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Abstract

We present the fundamental ideas underlying statistical hypothesis
testing using the frequentist framework. We begin with a simple example
that builds up the one-sample t-test from the beginning, explaining im-
portant concepts such as the sampling distribution of the sample mean,
and the iid assumption. Then we examine the p-value in detail, and
discuss several important misconceptions about what a p-value does and
does not tell us. This leads to a discussion of Type I, II error and power,
and Type S and M error. An important conclusion from this discussion
is that one should aim to carry out appropriately powered studies. Next,
we discuss two common issues we have encountered in psycholinguistics
and linguistics: running experiments until significance is reached; and
the “garden-of-forking-paths” problem discussed by Gelman and others,
whereby the researcher attempts to find statistical significance by analyz-
ing the data in different ways. The best way to use frequentist methods
is to run appropriately powered studies, check model assumptions, clearly
separate exploratory data analysis from confirmatory hypothesis testing,
and always attempt to replicate results.

1 Introduction

Psycholinguistics has a long tradition of using experimental methods, but in
recent years, linguists working in areas such as syntax, semantics, and pragmat-
ics have also started to embrace empirical methods (see Arunachalam (2013)
for a review of the more commonly used methods). As a consequence, basic
familiarity with experiment design is becoming a core requirement for doing lin-
guistics. However, just knowing how to carry out an experiment is not enough;
a good understanding of statistical theory and inference is also necessary. In
this article, we present the most important issues that researchers need to be
aware of when carrying out statistical inference using frequentist methods (as
opposed to Bayesian approaches, see Nicenboim and Vasishth (2016)). We focus
on frequentist methods because the statistical tools of choice in psycholinguis-
tics and linguistics are usually frequentist ones; examples are the t-test, analysis
of variance (ANOVA), and linear mixed models. Given software such as R (R
Core Team, 2014), it is extremely easy to obtain statistics such as t- of F-values,
and the corresponding p-values. However, it is equally easy to misunderstand
what these mean; in particular, a misinterpretation of the p-value often leads
researchers to draw conclusions from their data that are not supported by the
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underlying statistical theory. We start the paper illustrating the meaning of t-
and p-value and discussing some common misconceptions by means of the one-
sample t-test or (equivalently) the paired t-test. We use this test as an example
because of its relative simplicity and because it happens to be a very frequently
used one in linguistics and psycholinguistics. For ANOVAs and linear mixed
models, the situation is more complex, but the same logic and issues described
below also apply. We then show the importance of power, and Type I, II, S,
and M errors using simulations based on linear mixed models. Two further
important topics discussed are: the problems involved in running participants
till significance is reached, and the issues involved in experiments with multi-
ple measures, multiple regions of interest, and too many degrees of freedom in
analysis.

2 A simple example: a two-condition repeated
measures design

Consider the case of a two-condition repeated measures self-paced reading (Just
et al., 1982) experiment, e.g., subject versus object relative clauses, where the
dependent measure is reading time in milliseconds; assume that reading time
is measured at a particular region of interest in the relative clause sentences.
Suppose the experiment has n randomly sampled participants, each of whom
read multiple instances of subject and object relative clauses in a counterbal-
anced Latin square design (Arunachalam, 2013). A typical approach taken is
to calculate the mean of each participant’s reading time for each relative clause
type by aggregating over all the items that the participant saw. To make this
example concrete, consider the simplified situation in Table 1 where a partic-
ipant, labeled 1, sees three items for each condition; normally, of course, each
participant will be shown many more items. The condition labels in Table 1
refer to subject relatives (condition a) and object relatives (condition b). If
we average the three data points from the participant for condition a and for
condition b, we obtain the aggregated data shown in Table 2.

participant id item id condition reading time
1 1 a 500
1 2 a 600
1 3 a 700
1 4 b 450
1 5 b 550
1 6 b 650

Table 1: Hypothetical unaggregated reading time data from a two-condition
experiment for one participant who saw six items, three from each condition.

This procedure, applied to each of the participants in an experiment, results in
two data points from each participant, one for each condition. This is called a
by-participants (or by-subjects) analysis. One can analogously do a by-items
analysis by aggregating over participants.

After this aggregation procedure, we have n data points for subject relatives
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participant id condition reading time
1 a 600
1 b 550

Table 2: The result of aggregating the data over items for participant 1 in
Table 1.

and n for object relatives. The data are paired in the sense that for each par-
ticipant we have an estimate of their reading time for subject relatives and for
object relatives. In the hypothetical example above, for participant 1, we have a
mean subject relative reading time of 600 ms and an object relative reading time
of 550 ms. If, for each participant, we take the difference in object vs subject rel-
ative reading time (for participant 1 this would be −50 ms), we have a vector of
n values, x1, . . . , xn that are assumed to be mutually independent, and represent
the difference in OR vs SR reading times for each participant. Another assump-
tion here is that these observed differences between RC types x1, . . . , xn are
generated from a normal distribution with some unknown mean µ and standard
deviation σ. Since each of the data points is assumed to come from the same
distribution, we say that they are identically distributed. The independence
assumption mentioned above and the identical-distribution assumption are of-
ten abbreviated as iid—independent and identically distributed. The statistical
test depends on the iid assumption, and the assumption that a simple random
sample of participants has been taken. For example, if we were to do a t-test
on the unaggregated data, we would violate the independence assumption and
the result of the t-test would be invalid. When distributional assumptions (such
as the normality assumption of residuals in linear mixed models, see Sorensen
et al. (2015) for more discussion) are not met, the parametric bootstrap (Efron
and Tibshirani, 1994) is an option worth considering. The bootstrap can also
be used for linear mixed models; for an example, see Appendix D of Boston
et al. (2011).

Returning to the t-test under consideration, we begin by generating some
fake data; all the R code used in this paper is available from the first author’s
home page. Let us simulate n data points representing differences in reading
times, as an illustration. Since reading time data typically have a log-normal
distribution, we will simulate n = 1000 draws from a log-normal distribution
with mean 2 and standard deviation 1 (Figure 1).

Given such a sample, the one-sample t-test (or, equivalently the paired t-test)
works as follows. We first compute the sample mean and the sample standard
deviation x̄ and σ̂; these are estimates of the unknown parameters, µ and σ, of
the underlying distribution that is assumed to have generated the data. It is
important to note the distinction between the sample mean x̄ and the unknown
true point value µ. Researchers often report their sample means by labeling
it µ or (in the case of linear mixed models) β; but this is incorrect. The true
parameter µ or β is unknown; we are reporting an estimate of this unknown
value.

Statistical inference relies on an important property of the sampling distribu-
tion of the sample means under repeated sampling: For a large enough sample
size n, the distribution of the sample means under repeated sampling will be
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Figure 1: Histogram of simulated reading time data.

normal with mean µ and standard deviation σ/
√
n; this is assuming that the

underlying distribution that generated the data has a mean and standard de-
viation. The preceding sentence is an informal statement of the central limit
theorem. The standard deviation of the sampling distribution of the sample
means is also called the standard error (SE), and can be estimated from the
data by computing σ̂/

√
n.

Statistical inference in the frequentist paradigm begins by positing a null
hypothesis distribution, which is a statement about what the true sampling
distribution of the sample means looks like. In our example, our null hypothesis
is that the difference in means between the two RC types is 0. We will follow
standard practice in writing this null hypothesis as H0 : µ = 0; µ represents the
true, unknown difference in means between the two RC types. Next, we use the
fact that the transformation T = (x̄ − µ)/SE has a t-distribution with n − 1
degrees of freedom, where n is the sample size (for large n, the t-distribution
approximates the normal distribution with mean 0 and variance 1). Since we
have hypothesized µ to be 0, and since we have estimated x̄ and σ̂ from the
data, we can compute the observed t-value t = (x̄ − 0)/SE. This observed
t-value is the distance between the sample mean and the hypothesized mean, in
SE units; this is easy to see if we rearrange the equation as follows: t × SE =
x̄ − 0. Intuitively, if the t-value—the distance in SE units between the sample
means and the hypothesized mean—is large, we feel entitled to reject the null
hypothesis. It is traditional to compute the p-value associated with the observed
t-value; this is the probability of observing a t-value at least as extreme as the
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one we observed, conditional on the assumption that the null hypothesis is true.
It is also traditional to reject the null hypothesis if this conditional probability
falls below 0.05.
In the above example with simulated data, our sample mean is 257.46, and
the standard deviation is 376.47, leading to an observed t-value of 21.63. Can
we reject the null here following our rule above, which is to reject the null
if the p-value is below 0.05? We can start by visualizing the null hypothesis
distribution and the observed t-value; see Figure 2. The p-value is the area
under the curve to the right of the red dot (our observed t-value), plus the same
area under the curve to the left of the green dot. The red and green dots mark
the observed t-value 21.63 and its negation −21.63. We consider both sides of
the distribution because we want to know the probability of seeing the absolute
t-value (regardless of sign), or a value more extreme. This is called the two-sided
t-test.

The p-value in our example is going to be some very small number because
the observed t-value is far out in the tails of the null hypothesis distribution;
the probability mass is going to be very small (near 0). So yes, in this simulated
example, we would reject the null hypothesis. That is the t-test in a nutshell,
and it will serve as the basis for further discussion about statistical inference.

0.0

0.1

0.2

0.3

0.4

−20 0 20
t

de
ns

ity

Figure 2: The null hypothesis distribution and the observed t-value.
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3 Four misconceptions about what a p-value tells
us

It is very easy to overlook the fact that the p-value is a conditional probabil-
ity. Neglecting to attend to this detail has led to quite a few misconceptions
about what a p-value tells us. Here are some claims about the p-value that are
incorrectly believed to be true. Note that the same misconceptions hold if one
considers, instead of the p-value, the absolute value of the observed t-value, as
is commonly done in connection with linear mixed models.

3.1 Misconception 1: The smaller the p-value, the greater
the confidence in the specific alternative hypothesis
we are interested in verifying

In fact, the smaller the p-value, the greater the confidence that the null hypoth-
esis is false. It doesn’t tell us which of the infinity of possible alternative µ is
now true, only that the null hypothesis, that µ = 0, is false. Rejecting the null
doesn’t give us any statistical evidence for the specific effect our theory predicts,
it just gives us evidence against a very specific hypothesis that µ = 0, and allows
all other values of µ to be plausible, even ones we would not be happy to see as
the outcome of an experiment. We want to know P(H1 | data), i.e., how prob-
able is it that our theory is correct (the specific alternative H1) given the data
that we have, but frequentist statistics tells us P(data | H0), i.e., the probability
of the data (more accurately, the probability of seeing a test statistic as extreme
or more extreme than the one observed) given the null hypothesis. Importantly,
we cannot infer one conditional probability just by knowing its inverse. Dienes
(2011) illustrates this with a very graphic example: The probability of dying
given that a shark has bitten one’s head clean off, P(dead | head bitten clean off
by shark), is one. But most people die of other causes; given that one is dead,
the probability that a shark has bitten one’s head clean off, P(head bitten off by
shark | dead), is close to zero. In summary, the p-value answers a question, but
it doesn’t answer the question we are interested in. To answer the question we
are actually interested in, namely whether the effect is positive or negative with
a certain magnitude, we make an indirect inference by looking at the observed
mean and draw the conclusion that our theory is supported or not by looking
at the sign of the observed mean. The p-value does not provide any evidence
that our theory is supported; it only gives us evidence against the null. The
most informative piece of information we have about our specific hypothesis is
actually the sample mean and the uncertainty associated with out estimate of
this sample mean: the standard error.

3.2 Misconception 2: A p-value greater than 0.05 tells me
that the null hypothesis is true

This is perhaps the commonest mistake seen in linguistics and psycholinguistics.
Researchers in linguistics and psycholinguistics (and also psychology) routinely
make the strong claim that There is no effect of factor X on dependent variable
Y, based on their getting a p-value larger than 0.05. This claim can only be
made when power is high, as discussed below.
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This misconception arises because researchers do not consider the fact that
the p-value is a conditional probability: the probability of getting a statistic as
extreme or more extreme as the one we got, conditional on the null hypothesis
being true. To conclude that the null is true when p > 0.05 is like arguing that,
if the probability of the streets being wet given that it has just rained is higher
than 0.05, then we can conclude that it has just rained.

Unless one has sufficient power (see below), the best one can say when we
get a p-value larger than 0.05 is that “we failed to find an effect”. Instead, in
linguistics and psycholinguistics it is routine to make the much stronger, and
statistically invalid, claim that “there is no effect”.

3.3 Misconception 3: Two nested comparisons allow us to
draw conclusions about interactions

To illustrate the issue here, consider the results reported in Experiment 2 of
Husain et al. (2014); we use their data because it is publicly available. In
the published paper we had used a Bayesian linear mixed model to report the
results, but here we will do the same analysis using a series of one-sample t-
tests discussed above. This experiment was a 2 × 2 factorial design, with one
factor predicate type (complex vs simple) and the other factor distance between
the verb and an argument noun (long vs short). We can look at the effect
of distance within complex predicates and simple predicates separately. These
comparisons can be done easily following the procedure of the one-sample t-test
we discussed in the beginning of this paper. We convert reading times to the log
scale to do the test (for reasons discussed later in this paper). When we do these
tests, we find a statistically significant effect of distance in complex predicates
(t(59)=−2.51, p-value=0.02), but we don’t get a significant effect of distance
in simple predicates (t(59)=0.52, p-value=0.61). This is shown graphically in
Figure 3. Can we now conclude that the interaction between the two factors
exists? No. First of all, one can check with a t-test whether the interaction
is statistically significant. In the first test, the null hypothesis is that the true
difference, δ1, between the (unknown) means of the long vs short conditions in
the complex predicate case is 0; in the second test, the null hypothesis is that the
true difference, δ2, between the (unknown) means of the long vs short conditions
in the simple predicate case is 0. In the interaction, the null hypothesis is that
the difference between these two differences, δ1 − δ2 = δ is 0. When we do the
t-test with this null hypothesis (see accompanying code for details), we find that
we cannot reject the null hypothesis that δ = 0: (t(59)=−1.68, p-value=0.1).

The first comparison (the effect of distance in complex predicates) yields a
difference of sample means −0.13, and the standard error of this difference is
0.05. The second comparison (the effect of distance in simple predicates) yields
a difference of sample means 0.03, and the standard error of this difference is
0.06. From the first two comparisons, we cannot conclude that the interaction
will necessarily be significant; indeed, in our example, the difference between
these differences in means is −0.16, with standard error 0.09. Thus, one must
always check whether the interaction is significant. This is a real issue in psy-
chology and linguistics and has serious consequences for theory development;
many papers have misleading conclusions that follow from this error. As evi-
dence, Nieuwenhuis et al. (2011) present a survey of published articles showing
that approximately 50% of them (79 articles) draw this incorrect inference.
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Figure 3: Example showing a typical situation where one comparison is statis-
tically significant, but the other is not. From this, we cannot conclude that the
interaction is statistically significant.
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3.4 Misconception 4: If p < 0.05, we have found out that
the alternative is in fact true

This misconception is perhaps encouraged by the language we use to describe
our success in getting a p-value; the effect is “reliable” or even “real”. The
word “significant” also contributes to giving the feeling that something of im-
portance has been found. It doesn’t help that textbooks and articles explaining
the p-value often state that the p-value tells us whether “the effect is due to
chance”. If this were literally what the p-value meant, it would be reasonable to
conclude that if the p-value is low, then the effect is not due to chance. But this
characterization of the p-value is not correct. The phrase “due to chance” is
more accurately expanded to “due to chance under the null hypothesis”. Stated
correctly in this way, if we get a very low p-value, we can only say that, as-
suming that the null is true, the probability of observing the t-value (or some
value more extreme) is very low; it is on the basis of this low probability that
we reject the null. No absolute certainty is afforded by the p-value, no matter
how low it is.

In fact, no matter how low our p-value, we will always have a 0.05 probability
of having mistakenly rejected the null when the null is in fact true. Thus, a p-
value (regardless of whether it is low or on the border of 0.05) alone should not
convince us that an effect is “real”. We discuss this point further in the next
section.

4 Type I, II error, power, and Type S, M error

The logic of frequentist methods is inextricably linked with hypothetical re-
peated sampling. If we were to repeatedly run an experiment, we would essen-
tially get a different sample mean in every repeated sample; in some of these
samples, we will reject the null, and in some other samples we will fail to re-
ject the null. Under such repeated sampling—which we almost never have the
luxury of doing in real life, incidentally—we can define the probability of in-
correctly rejecting the null (when it’s actually true); this is called Type I error
(also called the α value) and is typically set at 0.05 by the researcher. Type I
error is conventionally fixed at 0.05 before we run an experiment. Note that it
has nothing to do with the p-value: the p-value is computed based on the data
you have at hand, and will vary depending on your data, whereas Type I error
is a fixed rate of incorrect rejections of the null under repeated sampling.

Under repeated sampling, the probability of incorrectly failing to reject the
null hypothesis when it is false with some specific value is called Type II error.
The quantity (1-Type II error) is called power, and is the probability of correctly
rejecting the null.1 Table 3 shows the four possible states when we consider the
two possible states of the world (null true or false) and the binary decision we
can take based on the statistical test (reject the null or not).

It may also help to see a visualization of Type I and II errors. Consider two
different situations: in the first one, the true µ = 0; i.e., the null hypothesis is

1Note that all our definitions here are with respect to the null hypothesis—it is a mistake
to think that Type II error is the probability of failing to accept the alternative hypothesis
when it is true. We can only ever reject or not reject the null; our hypothesis test is always
with reference to the null.
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Reality: H0 TRUE H0 FALSE
Decision: ‘reject’: α 1 − β

Type I error Power

Decision: ‘fail to reject’: 1− α β
Type II error

Table 3: The two possible states of the world (the null be either true or false)
and the two possible decisions we can take given our data.

true; in the second one, the true µ = 2; i.e., the null hypothesis is false with
a specific value for the alternative. Type I error will be relevant for the first
situation, and it is illustrated as the black-colored area under the distribution
representing the null hypothesis in Figure 4. The area under the curve in these
regions gives us the total probability of landing in these regions under the null.
The figure also shows Type II error; this is the orange-colored region under the
specific alternative hypothesis µ = 2. We determine this area by first drawing
the two vertical lines representing the points beyond which we would reject the
null; then we compute the probability of landing within these points under the
specific alternative; this is exactly the orange-colored area. Power is not shown,
but since power is 1-Type II error, it is all the area under the curve for the
distribution centered around 2 excluding the orange-colored area.
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Figure 4: An illustration of Type I error (the area shaded black) and Type II
error (the area shaded orange) for a specific case where the true value of µ is 2.

Power is best thought of as a function because we can only talk of power
with reference to a specific alternative value for the magnitude (different from
zero) of an effect (µ), and the sample size and standard deviation of the sam-
ple. For different magnitudes µ of the effect we are interested in, the power
will differ: in the scenario shown in Figure 4, the further away µ is from 0,
the larger the power. The reader can verify this by considering what would
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happen to the Type II error region in Figure 4 if µ were 4 instead of 2. Clearly,
Type II error would go down, and therefore power would increase. Considering
different values of µ in this manner, the power function is a curve that shows
how power changes as µ changes (Figure 5). A practical implication is that one
way to increase power is to design an experiment with a stronger manipulation,
one which will lead to a larger effect; for example, Grodner and Gibson (2005)
found larger effects when the sentence structure of interest was embedded inside
another clause (also see Bartek et al. (2011) for a replication of the Grodner
and Gibson results). Another way to increase power and decrease Type II error
in a study is by increasing the sample size. Figure 6 shows how power changes
as sample size changes. Yet another way is to measure the dependent measure
more precisely, thereby obtaining more accurate estimates of the standard de-
viation. For example, eyetracking data is extremely noisy, which may lead to
an overestimate of the standard deviation. More frequent recalibration, using
better equipment and well-trained experimenters could yield better estimates.
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−100 −50 0 50 100
µ

P
ow

er

Figure 5: An example of a power function for different effect sizes, assuming
(for illustration) a standard deviation of 40 and a sample size of 10.

It is especially important to make sure you have high power if you are in-
terested in arguing for the null. The reason for this should be obvious at this
point: low power implies high Type II error, which means that any failure (even
repeated failures) to reject the null may just be due to the fact that the proba-
bility of accepting the null when the null is in fact false is very high. There are
many situations when you might want to argue for the null (see, e.g., Phillips
et al. (2009)); here, it is imperative to put in extra effort into achieving as much

11



0.25

0.50

0.75

1.00

0 100 200 300 400 500
N

P
ow

er

Figure 6: An example of a power function for sample sizes (N), assuming (for
illustration) a standard deviation of 40 and a true effect of 10.
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power as possible (see Jäger et al. (2015) for an example).
In order to be able to compute a reasonable estimate of power for a future

study involving a comparison of two conditions, it is helpful to have an estimate
of the difference between the conditions in ms or log ms. Now, this of course
depends on having some way to determine a realistic estimate of the true effect
size for a particular phenomenon. This could be done through a meta-analysis or
literature review (Vasishth et al., 2013; Engelmann et al., 2015) or computational
modeling (Lewis and Vasishth, 2005), or knowledge elicited from experts on the
topic you are studying (Vasishth, 2015). If such an estimate of the effect can be
computed, then one can and should also compute Type S and M errors (Gelman
and Carlin, 2014). These are defined as follows:

1. Type S error: the probability that the sign of the effect is incorrect, given
that (a) the result is statistically significant, or (b) the result is statistically
non-significant.

2. Type M error: the expectation of the ratio of the absolute magnitude of the
effect to the hypothesized true effect size (conditional on whether the result
is significant or not). Gelman and Carlin also call this the exaggeration
ratio, which is perhaps more descriptive than “Type M error”.

To illustrate Type S and M errors, we simulate data with similar character-
istics as the data from Gibson and Wu (2013); their experiment had a simple
two-condition design and was originally run with 40 participants and 16 items.
As an example, we assume a true effect size of 0.01 for the log-transformed
dependent variable, that is a difference of ≈4 ms from a grand mean (the mean
reading time of all the data) of 550 ms. The magnitude of the effect may strike
the reader as smaller than they’d expect in a psycholinguistic study; however,
note that we do not know the true effect, and previously published studies may
be giving us overestimates (due to Type S and M errors) if they have low power.
The choice of a small magnitude of effect here is just to illustrate what happens
when power is low.

For the simulation, we generated 1000 data sets, which we fit using linear
mixed models with a log-transformed dependent variable (using the package
lme4 ; Bates et al. (2015)). We used models with varying intercepts only for
subjects and for items, in order to have the highest power, at the cost of an-
ticonservativity (Matuschek et al., 2015); the discussion here does not depend
on whether maximal models in the sense of Barr et al. (2013) are fit or not.
The simulation shows the best-case scenario, since we generated the dependent
variable (reading times) with a perfectly lognormal distribution and no outliers;
Ratcliff (1993) shows that outliers can reduce power. The proportion of models
under repeated sampling that show a significant effect (an absolute observed
t-value greater than two) gives us the power, which is only 0.09. Type S error
rate is 0.06 (calculated as the proportion of models with a significant effect, but
with an estimated effect in the opposite direction of the true effect), and a Type
M error of 5.05 (calculated as the mean ratio of the estimated effect to the true
effect). This means that, in the present scenario, with a power of 0.09, we are
likely to get an inflated estimate, and we have a 6 percent probability of having
the wrong sign if we were to run the experiment repeatedly.

Thus, in low power situations, Type S and M error will be high; the practical
consequence is that, if power is low, the magnitude and sign of the effect we
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Figure 7: A funnel plot for 15 Chinese relative clause studies data, showing
precision plotted against mean effects. The vertical line marks the mean effect
of +18 msec (which represents a subject relative advantage).
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find in our experiments may not be useful for calculating power in future experi-
ments, for meta-analysis, or for modeling. This can be illustrated by considering
the case of the Chinese relative clause controversy. There is a great deal of em-
pirical disagreement regarding the question: in Chinese relative clauses, are
subject relatives easier to process than object relatives (subject relative advan-
tage)? Some researchers have claimed that object relatives are easier to process
(at the head noun), and others have found the opposite, even in studies with
the same design. As discussed in Vasishth (2015), we can see the Type S and
M error in action in this real-life example. We use the funnel plot (Duval and
Tweedie, 2000) for this purpose. When we display the means of 15 published
studies, we see that studies with lower precision (the inverse of the variance,
1/SE2) have a bigger spread about the grand mean of these means (Figure 7).
Since extreme values will be further away from the mean and will influence the
grand mean, an obvious consequence is that if we want accurate estimates of
the true effect, we should run as high-powered experiments as we can.2

Of course, in many situations (e.g., when studying special populations such
as individuals with aphasia), there are practical limits to the sample size. In-
deed, one could also argue that it is unethical to run unnecessarily large-sample
studies because this would be a waste of resources and maybe even an abuse
of participants. In such restrictive contexts, the researcher may be better off
using a Bayesian framework with (mildly) informative priors (see part 2 of this
review). Our point here is that there is no substitute for attempting to calculate
power before running an experiment, using the best estimates one can obtain.
Note also that it is a mistake to use ‘observed’ power, computed after the exper-
iment has been run, to justify that one had adequate power for a study. At the
very least, observed power could lead one astray if the “true” power happens to
be actually quite low; in such a case, Type S and M errors will lead to overes-
timates of power. Consider, for example, the fact evident from Figure 7, that
a over-optimistically higher power will be estimated when using a low-precision
study’s estimates.

The next simulation illustrates the problem of low power by showing po-
tential differences between estimates and various true effect sizes. We simulate
the data of experiments similar to the one presented before but with different
values of true effect sizes (0.01, 0.02, 0.03, 0.05, 0.1) and in two flavors: a small
sample experiment (but still publishable) with 30 subjects and 16 items, and a
medium-sized experiment with 80 subjects and 40 items.

Figure 8 shows the results of this simulation. We simulated a total of ten
(one small and one medium size experiment for each of the five effect sizes) sets
of 200 experiments. Every point in the graph represents an experiment with a
significant effect. The x-axis shows the true effect size on the log scale, while the
y-axis shows the estimate of the effect from linear mixed models with significant
results. The power of each simulation also appears in the figure. The simulation
shows that exaggerated estimates (Type M errors) are more common for low-
powered experiments. In addition, when the underlying effect is very small,
some experiments will show results with the incorrect sign (Type S error). The
dashed line shows the ideal situation where the estimate and the effects are the
same.

2As an aside, note that such funnel plots can also be used to identify publication bias:
gaps in the funnel are suggestive of unpublished data that should have been observed under
repeated sampling.
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Figure 8: Plot illustrating the distribution of estimates under different true
effect sizes and two experiment sizes. Each point represents an experiment with
a significant effect, and for each effect size and experiment size, we simulated
200 experiments. The power is shown within the figure for the two sample sizes
and for the different effect sizes.
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This means that if power is very low, and if journals are publishing larger-
than-true effect sizes—and we know that they have an incentive to do so because
researchers mistakenly believe that lower p-values, i.e., bigger absolute t-values,
give stronger evidence for the specific alternative hypothesis of interest—then
power calculations based on published data are probably overestimating power,
and thus also overestimating the replicability of our results.

To make matters worse, assuming a normal distribution when the distribu-
tion is skewed and may have outliers can also reduce power (Ratcliff, 1993),
thereby increasing Type S and M errors. Latencies such as reading or response
times are limited on the left by some amount of time and they are right-skewed;
as a consequence, assuming, as is standardly done in linguistics and psychol-
ogy, that the underlying distribution generating the data is normal can lead
to loss of power. Reading time or reaction time distributions are best fit with
three parameter distributions such as ex-Gaussian (the convolution of a Gaus-
sian and an exponential distribution), shifted lognormal (the log-transformed
normal distribution shifted to the right) or shifted Wald (the reciprocal of the
normal distribution shifted to the right); see, for example, Luce (1986); Rat-
cliff (1993); Rouder (2005). These distributions, however, are difficult to fit
using standard frequentist software such the lme4 function. A middle-ground
solution is to apply a transformation on the dependent variable. This can re-
duce the impact of the skew (and of outliers) by compressing larger values to
a greater extent than smaller values. The Box-Cox procedure (Box and Cox,
1964; Osborne, 2010) can be used to find out the best transformation; but, for
reading times, we find that the reciprocal- (especially for self-paced reading) or
the log-transformation (especially for eye-tracking measures) are adequate, and
have the advantage of being easy to interpret. In sum, model assumptions mat-
ter. Even in the simple case of the one-sample t-test, violating the normality
assumption leads to a fall in power.

A major practical implication of the Type M and S error problem is that if a
study has low power, then it doesn’t matter much whether you got a significant
result or not. Theory development based on low power studies would have
a very weak empirical basis, regardless of the p-values obtained. The main
take-away point here is that we should run high powered studies, and attempt
to replicate our results. There’s really nothing as convincing as a replication.
In our experience, reviewers and editors don’t appreciate the importance of
replications, but hopefully with increasing awareness of the issues, the culture
will change.

5 Running till significance is reached

Given the importance that is attributed to significant findings regardless of
sample size, replicability, multiple comparisons, and so forth, an interesting and
troubling practice that we have encountered in linguistics and psycholinguistics
is running an experiment until significance is reached. The experimenter gathers
n data points, then checks for significance (whether p < 0.05 or not). If the result
is not significant, he/she gets more data (n more data points) and checks for
significance again. We can simulate data to get a feeling for the consequences of
such a procedure. A typical initial n might be 15. This approach would give us
a range of p-values under hypothetical repeated sampling. Theoretically, under
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the standard assumptions of frequentist methods, we expect a Type I error to
be 0.05.

This is true if we fix the sample size in advance and repeatedly sample.
But the statistical theory no longer holds if we adopt the strategy we outlined
above: run some participants, test for significance, and if non-significant, run
more participants. If we track the distribution of the t-statistic for this approach,
we will find that Type I error is much higher (in our simulation, approximately
15%).

Let’s compare the distribution, under repeated sampling, of the t-statistic
in the standard case vs with the above stopping rule (red) (Figure 9).

0.0

0.1

0.2

0.3

−6 −4 −2 0 2 4 6

D
en

si
ty

Type I, II Error

Figure 9: The distribution of observed t-values under repeated sampling using
the stopping rule of run-till-significance. The dashed vertical lines mark the
boundaries beyond which the p-value would be below 0.05.

We get bumps in the tails with the above stopping rule because, under re-
peated sampling, some proportion of trials which have p > 0.05 will be replaced
by trials in which p < 0.05, leading to a redistribution of the probability mass in
the t-distribution. This redistribution happens because we give ourselves more
opportunities to get the desired p < 0.05 under repeated sampling. In other
words, we have a higher Type I error than 0.05. It would of course be reason-
able to take this approach if we appropriately adjust the Type I error; but this
is not standard practice. Thus, when using the standard frequentist theory, one
should fix one’s sample size in advance based on a power analysis, not deploy a
stopping rule like the one above; if we used such a stopping rule, we are much
more likely to incorrectly declare a result as statistically significant. Of course,
if your goal is only to get a significant result so that you can get your article
published, such stopping rules will give better results than fixing your sample
size in advance!
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6 Multiple measures, multiple regions, degrees
of freedom in analysis

Gelman and Loken (2013) point out that there are in general too many ways
to analyze the data: from the choice of the statistical test to decisions on what
data points to exclude or include. This means that once we start looking hard
enough, it is possible to find a significant difference and then tell a post-hoc
theory that fits very neatly together. For that to happen, it is not necessary
that a researcher would go on a “fishing expedition” (Gelman, 2013), that is, it
is not necessary that he/she would be actively trying to report any comparisons
that happen to yield a p-value lower than 0.05; in many cases, the researcher
just has too many degrees of freedom in the analysis and it is not clear which is
the right way to analyze the data. A common example is to decide to report the
result of a linear mixed model or an ANOVA or t-test, depending on which one
of these yields a p-value below 0.05. Researchers often flexibly switch between
linear mixed models and repeated measures ANOVA to tell “the best story” they
can given the data. One problem here is that using the ANOVA or t-test where
a linear mixed model with crossed subject and item random effects is suggested
by the design artificially reduces the sources of variance (through aggregation),
with the result that effects that are not really statistically significant under a
linear mixed model end up being significant once one aggregates the data. But
the other problem with shopping around for the test that gives us the lowest
p-value is the one that Gelman and colleagues point out: we are introducing a
degree of freedom in the analysis.

Another commonly seen situation is flexibly analyzing different regions of
interest (often aggregating them post-hoc) until a p < 0.05 result is found; for
example, in Badecker and Straub (2002), in their results section for experiment
5, they write: “No significant differences emerged for any individual words or
two-word regions. However when reading times are collapsed across the four po-
sitions following the reciprocal, reading times for this region were 48 ms longer
in the multiple-match than in the single-match condition. . . ”. This is an exam-
ple of failing to find an effect in the region where it was expected a priori, and
then trying to expand the regions of interest post-hoc. Similarly, even when
studying the same research question, researchers will sometimes trim the data,
and sometimes not.

In sum, if the procedures have not been decided in advance, we are no
longer doing hypothesis testing, but an exploratory analysis (De Groot, 2014).
Of course, there is no harm in doing and reporting exploratory analysis; but
these analyses should be clearly marked as such and presented separately from
the primary analyses.

Another issue is multiple comparisons. In many experiments that use meth-
ods like self-paced reading, eye-tracking, and EEG, participants are presented
with a whole sentence but effects are expected to happen at a certain region.
It is often not clear, however, if the effect should appear at only one specific
word or several, or even what the critical region is. Furthermore, it is commonly
assumed that effects can be delayed and appear in spillover regions. However,
even though this is rarely acknowledged, fitting a model (t-test, ANOVA, linear
mixed model, etc.) for each possible word where the effect may appear raises
the problem of multiple comparisons, increasing the chances of finding a false
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positive (Gelman and Loken, 2013). In addition to the multiple regions problem,
eye-tracking-while-reading raises the problem that multiple measures which are
highly correlated (first fixation duration, single fixation duration, gaze time,
etc.) are routinely analyzed as if they were separate sources of information
(von der Malsburg and Angele, 2015). The motivation for analyzing multiples
measures is that the theories being tested usually do not make explicit predic-
tions about which measure is relevant. For EEG, even though it is not always
the case, without a clear prediction about the ERP component, this issue is
even more serious: it is possible to look for effects in too many different groups
of electrodes (which are correlated) and in different time windows (Frank et al.,
2015).

It is clear that in most cases researchers are not doing tests until they find
a comparison showing a significant difference. In many novel experiments, it is
just not possible to know ahead of time where an effect will appear. However,
the problem of multiple comparisons may hinder replicability and give a false
feeling of certainty regarding the results.

We present three possible solutions to these problems. Linear mixed models
can solve the multiple comparisons problem if all relevant research questions can
be represented as parameters in one coherent hierarchical model (Gelman et al.,
2012), since the point estimates and their corresponding intervals are shifted
toward each other via “shrinkage” or “partial pooling” (Gelman et al., 2012).
However, building a single hierarchical model that addresses all the research
questions is not always trivial. For several regions of interest, it may be possible
to fit a single model using Helmert contrasts (as in Nicenboim et al. (2015)).
This type of contrast compares each region with the average of the previous
ones, such that it is possible to discover a change in the pattern of the effects.
However, it is unclear if the effects should appear for all the trials in the same
region, since some participants in some trials could start a certain process sooner
predicting the structure of the item or could delay it due to fatigue, lapse of
attention, or because they have not finished a previous cognitive process. Linear
mixed models that can address the multiple measures in eye-tracking or the
highly multidimensional data of EEG are even more difficult to specify.

Another solution proposed recently by von der Malsburg and Angele (2015)
is to fit independent models but to apply some type of correction such as the
Bonferroni correction. When new data can be easily gathered, a third possible
solution is to take results as exploratory until being confirmed with new data
(De Groot, 2014; Tukey, 1977). The exploratory data is used to identify the
relevant regions, measures and/or ERP components, and only these potential
effects are then tested on the confirmatory analysis. Researchers could pair each
new experiment with a preregistered replication (Nosek et al., 2012), or gather
more data than usual so that the full data set could be divided into two subsets
(for an example with EEG data, see Frank et al. (2015)).

7 Conclusion

In this article, we attempted to spell out some of the more common pitfalls
associated with using the frequentist data-analytic approach. The frequentist
approach should be used as intended. Given the growing realization that many
claims in the scientific literature are false (Ioannidis, 2005), and the recent dra-
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matic failure to replicate many of the published results (Open Science Collabo-
ration, 2015), now is as good a time as any to take stock and carefully consider
how we use these tools. Checking model assumptions, running well-powered
studies, avoiding exploratory analyses under the guise of hypothesis testing,
and always replicating one’s results; these are steps that are relatively easy
to realize. In situations where data is sparse, Bayesian data analysis methods
should be considered (Gelman et al., 2014).
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