
statistic, in which both the distance between group means and within-group variances are
taken into account.

Second, although K is large, most of the Gaussians are unused after training. This would
seem to clutter up the computation with unnecessary comparisons. However, since unused
Gaussians will have ϕs near zero, they will not contribute much to the weight. This allows us
to compute the weight of a cue regardless of the number of categories and without knowing
which specific Gaussians correspond to each category.

After computing the weight for each cue, the weighted estimates are combined to obtain a
continuous overall estimate along an underlying phonological dimension. This overall
estimate serves as input to an additional MOG that represents the abstract phonological
feature distinguished by the cues (e.g. voicing). Thus, the cue-level MOGs are used only to
compute weights and inputs to the combined MOG—category judgments are made on the
basis of the combined MOG itself. Note that, similar to the cues themselves, this combined
MOG is based on a continuous phonological representation. However, it is abstracted away
from the input (since it represents a combination of cues). Thus, it is similar to other
proposals that phonological representations are continuous (e.g. Frisch, 1996), but it stands
in contrast to models that have proposed a more direct mapping between input and
phonology, such as exemplar models (Goldinger, 1998; Pierrehumbert, 2001; 2003).

Because different cues give estimates measured on different scales, the combined MOG
cannot be based directly on the raw values for each cue. Thus, cue-values are normalized by
converting the inputs for individual cues to z-scores using the grand mean and variance of
each dimension. Additionally, the particular ordering of categories along each cue
dimension may not be the same for all cues. For example, in the specific case of the two
acoustic cues studied here (voice onset time [VOT] and vowel length [VL]), voiced sounds
are associated with short VOTs but long VLs. Thus, z-scores for VL are multiplied by the
sign of the raw correlation between these two cues across all categories (r = −0.196 for
VOT/VL data from Allen & Miller, 1999) in order to deal with differences in the relative
ordering of categories along each dimension. Finally, the normalized estimates are then
weighted (per Equation 6) and summed. Fig. 3 shows a schematic representation of the cue
weighting and combination process in the model.
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2.2.2. Multi-dimensional model—The cue-weighting model can be contrasted with a
model that represents categories in a higher-dimensional acoustic space. In this model,
categories are multi-dimensional Gaussians, and each cue lies along a separate dimension.
Thus, for two cues, categories would be represented by bivariate Gaussian distributions (Fig.
4; Equation 7 in Appendix A). This allows the model to take advantage of the entire acoustic
space and does not require it to explicitly weight cues. Cue-weighting can emerge implicitly
when the categories along one dimension are wide and overlapping, while the other is
narrow.

This approach raises several problems. First, the number of parameters in the model can be
quite large. For a set of categories determined by a large number of cues (which is not
uncommon; see Jongman, Wayland, & Wong, 2000; Lisker, 1986), the model would have to
estimate a large number of parameters for each category (e.g. for 16 cues [the number
reported by Lisker, 1986], the model would have to estimate 168 parameters for each
category). In contrast, in the cue-weighting model, only three parameters per category need
to be estimated (for each individual dimension), along with an additional set for the
combined dimension (e.g. for 16 cues, the model would only need 51 parameters for each
category).

Second, since a given input is a point in a high-dimensional space, sampling may be sparse
and many regions of acoustic space will never be encountered during training. This makes it
difficult to estimate all of the parameters accurately. The cue-weighting model on the other
hand considers each dimension independently (not in combination) and may have less
trouble with this. Thus, the cue-weighting model may be preferred if it is better able to learn
the categories for a larger set of cues.

3. Simulations
3.1. Acoustic and behavioral data

We ran simulations with each of these models using two acoustic cues to word-initial
voicing in English: VOT, mentioned above, and vowel length (VL). While VL is a robust
cue to word-final voicing in English (Warren & Marslen-Wilson, 1987; Peterson & Lehiste,
1960), the length of the vowel following the consonantal release has long been recognized as
a weak cue to word-initial voicing (Summerfield 1981; Miller & Dexter, 1988; Miller &
Volaitis, 1989; Allen & Miller, 1999).

Typically, longer vowels are produced for voiced stops and shorter vowels for voiceless
stops. For example, Fig. 5A shows a scatter plot of the VOT and VL values from Allen and
Miller (1999). Along the VOT dimension, the categories are highly distinct, reflecting the
fact that VOT is a strong cue to voicing. Along the VL dimension, the categories are
distinguishable, but highly overlapping, suggesting that VL is a weaker cue. Our training
data were similar. VOTs were randomly generated from the means reported by Lisker and
Abramson (1964) and VLs from the data in Allen and Miller (1999) (see Table 1).

Empirical work has demonstrated trading relations between these cues: the category
boundary along a VOT continuum shifts for different VLs (McMurray et al., 2008;
Summerfield, 1981; Miller & Volaitis, 1989). Near the boundary, stimuli with long VLs are
more often categorized as voiced, and short VLs are more often labeled voiceless (see Fig.
5B for representative results from McMurray et al., 2008). While previous approaches
suggested that this trading relation might be an instance of speaking rate compensation
(Summerfield, 1981), later work has distinguished it from sentential rate (Wayland, Miller &
Volaitis, 1994; see Repp (1982) for a discussion of evidence that VL is distinct from overall
speaking rate).
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Whatever way we characterize the effect of VL, identification functions like the one in
Figure 5B suggest that listeners use both cues, but rely more heavily on VOT, an effect that
mirrors the statistical distributions of each cue. Simulations 1 and 2 examined whether the
multi-dimensional and cue-weighting models also show a similar trading relation between
VOT and VL.

3.2. Simulation 1: VOT and VL in the multi-dimensional model
The first simulation provides a baseline for performance on the VOT/VL task. Fifty
repetitions of two-dimensional MOGs were trained using data sampled from the VOT and
VL distributions described above. Initial μ-values were randomly chosen from a distribution
with a mean of 25 and standard deviation of 75 for the VOT dimension and a mean of 179
and standard deviation of 75 for the VL dimension. Initial σs were set to 3 for the VOT and
10 for the VL dimension. K was set to 20, and initial ϕs were set to 1/K. Learning rates were
set to 1 (ημ), 1 (ησ), 0.001 (ηϕ), and 0.001 (ηρ).1 The models were then tested on a range of
VOTs (0 to 40 ms in 5 ms steps) and two VLs (125 and 225 ms).2

3.2.1. Procedure—Each model was trained on 200,000 data points. On each trial, a pair of
VOT/VL values was selected for input, and the parameters of the Gaussians in the mixture
were updated via the gradient descent learning algorithm discussed above. Winner-take-all
competition was implemented by selecting the Gaussian with the highest posterior
probability for that input and updating only that Gaussian’s ϕ parameter. The ϕs were then
normalized so that they summed to 1. Thus, for the winning Gaussian, ϕ increased, and the
others decreased slightly. Only Gaussians with a ϕ-value above a threshold of 0.1 were
analyzed. Typically, the model arrived at a solution with two above-threshold Gaussians (i.e.
the voiced and voiceless categories) with ϕ-values of ≈0.5. Models that over-generalized
(i.e. arrived at a one-category solution) or did not have any above-threshold Gaussians at the
end of training were excluded from analysis. While this seems like a relatively coarse way to
assess model performance, we found that if ϕ falls below a threshold of about 0.1, that
Gaussian does not typically recover (other Gaussians ultimately represent the two
categories). Moreover, in an analysis of the one-dimensional model, we found that if the
model arrived at two categories, μ and σ were almost always accurate.3

After training, the model was tested using a procedure similar to the task used in McMurray
et al. (2008). The model was presented with a pair of VOT and VL values, and identification
responses were computed from the posterior probability for each category, which were then
normalized using the Luce choice rule (Luce, 1959; temperature=1) to obtain the proportion
of /p/ responses.

3.2.2. Results and discussion—The model learned this distribution quite well, with
every repetition adopting the two-category solution. The parameter estimates were also close

1For the single-cue case, we have explored a range of different starting μ-values and learning rates (Toscano & McMurray, 2005). For
initial μ-values, we have not found major differences in the model’s ability to learn or its categorization performance. Learning rates
that are ≤1 tend to be the most successful.
2We used similar test stimuli to the ones used in McMurray et al. (2008), though they used different VLs for each of their word
continua (due to variations in other phonological features of the words). The VL values we chose span a similar range to the ones they
used (100 ms in our simulations; 95–100 ms for McMurray et al.) and have similar values.
3We chose this loose definition of success because we wanted to include as many repetitions as possible to see how accurately the
model reflected listeners’ behavior. At minimum, the model needed to have at least two categories in order to compute identification
functions for it. In addition, previous work has demonstrated that for reasonably distinguishable dimensions (e.g. VOT), MOG models
show high accuracy in finding the correct parameters. For example, in models learning VOT, the average deviation from the correct
VOT was 0.52 ms for μ (see McMurray et al., 2009a). For cases in which the model had more than two above threshold categories at
the end of training, the categories with the maximum posterior for the prototypical values of each cue (i.e. the mean value for each
category) were used as the voiced and voiceless categories.
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to the values in the dataset; the average deviation of μ from the category mean was 1.7 ms
for VOT and 5.9 ms for VL (see Table 2).

Fig. 6 shows the mean proportion of /p/ responses for the model. A clear effect of VOT is
observed, with short VOTs producing more /b/ responses and long VOTs producing more /
p/ responses. In contrast, the effect of VL is absent, unlike the effect observed in the
empirical data. This was not due to a failure of learning – the model learned the distributions
of the two cues and correctly determined the number of categories. In fact, on average the
model reported means of 1.63 and 51.3 for VOT, and 188 and 178 for VL, suggesting that it
had closely captured the statistics of the input (compare to the means of the training
distributions in Table 1). This, however, led to a much weaker trading relation than was
observed behaviorally. Since the categories along the VL dimension are highly overlapping,
the model relied on VOT instead of VL. Thus, changes along the VOT dimension produced
large changes in the model’s identification of voicing category, while changes along the VL
dimension did not affect the model’s category judgments. This result does not reflect
listeners’ behavior, suggesting that listeners may actually assign more weight to VL than
they should based solely on the statistics of the input.

3.3. Simulation 2: VOT and VL integration in the cue-weighting model
We now consider the cue-weighting model, which consists of three one-dimensional MOGs.
The first two represent the VOT and VL dimensions and were used to compute cue weights.
The third MOG represents categories based on the combination of the two cues (i.e. a
voicing dimension) and is used to compute the actual phonological judgments. Fifty
repetitions were trained on data sampled from the same distributions as in Simulation 1.
Learning rates, K, and the initial σs and ϕs were the same as in Simulation 1; the initial μ-
values were chosen in the same way.

3.3.1. Procedures—As in Simulation 1, parameters were updated using gradient descent
learning and winner-take-all competition. Each model was trained on 90,000 data points,
and models that over-generalized were excluded from analysis. On each trial during training,
the parameters of the Gaussians in the VOT and VL MOGs were updated. Then, weights
were computed for each of these cue-level MOGs using Equation 5. Next, the input values
for the combined MOG were computed by converting the inputs for the individual cues to z-
scores, negating the sign for the VL input (due to the negative correlation between the cues),
weighting the inputs, and summing them according to Equation 2. The update procedure is
then repeated for the Gaussians in the combined mixture. The testing procedure was the
same as the one used for the multi-dimensional model, except that the posteriors for each
category were computed from the combined MOG.

3.3.2. Results and discussion—Overall, this model performed similarly to the prior
model with 46/50 models showing the correct two-category solution. Of the ones that failed,
three overgeneralized (a single category in one of the MOGs) and one did not have any
above threshold categories in the combined MOG.

Fig. 7 shows the responses of the model in the categorization task. A moderate trading
relation was observed, similar to the behavioral data from McMurray et al. (2008). The
average cue weight for the VOT dimension was 0.95, and the average cue weight for VL
was 0.05. The results of this simulation suggest that the cue-weighting model shows a good
fit to the empirical results, demonstrating that cue-weights can be learned from the
distributional statistics of the acoustic cues in the input and that a full multi-dimensional
model is not necessary for combining acoustic cues along a single phonological dimension.
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Why did the cue-weighting model show a trading relation while the multi-dimensional
model did not? As mentioned above, the multi-dimensional model correctly fit the statistics
of the dataset. In the cue-weighting model, however, the categories for the VL dimension
were further apart than the means in the dataset (mean for each category in the model: 203 [/
b/] and 154 [/p/] ms; means in the dataset: 188 [/b/] and 170 [/p/] ms). This caused the model
to give more weight to VL, resulting in a trading relation.

This exaggeration of the VL categories may have been a result of the fact that the categories
along the VL dimension are highly overlapping. Since training is unsupervised, this
exaggeration cannot be due to a performance benefit for representing categories in this way
(though there may be one). Thus, during learning there may have been a local minimum that
was more stable than the actual means and variances in the data. Indeed, if we were to
compute the cue weights using Equation 6 directly from the acoustic data, we would obtain
a relative weight of 0.997 for VOT and 0.003 for VL and, consequently, a significantly
reduced trading relation (Fig. 8). This much more closely reflects the behavior of the multi-
dimensional model, not the cue-weighting model or listeners. Thus, the cue-weighting
model may have produced different results because its parameters and weights were the
product of learning, not derived veridically from the input.

3.4. Simulation 3: Effects of learning on VL cue weight
To test the hypothesis that the overweighting of the VL dimension in the cue-weighting
model was the product of learning, we ran an additional simulation in which K, the number
of Gaussians in the mixture, was set to 2. While this value is quite a bit smaller than the one
used in the initial simulations, it allows us to manually set the initial values for μ in order to
observe their behavior over the course of learning. Thus, the starting μs were set to different
points along the VL dimension (closer together than the category means, exactly equal to
them, or further apart) in order to determine what the learning algorithm would do in each
case. All other parameters were the same as those used in Simulation 2. This allows us to
ask what outcomes the learning rules impose on the models’ representation of VL beyond
those determined by the statistics of the input. For example, if the model started with the
correct μ-values and the categories were still forced apart, this would suggest that the
category means are not a stable point in state space. Fifty repetitions of this simulation were
run. Initial σ- and ϕ-values were the same as those in the first two simulations.

3.4.1. Results and discussion—The proportion of successful models, as measured by
whether or not the model arrived at a two-category (successful) or one-category
(unsuccessful) solution, is shown in Fig. 9B. None of the models with starting μs between
the two category means succeeded. Furthermore, every model whose μ-values started
outside the observed local minima values was successful. Thus, the model needed to start
with μs that were further apart than necessary.4

Fig. 9A shows the change in μs over time. For all models, μs were initially pushed apart
(even if that pushed them beyond their eventual location), and over time evolved to the
values observed in Simulation 2. Thus, the dynamics of learning seem to favor this
exaggeration along the VL dimension.

These results suggest that there are attractor points that the model arrives at through learning
in which category means are further apart than the means in the data. Thus, learning
(instantiated here by our gradient descent update rules) may be critical for determining the

4Since the model normally starts with a large number of categories whose μ-values are randomly distributed along the cue dimension,
it is likely that some of these categories will fall outside this range, allowing the model to successfully learn the number of categories.
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weight of individual cues. Indeed, without learning, the cue-weighting model does not
reflect the responses from human listeners. With learning, the model only succeeds under
conditions in which it learns categories that are more distinct than those in the data. This
suggests that human listeners may not behave in a way that optimally reflects the statistics of
the input and that this may result from the fact that speech sound categories are acquired in
part through an unsupervised process.

3.5. Simulation 4: Co-varying cues in cue-weighting model
So far, we’ve assumed that the magnitude of trading relations directly reflects the relative
weight of the cues. However, previous work on cue integration in speech has shown that the
presence other cues can influence trading relations. For example, Shinn, Blumstein, and
Jongman (1985) examined listeners’ use of VL and formant transition duration (TD) on
manner (/b/-/w/) distinctions. In addition to these cues, they simultaneously manipulated
additional cues that covaried with TD to produce more natural continua. In this case, the
trading relation between TD and VL was reduced. The additional covarying cues may have
caused listeners to ignore VL (though see Miller & Wayland, 1993). Utman (1998) found a
similar effect, showing that the trading relation between VOT and VL is reduced in natural
speech, which contains a large number of voicing cues (see also Lisker, 1975).

Under the assumption that trading relations are determined largely by the relative weight of
the available cues, these results imply that listeners perceive synthetic and natural speech
differently, re-weighting cues depending on the type of input. However, differences in the
observed trading relations may reflect other factors besides the weight of the cues. For
example, if changes in a third cue are correlated with changes in one of the other two cues,
the relative weight of the correlated cues may appear larger – together they are effectively
more reliable.

This is straightforward to test in the cue-weighting model. The model can be tested using
different stimuli without changing the weights in order to examine whether additional cues
have an effect on trading relations. Thus, we trained the model with a third, artificial cue and
tested it under conditions in which, during testing, this cue either covaried with VOT or was
held constant at an ambiguous value.

3.5.1. Procedures—While there were no other cues to voicing for which measurements
were available, previous research suggested that F1 onset frequency shows a trading relation
with VOT similar in size to the one between VOT and VL (e.g. Summerfield & Haggard,
1977). Thus, the distributions used for this third cue were based on a small sample of
acoustic measurements of F1 onset frequency for bilabial stops.5 Means and standard
deviations for the third cue are given in Table 1.

Training and testing procedures were the same as Simulation 2, except that the model had
three cue-level MOGs. Learning rates were the same and initial parameters were determined
in the same way as the first two simulations. After training, the models were tested on the
VOT/VL pairs used in Simulation 2 under two conditions: (1) the artificial cue was held
constant at an ambiguous value of 280 (constant-cue condition) or (2) the artificial cue
covaried with VOT in nine steps from 240 to 320 (variable-cue condition).

3.5.2. Results and discussion—As in the previous simulations, the model performed
quite well. Of the fifty models trained, only two were excluded because they

5While these values were not taken from a complete set of acoustic measurements for a third cue to voicing, we can examine the
effects of an additional cue simply by allowing it to covary with VOT.
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overgeneralized. An additional two were excluded because they did not have any above-
threshold categories in the combined MOG. Fig. 10 shows performance in the categorization
task. In the constant-cue condition (panel A) a moderate VL effect is observed (similar to
Simulation 2). In this condition, only VOT and VL are informative, and we see the predicted
trading relation between the two cues. In the variable-cue condition (panel B), a decreased
trading relation is observed, consistent with results from human listeners (Toscano &
McMurray, in preparation). This reflects the fact that the artificial cues are informative about
the voicing category, decreasing the apparent effect of VL.

These results demonstrate that the size of trading relations can be changed without changes
in cue weights. Because additional cues covaried with VOT, variation in responses along the
VOT dimension reflected more than the contribution of VOT to the voicing judgment. VL,
on the other hand, is uncorrelated with both of the other cues. As a result, the apparent size
of the trading relation decreased. Cues are not weighted differently, but, because variation in
the primary dimension (VOT) now reflects variation in two cues, the overall contribution of
that set of cues to the voicing judgment is greater than the contribution from VL alone. This
results in a smaller trading relation between VOT and VL. Thus, both cue weights and the
values of the cues used in testing determine the size of a trading relation.

4. General Discussion
These simulations demonstrate that weighting-by-reliability, when adapted to the particular
features of acoustic cues in speech, can be used to describe trading relations observed with
human listeners. They also suggest that cue weights can be learned using a simple
unsupervised competitive learning mechanism and that the learning process itself may play a
role in determining how cues are weighted. Further, these models are not speech-specific
and could be applied to other categorization tasks as well.

The initial set of simulations revealed that the cue-weighting model provided a better fit to
the data from listeners than the multi-dimensional model. The reason for this was
counterintuitive: the cue-weighting model over-weighted the less reliable cue, resulting in a
trading relation. This was due to the fact that the categories and cue distributions are learned,
not estimated directly from the input. Indeed, learning appears to be essential for obtaining
the correct cue weights. Thus, the weights that listeners assign to cues may be a function of
both the statistics of the input and the history of the learning system. While this result
implies that the cue-weighting model represents certain cues sub-optimally, this may
generally be the best representation it can achieve given the requirements of learning. There
may also be a benefit to this, in that it could allow the system to amplify cues that are
generally weak and may be useful in other circumstances (e.g. a noisy environment in which
VOT is hard to detect; Miller & Wayland, 1993).

While these results suggest that learning plays a role, we do not argue that any learning
process will lead to this outcome. Other types of learning with different dynamics
(Rumelhart & Zipser, 1985; Elman, 1993; McMurray et al., 2009b) might lead to different
outcomes. Whether it comes from learning, or some other process, however, our simulations
suggest that something must exaggerate the difference between overlapping distributions of
VL. Statistics alone are not sufficient. Given the success of the MOG framework in
accounting for a range of processes in speech development (de Boer & Kuhl, 2003; Vallabha
et al, 2007; McMurray et al., 2009a) this approach provides a compelling explanation for
listeners’ performance in this task.

The final set of simulations revealed that changes in the trading relation between two cues
can be observed without changes in the weights of the individual cues. Trading relations not
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only reflect cue weights, but also the influence of correlated inputs. Preliminary work with
human listeners (Toscano & McMurray, in preparation) confirms the prediction of the cue-
weighting model that changes in the VOT/VL trading relation can be observed in a single
experiment when additional cues either covary with VOT or are held constant.

In addition to its close correspondence to behavioral data, the cue-weighting model provides
a much more compact representation of the input than the multi-dimensional model because
it collapses cues into a single dimension. This may offer a better approach for scaling up to a
large number of cues. Further, this approach offers a general model of the origin of trading
relations in speech, suggesting that they can largely be determined by the statistics of the
input and unsupervised learning. This may allow us to explain trading relations between
other sets of cues (Repp, 1982) as well as changes in cue weights over development
(Nittrouer, 2002; Mayo & Turk, 2004).

The cue-weighting approach may also be informative for describing more general aspects of
speech development. For example, during development, listeners face the problem of
determining which cues are relevant for different phonological distinctions (Rost &
McMurray, 2009). The cue-weighting model would suggest that the irrelevant cues simply
receive a weight of zero (i.e. the model learns that they are best described as a single
category). Thus, rather than first determining which cues are relevant and then learning the
distribution of categories along those dimensions, learning may proceed by first determining
the distributional statistics of a set of cues, and then weighting them to determine if they are
relevant (or both processes may happen simultaneously). This is a rather counter-intuitive
prediction, and it may be informative for understanding how listeners determine which cues
to use to distinguish different phonological contrasts. It may also explain why infants at 14
month olds, who’ve tuned their speech categories to their native language, have still not
entirely completed this process (Rost & McMurray, 2009; submitted).

4.1. Relationship to other models
The cue-weighting model differs from previous approaches in several important ways. Both
FLMP and NAPP models assume that cue integration is a category-dependent process. In
contrast, our model suggests that cue weights can be determined independently of the
categories along the dimension through an unsupervised learning process that uses the same
information for learning the categories themselves. Although this contrasts with previous
models, it provides a more realistic characterization of how cue weights are learned. In
addition, there is evidence that integration may occur at pre-categorical stages, although it’s
not clear if this is due to the fact that cues are estimated and integrated, or whether these
cues are only estimated in combination (Delgutte, 1982, Kingston and Diehl, 1994)

Recently, researchers have begun to use Bayesian (i.e. ideal observer) models (Griffiths &
Tenenbaum, 2006; Tenenbaum & Griffiths, 2001) to describe various behaviors, including
speech perception (Norris & McQueen, 2008; Clayards et al., 2008; Feldman, Griffiths, &
Morgan, submitted). These models share a number of properties with ours. They suggest
that perceivers are sensitive to the distributional statistics of stimuli and use this information
to categorize them. Also, in both approaches, speech categories are described parametrically,
allowing us to specify the properties of the model using a simple set of equations (Gaussian
distributions in our case).

However, there are many aspects of our models that make them distinctly non-Bayesian.
Bayesian models suggest that behavior is based on an optimal encoding of the statistics,
whereas our simulations with the cue-weighting model and its close match to the behavioral
data suggest that there are limits to how optimally these statistics are estimated. While
perception is largely based on the distributional statistics of speech, we highlight a
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potentially important role for an iterative competitive learning process that leads to non-
veridical perception of the input. This learning process eliminates the need to set the number
of categories beforehand, using priors on K or pruning techniques. This emphasis on
developmental plausibility has a further benefit: McMurray et al. (2009a) show how this
iterative learning process can model the developmental timecourse of speech discrimination
in infancy.

Other aspects, such as the decision rule, make our models sub-optimal (Nearey & Hogan,
1986), and thus, non-Bayesian. In addition, other features of Bayesian models, such as the
size principle (i.e. learners decrease the size of a category with increasing exposure;
Tenenbaum, 1999; Tenenbaum & Griffiths, 2001), are not required in our models and they
may not obey certain constraints (the size of the category increases over training; see
McMurray et al., 2009b). Again, this difference may arise from our commitment to iterative,
developmental processes, but the fact that this model can learn quite successfully with rules
that seem to violate this principle challenge whether this is necessary.

4.2. Limitations of the model
4.2.1. Perceptual and lexical processes—The MOG approach provides a transparent
description of the structure of speech categories and explains how they can be derived from
the statistics of the input using an unsupervised learning mechanism and simple form of
competition. While this offers a good computational explanation of the system and a model
of the learning process, it should not be taken as a model of the perceptual process, which
may have additional effects on cue integration. For example, many cues (such as VOT and
VL) are temporally asynchronous, and recent eye-tracking data suggests that listeners use
cues as they become available during spoken word recognition, rather than waiting until all
cues are received (McMurray et al., 2008). This suggests that the order in which cues are
heard may have an effect on their functional weighting during perception. Indeed, the
simulations presented here demonstrate that the developmental process can provide valuable
insights about cue integration; an investigation of perceptual processing may yield further
information. Thus, while the MOG provides a mechanistic account of learning, it provides
only a descriptive account of listeners’ perceptual processes. More detailed models of online
speech processing may be needed to go further (see Toscano & McMurray, 2008;
McMurray et al., 2009b).

A second aspect of speech processing that is not considered in these models is the role of
feedback and top-down information in learning. The models presented here learn clusters of
speech sounds based solely on bottom-up input. Lexical structure may be an important
source of information for distinguishing speech sounds. For example, the fact that bear and
pear are contrastive words in the lexicon may force the system to make fine-grained
phonetic distinctions (Metsala & Walley, 1998; Walley, Metsala, & Garlock, 2003; Charles-
Luce & Luce 1990, 1995), and knowing which of the two words is being referred to can
provide an error signal for supervised speech category learning (Norris, McQueen & Cutler,
2003; Kraljic & Samuel, 2005). A complete model of speech development should include
them. However, feedback is not necessary to account for the effects modeled here. Indeed, if
lexical information was used to tag input with the correct category, we might not expect it to
exaggerate the differences between the categories along the VL dimension as the cue-
weighting model did and as human listeners do. Lexical information would help the model
learn the correct distributions, decreasing the relative weight of VL. Thus, if this model
included feedback its behavior would be less similar to listeners’ behavior. This is, in effect,
the result observed when the parameters of the Gaussians were set to match the
distributional statistics of the input (discussed in Simulation 2). However, this does not rule
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out the utility of feedback. It may be necessary for learning other phonological distinctions,
in particular, those for which there are no good individual cues.

4.2.2. Computational limitations—One limitation of the cue-weighing model is its
ability to model sets of cues for which the relative order of categories along a dimension is
different for each cue. For the case of VOT and VL, this problem can be solved by tracking
the sign of the correlation between the two cues. However, for distinctions with more than
two categories along each dimension (e.g. place of articulation in English, voicing in Thai),
this solution will not necessarily work. For example, both VOT and F2 onset frequency are
cues to word-initial place distinctions. However, the relative order of categories along the
two dimensions is not the same in the context of the vowels /u/ and /o/ (Kewley-Port, 1982).
The cue-weighting model would not be able to collapse these cues into a single dimension
(although the weights of each dimension may still be accurate).

A related limitation is that the model cannot learn sets of cues in which the within-category
correlations between cues (i.e. the correlation between tokens within each category) differ
for each category. Figure 11 shows a schematic representation of two hypothetical
categories with different within-category correlations. Some pairs of cues show these types
of relationships in different contexts (e.g. place of articulation: burst center frequency and
F2 onset for different vowel contexts; Kiefte & Kluender, 2005; Nearey, 1998).

Both of these problems are a result of collapsing categories into a single dimension. The
multi-dimensional model would not have these problems, since it can represent the entire
acoustic space and categories may occur in any relative order along the cue dimensions.
Thus, one solution would be to combine aspects of both models, reducing the number of cue
dimensions as much as possible using the cue-weighting strategy outlined here and
representing cues in a smaller multi-dimensional space. Another possible solution would be
to take contextual information into account in determining the values along cue dimensions.
That is, inputs to the cue dimensions could be determined by first partialing out context
effects (see Cole, Linebaugh, Munson & McMurray, submitted).

4.3. Conclusion
These simulations demonstrate the power of the weighting-by-reliability approach applied to
speech. Weights given to acoustic cues can largely be determined from the statistics of the
input, and these in turn do a good job predicting behavior. However, by themselves, these
statistics are not sufficient to explain all types of cue-weighting—some mechanism by
which overlapping categories are enhanced is also needed. We suggest that learning itself, in
addition to distributional statistics, may be crucial for determining those weights. While
statistical learning approaches to perception have largely focused on statistics, there may
also be a unique contribution for learning.
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Appendix A
Bivariate (two-dimensional) Gaussian distribution for the multi-dimensional model:

(7)

This represents a single category in a two-dimensional mixture model, where μxi and μyi are
the means along each dimension, σxi and σyi are the standard deviations along each
dimension, ρi is the correlation between the two dimensions, and ϕi is the likelihood
(frequency) of the category.

Learning rules for cue-weighting model:

(8)

(9)
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(10)

These rules update the parameters of the Gaussians in the mixture such that they better
approximate the distributions of the data on each training trial. In each equation, η is the
learning rate for each parameter. Gi(x) is computed from Equation 4 and M(x) is computed
from Equation 5. The update rule for each parameter is determined by taking the derivative
of the likelihood function of the mixture distribution (Equation 5) w.r.t. that parameter.
Because M(x) is a sum, taking the partial derivative of any single parameter is only a
function of the relevant category. This simplifies the learning rules, allowing us to drop all
of the terms from the sum except for the one for the relevant category.

Learning rules for multi-dimensional model:

(11)

(12)

(13)

(14)

As with the learning rules for the cue-weighting model, η is the learning rate for each
parameter, and the update rules are computed by taking the derivative of the likelihood
function of the mixture distribution (Equation 7) w.r.t. each parameter.
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Fig. 1.
(A) Distribution of VOT values for voiced and voiceless stops in English (from acoustic
measurements in Allen & Miller, 1999). (B) Two-category cues can vary in how reliable
they are (and, in turn, how highly they should be weighted) from reliable cues with distinct
categories (top left) to unreliable cues with overlapping categories (bottom right). Cues of
intermediate reliability (top right and bottom left) require us to take into account both the
distance between categories and the variability within them.
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Fig. 2.
(A) A mixture of Gaussians (MOG) with five categories along the dimension. (B)
Parameters of a Gaussian distribution used in the mixture model. Each distribution is
defined by three parameters – its likelihood (ϕ), its mean (μ), and its standard deviation (σ).
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Fig. 3.
Schematic representation of the cue-weighting model. Two MOGs receive input for each
cue (VOT and VL). The cue weight for each MOG is computed using Equation 5, and the
inputs are converted to z-scores. The inputs are then weighted and summed, providing input
to a third MOG that reflects voicing categories based on both cues.
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Fig. 4.
A two-dimensional MOG with two categories. Each Gaussian is determined by cue-values
along both dimensions.
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Fig. 5.
(A) Distributions of VOT and VL values for voiced and voiceless stops from the production
data in Allen & Miller (1999). The locations of the lines indicate the mean of each category
along each dimension, and the lengths of the lines are equal to the standard deviations of
each distribution. Voiced and voiceless sounds are primarily distinguished along the VOT
dimension, but there is also a small difference along the VL dimension. (B) Identification
responses from listeners for sounds varying in both VOT and VL from McMurray et al.
(2008). Listeners tend to identify sounds as voiced (/b/) for low VOTs and voiceless (/p/) for
long VOTs. The shift in the identification function for the two different VL conditions
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indicate that they also use VL information when making voicing judgments (i.e. they are
more likely to identify sounds as voiced for long VLs and voiceless for short VLs).
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Fig. 6.
Identification results for the multi-dimensional model from Simulation 1. A clear effect of
VOT is observed, but the expected trading relation (i.e. the effect of VL) is not.
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Fig. 7.
Identification results for the cue-weighting model from Simulation 2. An effect of both VOT
and VL is observed, consistent with responses from listeners.
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Fig. 8.
Predicted results for the cue-weighting model based on the distributional statistics of the two
cues. These responses were obtained by setting the parameters of the Gaussians in the input-
level MOGs to the means and standard deviations of each cue and training the model (i.e.
keeping the parameters at the cue-level MOGs constant while allowing the model to learn
the parameters at the combined MOG). The model shows a much smaller trading relation
than the one observed in Simulation 2 and in the data from listeners.
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Fig. 9.
Results of Simulation 3 for the voiced VL category. The bottom panel shows that when the
starting μ-values of the Gaussians were initially closer than the means in the data, the model
always failed to learn a two-category solution (i.e. it over-generalized the dimension into a
single category). As the starting values were moved further apart, the model became more
likely to succeed. The top panel shows the μ-values over the course of learning for the
different starting values. The point at which each line ends indicates the latest point during
training at which one of the models for that starting value still maintained a two-category
solution. All of the models that had two categories throughout training settled on μ-values
near points further apart than the means in the dataset.
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Fig. 10.
Identification responses for Simulation 4. The trading relation is smaller when the third cue
covaries with VOT (Panel A) than when it is held constant (Panel B).
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Fig. 11.
A hypothetical pair of cues for which the within-category correlations for the two categories
are different.
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