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Abstract: Construction project management produces a 

huge amount of documents in a variety of formats. The 

efficient use of the data contained in these documents is 

crucial to enhance control and to improve performance. A 

central pillar throughout the project life cycle is the Bill of 

Quantities (BoQ) document. It provides economic 

information and details a collection of work descriptions 

describing the nature of the different works needed to be 

done to achieve the project goal. In this work, we focus on 

the problem of automatically classifying such work 

descriptions into a pre-defined task organization hierarchy, 

so that it can be possible to store them in a common data 

repository. We describe a methodology for preprocessing the 

text associated to work descriptions in order to build training 

and test datasets and carry out a complete experimentation 

with several well-known machine learning algorithms. 

 

 
1 INTRODUCTION 

 

The area of Business Intelligence is one of the areas of 

ICTs that have been developed to support decision making 

in companies. Business Intelligence focuses on the creation 

of data warehouses that feed on data regarding the operation 

of the company; later, analysis tools such as OLAP and data 

mining techniques can be applied on these data to produce 

useful information for decision-making. The quality of the 

results obtained by these analysis techniques lies, to a large 

extent, in that they are applied on adequate data sets 

(sufficiently large, historical, and fresh). For this reason, in 

all Business areas, companies seek to collect data and 

analyze them to support their decision-making processes. 

These processes of data collection and analysis are complex 

and are only viable if they are automated. 

Contrary to what happens in areas such as Big Data, in 

the case of data warehouses for Business Intelligence, the 

data must be structured: i.e. the data warehouse is built on 

the basis of a reference data structure. This structure is the 

skeleton that supports the integrated data repository. Once 

the reference structure has been determined, an important 

part of the effort to build the data warehouse is used in the 

design and implementation of ETL (extraction, 

transformation and loading) processes that fill the warehouse 

with operational data. Automating ETL processes is not 

trivial because, in many cases, the data sources do not 

provide data with the appropriate structure and it is not easy 

to automatically determine the correspondence between the 
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source data structure and the reference structure of the data 

warehouse.  

 

1.1 Data warehouses and BoQ documents 

The construction industry has not remained unaware of 

these needs. Nowadays, there are initiatives oriented to a 

structured integral management of information: Building 

Information Modeling (BIM) (Monteiro & Pocas, 2013), 

(Mandujano et al., 2017) is a clear example of this and, 

fortunately, its use is increasingly widespread. Additionally, 

although with different emphasis in each country, progress is 

also made from the regulatory sphere in the search for 

proposals that allow standardizing their use to facilitate data 

integration and reuse. 

All these initiatives are crucial because the construction 

engineering is extremely information-dependent: important 

amounts of information need to be transferred and exchanged 

during the project life-cycle (Chen and Kamara, 2011), (Al 

Qady and Kandil, 2013). These data have many diverse 

formats and they are stored in different databases and 

applications, even on paper (Shahi et al., 2014). As a 

consequence, construction projects are associated with huge 

and usually unstructured datasets generated from several 

sources (Soibelman et al., 2008). This complexity makes the 

data management difficult and produces several problems 

such as increasing the complexity of data retrieval, poor 

interoperability among systems, and hard information reuse 

(Al Qady and Kandil, 2013), (Lin et al., 2016).  

An essential element of information in the field of 

construction projects is the Bill of Quantities (BoQ) 

document. From a general point of view, this document is 

structured as a tree where tasks are hierarchically organized 

in groups with decreasing granularity (Ma et al., 2016). 

While the root represents the whole project, at the level of 

the leaves, tasks are described with the maximum detail as 

small descriptive texts of the work to be performed; these 

texts are called work descriptions. 

The construction of a data warehouse with information 

extracted from BoQ documents is of special interest to 

support decision making during the design and development 

of the projects. Such a system will help to easily answer 

queries like “how many projects have finished the land 

preparation chapter in time?” or “what is the average cost of 

land preparation chapter?”. This kind of queries, currently, is 

difficult to quickly and correctly be answered because each 

project that feeds the solution of these queries might not 

include the same linguistic descriptions and classification of 

the tasks to be done. 

To build such a system, as commented before, two things 

are needed: a reference data structure to create the data 

warehouse and (automatic) ETL mechanisms to nourish it 

with data. In relation to the first requirement, the reference 

structure can be designed ad-hoc or, when available, can be 

taken from some of the standard proposals (Afsari et al., 

2016) that arise from initiatives such as Uniclass or NBS in 

UK, MasterFormat in Canada or BSAB in Sweden. 

Unfortunately, the second requirement, i.e. the 

incorporation of data within the warehouse, poses serious 

drawbacks. In an ideal scenario where all the professionals 

that produce BoQ documents use the same reference 

structure, the addition of information in the system is simple 

and can be direct. However, in scenarios where no such 

standard reference structure is available or, even existing, is 

not commonly used, it is necessary to establish mechanisms 

capable of automatically establishing the correspondence 

between the structure used by the professional who has made 

the document and the structure of the data warehouse. And 

this is a complex task because the mentioned lack of a 

common structure joins to a non-uniform use of lexicon and 

syntax when expressing work descriptions.  

This difficulty in accessing the information contained in 

BoQ documents has been pointed out frequently in the 

literature (Al Qady & Kandil, 2013), (Niknam et al., 2015), 

(Martínez-Rojas et al., 2015). However, despite the 

importance of the subject, most of the previous experiences 

that can be found in the literature only approach to BoQ 

documents processing superficially, mainly focusing on 

collaborative edition techniques and electronic document 

sharing (Wang, et al., 2015). In fact, the automatic analysis 

of this document for extracting and storing structured 

information in a data warehouse is a challenge that has had 

little attention (Martínez-Rojas et al., 2016a).  

 

1.2 Objective and organization 

In a previous work, our research group has developed a 

mechanism for the automatic reorganization of the work 

descriptions of projects within a reference structure, enabling 

building projects to be stored in a common repository 

(Martínez-Rojas et al., 2015). This proposal has been 

completed with the development of an intelligent system for 

data acquisition, edition, and query (Martínez-Rojas et al., 

2016b). This previous work is based on the use of a 

classification method based on a multi-criteria aggregation 

model that relies on both the automatic analysis of texts and 

the contribution of an expert. In this paper, we address this 

classification problem from a deeper experimental 

perspective. 

First, we will refine the vocabulary used to classify. One 

of the conclusions of our previous work is that the 

vocabulary extracted from texts, on which the classification 

is based, is too extensive and not all vocabulary terms are 

decisive in the classification process. In this work, we take 

into account prior knowledge obtained from our previous 

research to carry out the mentioned vocabulary reduction. 

Then, we try the performance of a wide range of well-known 

classification techniques in the task of building a classifier of 

work descriptions. Our goal is to improve the success of the 

classification while proving that well-known machine 
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learning techniques can be used to construct this essential 

part of the ETL process in construction data warehouses. 

Machine learning techniques have been already 

successfully used in construction engineering for many 

tasks, as for example: document classification (Caldas & 

Soibelman, 2003), (Mahfouz, et al., 2010), damage detection 

(Jiang & Adeli., 2007), document analysis (Soibelman et al., 

2008), image-based classification (Brilakis, 2009), resource 

levelling (Kyriklidis & Dounias, 2016), cost (Adeli & WU, 

1998), (Adeli & Karim, 2001), (Hsiao et al., 2012), (Elfaki, 

2014), (Lee et al., 2015), safety analysis (Han et al., 2012) 

and schedule (Karim & Adeli, 1999) (Yi & Wuang, 2017). 

To test our proposal, a complete experimentation is 

provided with cost databases and real projects in Spain 

where, unfortunately, there is no reference standard for these 

documents. 

The paper is organized as follows: after this introduction, 

Section 2 is devoted to formalize the problem and to present 

the proposed methodology. Section 3 contains the details 

regarding the experimentation that has been carried out 

together with a complete analysis on the results. Finally, 

conclusions and future works are outlined in Section 4. 
 

 
2 DESCRIPTION OF THE PROBLEM AND 

PROPOSED METHODOLOGY 

 

The Bill of Quantities document is usually organized as a 

hierarchical grouping of work in different levels following a 

work breakdown structure. Each descending level represents 

an increasingly detailed definition of the project work: the 

root node represents the whole project, while subsequent 

levels contain different group of tasks, which are finally 

described through the use of work descriptions in the lowest 

level.  

In many countries, there is no standards for the division 

into task groups and this division varies depending on the 

professional who develops the project. In order to take 

advantage of data warehouse and Business Intelligence, 

these data must be structured under the same reference 

structure (the one used to build the warehouse). To do this, 

each work description of the project that is to be inserted in 

the warehouse has to be placed in the appropriate place of the 

reference structure. 

 

 

2.1 Reference structure 

The reference structure that we have considered for tasks 

classification in this experimentation follows the hierarchical 

model illustrated in Figure 1. This structure is composed of 

four levels from the root to the leaves, where levels one (L1), 

two (L2), three (L3) and four (L4) are called Project (P), 

chapter (C), Subchapter (SC) and Work Description (WD) 

respectively.  

In this paper, we use the particular instance of this 

hierarchical model used in i-BoQ system (Martínez-Rojas et 

al., 2016). In this particular instance, the second level is 

composed of 15 chapters while the third level comprises a 

total of 69 subchapters. The lowest level will be composed 

by the different work descriptions that describe each project. 

(Appendix 1 shows a detailed description of the reference 

structure). 

This instance has been elaborated by a panel of 

construction engineers from the University of Granada and 

takes into account the structures commonly used by the cost 

databases for the development of BoQ documents.  

 

 
Fig. 1. Hierarchical structure of projects. 

 

 

2.2 Proposed methodology 

    Work descriptions will be classified based on the 

vocabulary that appears in their text. The first step of the 

proposed methodology is to transform each work description 

into a set of terms suitable for processing in the classifier. 

This linguistic processing is carried out in two steps: 

• In a first step, all the work descriptions are 

preprocessed by means of conventional linguistic 

methods of cleaning and synonym replacement: 

irrelevant terms are eliminated and the remaining 

ones are replaced by synonyms. By taking the words 

resulting from this cleaning process along the whole 

training set of work descriptions, a set T of terms is 

constructed. After this first stage, each work 

description WDi is represented as a subset of terms δi 

belonging to T. 

• As we have previously said, the set of words T is too 

extensive and the whole vocabulary is not decisive in 

the classification process. For this reason, in a second 

step, a second filtering process is done based on 

background knowledge on the application domain. 

According to the results of our previous experience 

with the problem (Martínez-Rojas et al., 2016a), the 

terms that have never been relevant for establishing 
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the location of a work description in a specific 

grouping of tasks are eliminated. This way, we obtain 

a reduced set of terms Tr and each work description 

WDi is represented as a subset δi
r of terms belonging 

to Tr. For the sake of simplicity, when it does not lead 

to error, we will refer to each work description as δi
r. 

 
Let Tr = {t1, …, tn}. In this framework, each work 

description (δi
r) is characterized by the following attributes: 

• Length (𝐿δ𝑟
𝑖 ) considers the total number of terms in 

the reduced set δi
r. Length may be important because 

the way of describing work descriptions varies from 

one chapter to another, affecting to the length of them. 

• A set of frequency values {𝐹𝑡1
𝑖 , …, 𝐹𝑡𝑛

𝑖 }. Frequency 

𝐹𝑡𝑗
𝑖  considers the number of times the term tj appears 

in the work description δi
r. Terms appearing more 

than once in a work description usually refer to the 

nature of the work and, thus, they are often relevant 

to determine the adequate chapter and subchapter.  

• A set of position values {𝑃𝑡1
𝑖 , …, 𝑃𝑡𝑛

𝑖 }. Position 𝑃𝑖
𝑡𝑗

 

considers the absolute position of the term tj in the 

work description δi
r. As we have mentioned, the 

objective of work descriptions is to describe in a 

textual way the work needed to be done in a project. 

The terms that appear at the beginning usually 

describe the nature of the work and, thus, they often 

are crucial to the classification task. In the case that a 

term appears more than once in the work description, 

we consider the position of the first occurrence of 

each term. 

As a result, each work description δ𝑟  is represented as a 

tuple considering the length of the work description, and for 

each term, the position and the frecuency in the following 

way: 

 

δ𝑟= (𝐿δ𝑟, 𝐹𝑡1
, 𝑃𝑡1

, 𝐹𝑡2
, 𝑃𝑡2

, …, 𝐹𝑡𝑛
, 𝑃𝑡𝑛

) 

 
As we will see, with the idea of simplifying computations, 

the process of classifying a given work description as a leave 

in the right place of the reference hierarchy will be carried 

out in two stages: in a first step, a chapter will be assigned 

among those available in the second level of the reference 

structure; in a second step, a subchapter will be assigned 

among those available within a given chapter. For this 

reason, to configure the working dataset, each tuple relative 

to a work description is completed with the corresponding 

chapter and subchapter (Ci and SCi, respectively). 

Hence, input data for the classifiers are sets of tuples as 

follows: 

 

(𝐿δ𝑟
1 , 𝐹𝑡1

1 , 𝑃𝑡1
1 , 𝐹𝑡2

1 , 𝑃𝑡2
1 , … , 𝐹𝑡𝑛

1 , 𝑃𝑡𝑛
1 , 𝐶1, 𝑆𝐶1) 

(𝐿δ𝑟
2 , 𝐹𝑡1

2 , 𝑃𝑡1
2 , 𝐹𝑡2

2 , 𝑃𝑡2
1 , … , 𝐹𝑡𝑛

2 , 𝑃𝑡𝑛
2 , 𝐶2, 𝑆𝐶2) 

…. 

(𝐿δ𝑟
𝑚 , 𝐹𝑡1

𝑚, 𝑃𝑡1
𝑚, 𝐹2

𝑚, 𝑃𝑡2
𝑚,…, 𝐹𝑡𝑛

𝑚, 𝑃𝑡𝑛
𝑚, 𝐶𝑚, 𝑆𝐶𝑚) 

 

where 𝐿δ𝑟
𝑖  is the length of the 𝑖-th work description, 𝐹𝑡𝑗

𝑖  and 

𝑃𝑡𝑗

𝑖  are the frecuency and the position of the term 𝑗 in the 

work description 𝑖 respectively, and 𝐶𝑗 and 𝑆𝐶𝑗 are the 

chapter (within L2) and subchapter (within L3) where the 

work description is located. 

Following, in order to illustrate the proposed methodology, 

we present an example where the reduction of terms and the 

representation of the input data for the classifiers can be 

observed. 

 

Example 1: Let us consider the following work 

description WD1: 

 

Weeding and cleaning the ground, comprising leveling and 

filling the land to adapt the resulting surface to the level 

indicated in plans. Including load and transport of surplus 

material to the landfill. 

 

After the semantic and syntactic preprocessing, we obtain the 

following short form (δ1) of the work description WD1: 

 

δ1={weed, clean, land, comprise, level, fill, land, adapt, 

resultant, surface, level, indicated, plan, include, load, 

transport, surplus, material, landfill} 

 

As can be seen, on the one hand, the syntactic preprocessing 

breaks the work description into words (terms), deletes the 

ones that do not provide relevant information to classification 

(such as prepositions and conjuctions) and removes 

punctuation marks. On the other hand, semantic 

preprocessing detects and replaces terms by a representative 

synonym. In the example, the term “ground” is replaced by 

the term “land”. 

After this step, the filtering of terms based on prior knowledge 

is carried out, and a new form of the work description (𝛿1
𝑟) 

which contains the following list of terms is obtained: 

 

𝛿1
𝑟 ={weed, clean, land, comprise, level, land, surface, level, 

plan, load, transport, material, landfill} 

 

As can be observed, the terms “fill”, “adapt”, “resultant”, 

“indicated”, “include” and “surplus” have been eliminated. 

 
Then, the Length (𝐿δ𝑟

1 ) of the work description 𝛿1
𝑟

 is 

computed as well as the Frequency (𝐹𝑡𝑗
1 ) and Position (𝑃𝑡𝑗

1 ) 

for each term tj  𝛿1
𝑟. Then, 𝛿1

𝑟 is represented as a tuple as 

input data for the classifier as depicted in Table 1. For this 

example work description (WD1), the length (𝐿δ𝑟
1 ) is 13 (the 

number of terms of 𝛿1
𝑟). The Frequency of the “weed” term 

is 1 because it appears once, whilst the frequency of the 

“level” term is 2 because it appears twice. In this case, the 
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position of the “level” term is 5, according to the first 

aparition of this term in 𝛿1
𝑟. Finally, as shown in the last two 

columns, this work description corresponds to chapter C1 

and Subchapter SC2. Other tuples, with information relative 

to other work descriptions, complete the table. 

 

Figure 2 illustrates the final structure of the learning dataset 

after attaching to each work description the mentioned 

information regarding position, frequency and length.  

 

 
Fig. 2. Structure of the learning dataset. 

 
  

2.3 Selected Classification algorithms 

 

Once the structure of the datasets has been described, let 

us focus on the classification process. Recall that this process 

is intended to place a given work description in a specific 

group of task of the levels 2 and 3 of the reference hierarchy. 

This assignment process will be done in two phases: first a 

chapter will be assigned and, in the second phase, a 

subchapter will be assigned among those whithin a given 

chapter. This classification process will allow to feed data 

warehouses with work descriptions coming from diverse 

projects. 

There are a variety of well-known techniques for the 

construction of classifiers. In our case, the dataset is 

imbalanced, that is the number of items belonging to each 

class can significantly vary from one class to another. The 

following methods have been chosen based on the proven 

good performance they have in a wide variety of real-world 

problems. This choice is supported by the fact that most of 

them are included in the list of the top-ten data mining 

algorithms (Wu et al., 2008): 

• C4.5 is a decision tree learning algorithm (Quinlan, 

2014): the decision tree is top-down generated and 

normalized information gain (i.e. difference in 

entropy) is used as criterion to decide which 

attribute should be used for splitting the data in each 

node of the decision tree.  

• Random Forest (RF) is an algorithm for 

classification that ensembles the outputs of many 

independent decision trees, with the idea of 

improving classification accuracy through bagging 

(Breiman L., 2001). The classification decision is 

made by averaging the final results of each 

independent tree, and the majority vote indicates the 

predicted class of an input. 

• Naïve Bayes (NB) is a simple classifier based on the 

application of Bayes’ theorem. In spite of its 

simplicity, it is one of the popular supervised 

learning algorithms used in many diverse industrial 

applications (Bilal et al., 2016). 

• Neural Networks (NN) are a paradigm of learning 

inspired by the way the biological nervous system 

work. They are a system of interconnected neurons 

that collaborate with each other to produce an 

output (Yegnanarayana, 2009). 

• Support Vector Machines (SVM) (Cortes & 

Vapnik, 1995) are supervised learning models 

based on the construction of separating hyperplanes 

in high-dimensional spaces.  

• Finally, k-Nearest Neighbours (kNN) is a lazy 

learning algorithm that makes use of the whole 

training set as a reference set to classify new 

instances (Altman, 1992). In order to do so, it finds 

the group of the k closest instances in the training 

set to the test instances; the classification decision 

is made based on the predominance of a particular 

class. 
 
 

Table 1 
Illustrative example of tuples in the way of input data for the classifiers 

 𝐿δ𝑟 Weed.F Weed.P Clean.F Clean.P Level.F Level.P … Landfill.F Landfill.P C SC 

WD1 13 1 1 1 2 2 5 … 1 13 C1 SC2 

WD2 21 0 0 2 7 1 4 … 0 0 C1 SC3 

WD3 17 1 15 0 0 2 11 … 0 0 C15 SC1 

… 

… 

… 

WDm 7 0 0 0 0 1 3 … 0 0 C6 SC3 
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3 EXPERIMENTATION 

 
In the previous sections, we have described the reference 

structure and the proposed methodology to classify work 

descriptions in such reference structure. In this section, we 

analyze the performance of the different machine learning 

algorithms in the task of classification in order to detemine 

which one can be implemented in a ETL process for the 

construction of data.  

For this regard, Section 3.1 details the experimental 

framework where datasets, classification algorithms and 

evaluation process are described. Section 3.2 provides a 

detailed explanation of the obtained classification results for 

each algorithm and for each dataset. Then, Section 3.3 

presents an example whole model where real projects are 

classified in the proposed hierarchical reference structure. 

Finally, Section 3.4, presents a general discussion regarding 

the obtained results from an overall perspective considering 

both the proposed methodology and the classification 

algorithms. 

 

 

3.1 Experimental setup  

In this section, firstly, the datasets used in the 

experimentation are detailed. Then, the selected algorithms 

and parameters used in the task of work descriptions 

classification are shown. Finally, the evaluation framework 

is described. 

 

3.1.1 Datasets 

    In our experimentation, we have taken two different 

datasets into account. They contain a good survey of work 

descriptions which are usually considered in the composition 

of BoQ documents in Spain. 

- Cost Databases dataset (CD): This dataset is 

composed by a wide-ranging set of work 

descriptions extracted from four cost databases 

commonly used in Spain for building BoQ 

documents: (BCCA, 2010), (EXT, 2012), 

(CENTRO, 2012) and (PREOC, 2010). This dataset 

contains 19595 work descriptions. 

- Real Projects dataset (P): A set of work descriptions 

taken from 50 BoQ documents corresponding to 

real projects developed by different architects, 

where the purpose is the construction of residential 

buildings. The total number of work descriptions 

extracted from these projects is 9669.  

 

As we have mentioned in section 2, classification is based 

on the vocabulary that appears in the work descriptions. 

Table 2 shows the number of words that appears in the work 

descriptions for each of the datasets, indicating both the raw 

words (as they appear in the document) and the number of 

terms in the sets T and T’, after the linguistic preprocessing 

and the filtering process, respectively. 

 

Table 2 

Number of words appearing in work descriptions for 

each of the data sets. 

Set Raw   T   Tr 

CD 32682 8638 4839 

P 29206 7349 1970 

 

As can be seen in the table, the final filtering process 

considerably reduces the number of words (43,98% in the 

Cost Databases and 73,19% in the Project datasets). This 

reduction is especially important for the application of some 

of the mentioned classification techniques. Notice that, in the 

classification, the datasets will only contain information 

related to terms belonging to Tr. 

It is important to remark that the Cost Databases dataset 

has a more complete and detailed vocabulary than the 

Projects dataset. This is mainly due to the fact the Cost 

Databases dataset has been elaborated by a panel of 

engineers selected from public institutions and covers a 

wider variety of tasks descriptions (it is intended to be 

exhaustive). 

 

3.1.2 Classification algorithms and parameters 

As mentioned in Section 2.1, in the experimentation a 

representative variety of learning methods to deal with 

imbalanced datasets is considered: C4.5, SVM, kNN, NN, 

NB and RF. The parameters considered for each algorithm 

in the experimentation are shown in Table 3. 

All these algorithms have been developed under the well-

known KoNstanz Information MinEr (KNIME) software 

(2018) in a t2.large Amazon EC2 instance. It is a freely 

available software, with a graphical interface, that allows to 

analyse and mine data, as well as to build and evaluate 

predictive models.  

 

Table 3 

Parameter specification for the different algorithms 

used in the experimentation. 

Algorithm Parameters 

C4.5 Prune = True, Confidence level = 0.25 

Minimum number of item-sets per leaf = 2 

SVM C = 1.0, Tolerance Parameter = 0.001, Epsilon 

= 1.0E−12 

Kernel Type = Polynomial, Polynomial Degree 

= 1 

Fit Logistic Models = True 

kNN k=3 Distance metric = Euclidean 

Distance metric = HVDM 

NN 

 

100 iterations, nº of hidden layers = 1, nº of 

hidden neurons per layer = 10 

NB Max nº of unique nominal values per attribute = 

20, default probability = 0. 

RF Information gain ratio, no limit nº of levels, no 

min node size. 
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3.1.3 Evaluation process 

A 10-fold Stratified Cross-Validation scheme for 

assessing the different algorithms without losing significant 

modelling or testing capability has been used in the 

experimentation. Each dataset is partitioned into 10 folds in 

a stratified way to ensure that each fold is a good 

representative of the whole. Then, for each dataset, a single 

fold is retained as the validation data for testing the 

algorithm, and the remaining folds are used as training data. 

The overall results of each algorithm are obtained from 

averaging ten executions so that a more reliable estimate of 

their performance is obtained. 

To evaluate the performance of the different algorithms, 

three different metrics has been used according to the 

properties of the problem we are dealing with (multiple 

classes and unbalanced class distribution): Recall, Precision 

and the F-measure (Olson & Delen, 2008). 

Let 𝑇𝑃𝑖 be the number of true positives of a chapter 𝐶𝑖; 𝐹𝑃𝑖 

the number of false positives; 𝐹𝑁𝑖  the number of false 

negatives and 𝑇𝑁𝑖 the number of true negatives. The 

Precision measure for a chapter 𝐶𝑖, denoted as 𝑃𝑟𝑖, measures 

the percentage of correct assignments among all the work 

descriptions assigned to 𝐶𝑖 in the classification.  

 

𝑃𝑟𝑖 =
𝑇𝑃𝑖

𝑇𝑃𝑖+𝐹𝑃𝑖
 (1) 

 

The Recall measure 𝑅𝑒𝑖  gives the percentage of correct 

assignments in 𝐶𝑖  among all the work descriptions that 

should be assigned to 𝐶𝑖.  

 

𝑅𝑒𝑖 =
𝑇𝑃𝑖

𝑇𝑃𝑖+𝐹𝑁𝑖
 (2) 

 

It is desirable to achieve both high Precision and Recall, 

so that the majority of work descriptions are correctly 

classified. Then we evaluate the classifiers on the basis of the 

well-kwown F-measure, which is defined as the harmonic 

mean of the Precision and Recall measures.  

 

𝐹i = 2 ⋅
𝑃𝑟𝑖⋅ 𝑅𝑒𝑖

𝑃𝑟𝑖+ 𝑅𝑒𝑖
 (3) 

 

 

Note that our classification problem has two different 

stages: for the chapter level, the evaluation measures 

quantify the classification of work descriptions (WDs) in the 

right chapter; for the subchapter level, the measures assess 

the classification of WDs in their subchapters among all the 

WDs that really belong to that chapter. In the 

experimentation, we provide these measures for each chapter 

separately and, in addition, with the aim of exploring the 

overall result for each algorithm, we provide an aggregated 

F-measure value (FT).  

 

𝐹T =
Σ𝐹𝑖⋅ 𝑛𝑊𝐷𝑖

Σ𝑛𝑊𝐷𝑖
 (4) 

 

𝐹T is calculated as a weighted average considering the 

number of work descriptions (𝑛𝑊𝐷𝑖) for each chapter as 

weights, due to the imbalanced nature of this classification 

problem. 

 

 

3.2 Results  

In this section, according to the experimental setting, we 

analyze the behaviour of the different algorithms in the two 

stages of our classification problem (chapter and subchapter 

levels) separately with the aim of determine the best and the 

most robust algorithm for each level. 

To this end, we have organized this section into three 

subsections. In the first two ones, we will analyse the results 

of each dataset separately. On the one hand, we analyze the 

algorithms behaviour with the Cost Databases dataset 

(Section 3.2.1) and, on the other hand, with the Projects 

dataset (Section 3.2.2). In the third one, we analyze the 

algorithms by considering a combination of the two datasets, 

i.e., a dataset composed by the union of the Cost Databases 

and Projects datasets (Section 3.2.3). In each of these 

subsections, we have included tables for chapter and 

subchapter levels, where the different metrics are illustrated 

(Recall, Precision, F-measure and aggregated F-measure). 

To facilitate the understanding of the tables a grey colour 

scale has been used: the darker the colour, the lower the F-

measure value. As mentioned before, with the aim of 

exploring the overall result for each algorithm, the last row 
of the tables represents the weighted average (FT) for each 

algorithm.  

 

3.2.1 Classification with the Cost Databases dataset 

In this case, we have carried out a 10-fold Stratified 

Cross-Validation with the Cost Databases dataset.  

The results in terms of Precision, Recall and F-measure 

obtained for each algorithm can be observed in Tables 4 and 

5. Each row depicts the result for each chapter (Table 4) and 

subchapter (Table 5), and the last row shows the weighted 

average result for each algorithm for F-measure. Notice that, 

as the number of subchapters is very high, for the sake of 

simplicity, the results shown in Table 5 are grouped by 

chapters, that is, they are computed as a weighted average of 

all subchapters belonging to each chapter considering the 

number of WDs of each subchapter as weights. 

In general, the algorithms achieve good results in terms of 

F-measure both in chapter and subchapter levels. As can be 

observed in Tables 4 and 5, the best results are obtained with 

C4.5, Neuronal Network and Random Forest algorithms, but 

it is in the latter where the highest classification score is 
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achieved, with a F-measure value of 0,96 in both the chapter 

and the subchapter level.  

The algorithm that has yielded lower results by far has 

been the Naïve Bayes in both levels: concretely, in the 

chapter level for chapters C9 and C15, where the results are 

0,65 and 0,51 respectively. 

In general terms, the lowest results in chapter level are 

obtained in the chapters C3, C9, C14 and C15, whatever the 

algorithm. These lower results may be due to the fact that the 

vocabulary in these chapters is not very discriminating since 

most of the terms are also used in the rest of chapters. As can 

be seen in Appendix 1, the chapter C9 corresponds to 

insulation and dampproofing works which are closely related 

to works from other chapters such as foundations, structure 

or roofing. Similarly, the chapter C3 (which refers to 

sanitation work) shares many terms with the chapter C8 

(installations). Notice that if the reference structure had not 

considered the execution order of work, chapter C3 could be 

part of chapter C8.  

In the subchapter level, the lowest results have been 

obtained in chapters C2 and C14. Concretely these two 

chapters contain subchapters with a very similar vocabulary, 
what complicates discrimination between work descriptions 

in these two chapters. 

For example, as can be seen in Appendix 1, all subchapters 

belonging to chapter 2 are related with diverse land works 

which are described with similar terms. Something similar 

happens in chapter 14 but referring to painting works. 

 

 

3.2.2 Classification with the Projects dataset 

In this case, we have used the Projects dataset and a 10-

fold Stratified Cross-Validation for assessing the algorithms. 

This dataset is affected with more irregularities due to the 
intervention of different real engineers. However, in general, 

Table 4 

Results in Cost Databases dataset in the chapter level. 
    RF C4.5 NB NN SVM kNN 

C nWD Re Pr F Re Pr F Re Pr F Re Pr F Re Pr F Re Pr F 

C1 987 0,97 0,96 0,96 0,98 0,95 0,96 0,61 0,96 0,75 0,95 0,92 0,94 0,93 0,94 0,93 0,97 0,95 0,96 

C2 458 0,93 0,93 0,93 0,93 0,93 0,93 0,88 0,94 0,91 0,93 0,94 0,93 0,9 0,96 0,93 0,92 0,94 0,93 

C3 297 0,89 0,89 0,89 0,84 0,88 0,86 0,69 0,92 0,79 0,85 0,93 0,89 0,76 1,00 0,86 0,84 0,93 0,88 
C4 430 0,92 0,89 0,91 0,85 0,9 0,87 0,77 0,97 0,86 0,92 0,93 0,93 0,75 0,96 0,84 0,85 0,97 0,91 

C5 669 0,93 0,94 0,93 0,9 0,91 0,91 0,71 0,9 0,8 0,92 0,95 0,93 0,83 0,98 0,9 0,9 0,95 0,93 

C6 1321 0,92 0,94 0,93 0,9 0,91 0,9 0,59 0,9 0,71 0,92 0,91 0,92 0,85 0,95 0,9 0,89 0,94 0,91 

C7 1036 0,95 0,95 0,95 0,92 0,94 0,93 0,59 0,85 0,7 0,93 0,94 0,93 0,86 0,95 0,91 0,9 0,96 0,93 

C8 5869 0,98 0,96 0,97 0,97 0,95 0,96 0,98 0,56 0,71 0,98 0,96 0,97 0,99 0,84 0,91 0,98 0,91 0,94 
C9 855 0,9 0,96 0,93 0,82 0,89 0,85 0,5 0,92 0,65 0,89 0,93 0,91 0,83 0,9 0,86 0,81 0,94 0,87 

C10 2864 0,97 0,96 0,96 0,96 0,94 0,95 0,58 0,97 0,73 0,96 0,96 0,96 0,93 0,93 0,93 0,96 0,94 0,95 

C11 908 0,97 0,97 0,97 0,95 0,97 0,96 0,77 0,99 0,87 0,96 0,98 0,97 0,93 1,00 0,96 0,96 0,98 0,97 

C12 1890 0,97 0,98 0,97 0,95 0,95 0,95 0,7 0,97 0,81 0,97 0,96 0,97 0,93 0,97 0,95 0,93 0,98 0,96 

C13 801 0,99 0,99 0,99 0,98 0,97 0,97 0,86 1,00 0,92 0,98 0,98 0,98 0,93 1,00 0,96 0,97 0,98 0,97 
C14 559 0,94 0,94 0,94 0,88 0,9 0,89 0,57 0,97 0,72 0,91 0,89 0,9 0,82 0,95 0,88 0,87 0,87 0,87 

C15 651 0,84 0,96 0,89 0,84 0,88 0,86 0,35 0,93 0,51 0,82 0,92 0,87 0,62 0,88 0,73 0,81 0,91 0,85 

     FT 0,96    FT 0,94    FT 0,74    FT 0,95    FT 0,91   FT  0,93 

 

Table 5 

Results in Cost Databases dataset in the subchapter level. 
    RF C4.5 NB NN SVM kNN 

C nWD Re Pr F Re Pr F Re Pr F Re Pr F Re Pr F Re Pr F 

C1 987 0,99 0,99 0,99 0,99 0,99 0,99 0,99 0,99 0,99 1,00 1,00 1,00 0,96 0,96 0,96 1,00 1,00 1,00 

C2 458 0,81 0,81 0,77 0,95 0,94 0,94 0,95 0,95 0,95 0,97 0,98 0,98 0,78 0,73 0,72 0,95 0,96 0,95 
C3 297 0,92 0,93 0,92 0,92 0,92 0,92 0,73 0,85 0,73 0,93 0,94 0,93 0,84 0,86 0,83 0,84 0,87 0,84 

C4 430 0,95 0,95 0,95 0,93 0,93 0,93 0,83 0,87 0,83 0,96 0,96 0,96 0,83 0,88 0,81 0,91 0,92 0,91 

C5 669 0,94 0,94 0,94 0,92 0,92 0,92 0,82 0,85 0,82 0,91 0,91 0,91 0,85 0,88 0,84 0,92 0,92 0,92 

C6 1321 0,94 0,94 0,94 0,91 0,91 0,91 0,82 0,85 0,81 0,93 0,93 0,93 0,90 0,92 0,9 0,93 0,92 0,92 
C7 1036 0,94 0,95 0,94 0,88 0,88 0,88 0,80 0,85 0,8 0,91 0,92 0,92 0,89 0,89 0,89 0,88 0,88 0,88 

C8 5869 0,96 0,96 0,96 0,91 0,91 0,91 0,68 0,80 0,68 0,95 0,95 0,95 0,89 0,91 0,89 0,91 0,92 0,91 

C9 855 0,99 0,99 0,99 0,93 0,93 0,93 0,80 0,85 0,79 0,98 0,98 0,98 0,95 0,95 0,95 0,95 0,95 0,95 

C10 2864 0,99 0,99 0,99 0,97 0,97 0,97 0,83 0,86 0,82 0,98 0,98 0,98 0,96 0,96 0,96 0,96 0,97 0,96 

C11 908 0,99 0,99 0,99 0,98 0,98 0,98 0,95 0,96 0,95 0,99 0,99 0,99 0,96 0,96 0,96 0,97 0,97 0,97 
C12 1890 0,97 0,97 0,97 0,94 0,94 0,94 0,87 0,88 0,87 0,94 0,95 0,94 0,92 0,93 0,91 0,94 0,95 0,95 

C13 801 0,98 0,98 0,98 1,00 1,00 1,00 0,93 0,93 0,92 1,00 1,00 1,00 0,97 0,97 0,97 0,98 0,98 0,98 

C14 559 0,81 0,80 0,80 0,77 0,75 0,76 0,78 0,77 0,76 0,83 0,82 0,82 0,78 0,80 0,72 0,77 0,75 0,75 

C15 651 0,97 0,97 0,97 0,94 0,95 0,94 0,76 0,84 0,75 0,97 0,97 0,97 0,93 0,93 0,93 0,92 0,93 0,92 

     FT 0,96   FT  0,93    FT 0,80    FT 0,95    FT 0,90   FT 0,93 
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the algorithms have achieved good results as in the previous 

dataset, obtaining a good relation between Precision and 

Recall. 

Tables 6 and 7 illustrate the results in the Projects dataset 

for each algorithm in chapter and subchapter levels, 

respectively. The Random Forest algorithm achieves again 

the best performance (0,93 in chapter and 0,92 in subchapter 

level) while the Naïve Bayes achieves the worst results (0,78 

in chapter and 0,79 in subchapter). As can be observed in the 

Table 6, the lowest results are obtained again in the chapters 

C1, C5, C9 and C15. Notice that in the Project dataset, the 

number of work descriptions for these chapters is 

considerably smaller than in the previous datasets (e.g, 127 

versus 987 in chapter C1) so the algorithms have learnt with 

less data than in the other case. In spite of this, the results are 

promising. 

 

In addition, it should also be noted that the vocabulary of 

these chapters is similar with other chapters. For example, 

chapter C15 contains works which are closely related to 

works from chapter C8, concretely tasks related to swimming 

pool installations. Similarly, chapters C4 and C5 share 

"concrete" works but the first one is referred to footings and 

the other to structure works. To deeply analyze these results, 

the confusion matrix for Random Forest algorithm in chapter 

level has been obtained in Table 8. This matrix represents the 

distribution of classified WDs among the chapters. As can be 

observed, a total of 56 WDs of chapter C15 and 24 WDs of 

chapter C3 are wrongly classified in chapter C8. Similarly, 

30 WDs from the chapter C5 have been wrongly placed in 

the chapter C4. 

Regarding the subchapter level in this dataset (Table 7), 

the lowest results are obtained in chapters C5, C6 and C7, as 

it happens in our previous experimentation (Martínez-Rojas 

et al., 2015). It is not surprising since the classification at the 

subchapter level is more sensitive to linguistic nuances in the 

work descriptions.  

 

Table 6 

Results in Projects dataset in the chapter level. 
    RF C4.5 NB NN SVM kNN 

C nWD Re Pr F Re Pr F Re Pr F Re Pr F Re Pr F Re Pr F 

C1 127 0,83 0,80 0,82 0,77 0,80 0,79 0,32 0,75 0,45 0,65 0,76 0,70 0,61 0,88 0,72 0,76 0,83 0,79 

C2 264 0,96 0,92 0,94 0,92 0,92 0,92 0,88 0,97 0,92 0,95 0,94 0,95 0,94 0,93 0,94 0,92 0,83 0,87 

C3 454 0,92 0,92 0,92 0,87 0,84 0,86 0,77 0,85 0,81 0,91 0,89 0,90 0,66 0,95 0,78 0,85 0,76 0,80 

C4 470 0,96 0,89 0,92 0,89 0,87 0,88 0,72 0,93 0,81 0,88 0,89 0,88 0,83 0,90 0,86 0,88 0,80 0,84 

C5 219 0,71 0,87 0,78 0,60 0,75 0,67 0,59 0,60 0,60 0,66 0,79 0,72 0,46 0,98 0,62 0,52 0,81 0,63 
C6 888 0,92 0,91 0,92 0,86 0,86 0,86 0,60 0,86 0,71 0,88 0,86 0,87 0,79 0,87 0,83 0,81 0,82 0,81 

C7 279 0,89 0,92 0,90 0,80 0,88 0,84 0,63 0,80 0,71 0,73 0,92 0,82 0,59 0,97 0,73 0,70 0,88 0,78 

C8 3961 0,97 0,95 0,96 0,95 0,92 0,94 0,97 0,72 0,82 0,97 0,95 0,96 0,99 0,79 0,88 0,94 0,92 0,93 

C9 218 0,82 0,90 0,86 0,67 0,79 0,72 0,60 0,92 0,72 0,78 0,85 0,82 0,73 0,98 0,84 0,65 0,78 0,71 

C10 977 0,92 0,94 0,93 0,87 0,85 0,86 0,62 0,92 0,74 0,91 0,89 0,90 0,86 0,88 0,87 0,87 0,83 0,85 
C11 348 0,93 0,90 0,91 0,89 0,86 0,87 0,74 0,93 0,82 0,86 0,91 0,88 0,79 0,97 0,87 0,86 0,85 0,85 

C12 697 0,90 0,92 0,91 0,83 0,86 0,85 0,67 0,83 0,74 0,87 0,86 0,87 0,75 0,94 0,83 0,81 0,89 0,85 

C13 136 0,99 0,94 0,97 0,93 0,93 0,93 0,87 1,00 0,93 0,93 0,91 0,92 0,82 0,97 0,89 0,95 0,95 0,95 

C14 221 0,96 0,95 0,96 0,89 0,89 0,89 0,78 0,97 0,86 0,90 0,88 0,89 0,86 0,97 0,91 0,86 0,87 0,87 

C15 410 0,75 0,93 0,83 0,66 0,76 0,71 0,53 0,77 0,63 0,78 0,83 0,80 0,55 0,87 0,68 0,68 0,67 0,67 

    FT  0,93   FT  0,88    FT 0,78    FT 0,90    FT 0,84    FT 0,86 

 
Table 7 

Results in Projects dataset in the subchapter level. 
    RF C4.5 NB NN SVM kNN 

C nWD Re Pr F Re Pr F Re Pr F Re Pr F Re Pr F Re Pr F 

C1 127 0,91 0,91 0,88 0,92 0,91 0,91 0,92 0,91 0,90 0,97 0,97 0,97 0,90 0,81 0,85 0,95 0,94 0,95 

C2 264 0,96 0,96 0,96 0,94 0,94 0,94 0,91 0,92 0,91 0,96 0,97 0,96 0,92 0,89 0,90 0,92 0,93 0,92 

C3 454 0,96 0,96 0,96 0,93 0,92 0,92 0,89 0,91 0,89 0,92 0,92 0,92 0,86 0,88 0,86 0,84 0,83 0,84 
C4 470 0,96 0,96 0,95 0,94 0,94 0,94 0,82 0,84 0,82 0,92 0,93 0,93 0,90 0,91 0,90 0,90 0,90 0,89 

C5 219 0,88 0,88 0,88 0,79 0,76 0,77 0,76 0,82 0,75 0,84 0,85 0,85 0,77 0,81 0,74 0,77 0,74 0,75 

C6 888 0,90 0,90 0,90 0,83 0,83 0,83 0,74 0,78 0,73 0,86 0,86 0,86 0,80 0,82 0,80 0,79 0,79 0,79 

C7 279 0,89 0,88 0,88 0,79 0,8 0,79 0,71 0,79 0,71 0,80 0,83 0,81 0,76 0,79 0,75 0,73 0,72 0,72 
C8 3961 0,90 0,90 0,90 0,85 0,85 0,85 0,74 0,78 0,74 0,87 0,87 0,87 0,81 0,82 0,80 0,79 0,78 0,78 

C9 218 0,97 0,97 0,97 0,92 0,92 0,92 0,87 0,89 0,87 0,99 0,99 0,99 0,91 0,91 0,91 0,87 0,87 0,87 

C10 977 0,96 0,96 0,96 0,92 0,92 0,92 0,86 0,88 0,85 0,96 0,96 0,96 0,92 0,92 0,92 0,88 0,88 0,88 

C11 348 0,96 0,96 0,96 0,93 0,92 0,93 0,89 0,89 0,88 0,94 0,94 0,94 0,89 0,88 0,88 0,88 0,88 0,88 

C12 697 0,93 0,93 0,93 0,88 0,88 0,88 0,84 0,85 0,83 0,91 0,91 0,91 0,86 0,86 0,85 0,86 0,86 0,85 
C13 136 0,96 0,97 0,96 0,96 0,96 0,96 0,90 0,90 0,90 0,98 0,98 0,98 0,90 0,91 0,89 0,90 0,91 0,90 

C14 221 0,91 0,90 0,90 0,94 0,93 0,93 0,92 0,91 0,91 0,92 0,93 0,93 0,86 0,84 0,80 0,86 0,87 0,85 

C15 410 0,95 0,95 0,95 0,88 0,88 0,88 0,83 0,87 0,82 0,95 0,95 0,95 0,85 0,85 0,84 0,85 0,85 0,84 

     FT 0,92   FT  0,87    FT 0,79    FT 0,90   FT  0,83    FT 0,82 
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3.2.3 Classification with a combination of the Cost 

Databases and Projects datasets as a whole 

In this case, we have also implemented a 10-fold 

Stratified Cross-Validation with a single dataset composed 

of the union of the Cost Databases and the Projects datasets. 

In this case, we mix the two datasets into one, with the idea 

of mixing all available work descriptions. The algorithms 

will have to learn the classification models with a mixture of 

vocabulary of different work descriptions in which greater 

diversity can be found. 

As we can see in Table 9 and Table 10, the models have 

a good behaviour with the combination of the datasets 

despite both the vocabulary and the way of describe the WDs 

are different in both datasets. The results considering the two 

datasets are slightly worse than if we consider them 

separately. In spite of this, the results are good since in most 

cases F-measure values are over 0.90, except Naïve Bayes 

and SVM. Again, the Random Forest has yielded the best 

results both in chapter and subchapter levels. Concretely, the 

Random Forest has obtained a 0,95 in the chapter level 

versus a 0,96 with the Cost Databases dataset (section 3.2.1) 

and a 0,93 with the Projects dataset (section 3.2.2).  

 

3.3 Building a whole example model 

In this section, after having analyzed the behaviour of the 
different algorithms in the previous section, we propose to 

build a whole example model. The objective of this example 

model is to reproduce, in an automated way, the current 

problem of classifying work descriptions in a data warehouse 

from real projects which have been developed by different 

architects.  

As the vocabulary and the way of defining work 

descriptions in Cost Databases and Projects datasets are 

different, in this case, we train with the Cost Databases 

dataset and a 50% of the Projects dataset; accordingly, we 

test with the other 50% of the Projects dataset, so Cross-

Validation is not employed. In this way, we include 

knowledge about real projects in the training stage, which 

will allow us to explore the performance in situations where 

a different vocabulary is used when describing work 

descriptions. 

The Random Forest algorithm has been used since it has 

yielded the best performance in the previous 

experimentations. Note that, in this case, we have considered 

a complete model for a hierarchical classification problem 

composed of two levels (chapter and subchapter) instead of 

a classification into separate chapters and subchapters. 

Therefore, a work description is firstly classified in the 

chapter level and then in the corresponding subchapter level: 

thus, an error at the chapter level is propagated to the 

subchapter level. 

Table 11 illustrates the results for both chapter and 

subchapter levels. As can be seen, an aggregated F-measure 

of 0.92 is achieved in the chapter level, while a 0.84 value is 

obtained for the subchapter level. This second value is lower 

as expected because it incorporates the errors of the previous 

stage. As can be seen, the proposed methodology presents 

promising results even though this experimentation is more 

stressful because the training is carried out with both cost 

databases and half of real project dataset and the test is 

carried out only with real projects. These values are expected 
to improve in the real scenario of building the classifier with 

the information available in the two data sets. 

 

 

3.4 General discussion  

 In this section, we discuss about the obtained results from 

an overall perspective considering both the proposed 

methodology and the classification algorithms.  

In the experimentation, we have considered two different 

datasets: cost databases and real projects, which contain a 

good survey of work descriptions using different vocabulary. 

Table 8  

Confusion Matrix (Random Forest on Projects dataset) 
 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 

C1 106 0 0 0 3 2 2 9 0 0 0 2 0 0 3 

C2 0 254 3 2 0 0 0 4 0 0 0 0 0 0 1 

C3 2 4 417 2 0 3 2 24 0 0 0 0 0 0 0 

C4 3 7 1 449 4 1 0 3 0 2 0 0 0 0 0 

C5 2 0 1 30 156 10 0 11 1 2 0 3 1 0 2 

C6 2 0 2 2 10 819 6 26 1 11 1 6 0 0 2 

C7 1 0 1 1 0 10 248 11 3 4 0 0 0 0 0 

C8 10 5 23 4 4 14 1 3848 11 12 1 19 0 1 8 

C9 0 0 2 2 0 8 5 16 178 6 0 0 0 1 0 

C10 1 1 0 11 1 18 1 20 1 903 8 5 1 4 2 

C11 3 0 0 0 0 2 0 4 0 1 325 12 1 0 0 

C12 1 1 0 1 0 6 3 20 3 5 21 624 5 2 5 

C13 0 0 0 0 0 0 0 1 0 0 0 0 135 0 0 

C14 1 0 0 0 0 1 0 2 0 4 0 0 0 213 0 

C15 1 3 4 1 2 5 2 56 0 9 7 7 0 4 309 
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We have also used a particular instance of a hierarchical 

reference structure which takes into account the commonly 

used structures for the development of BoQ documents in 

Spain, where there is a lack of standards. By considering this 

hierarchical reference structure and the two datasets and 

combination of them, we have explored the behaviour of 

different classification algorithms in different ways. Despite 

the differences when describing work descriptions among 

the datasets, the following parallelisms can be observed in 

the different settings:  

- The results obtained are very promising, since 

values over 92% are obtained in chapter and 

subchapter levels despite to carry out a cross 

validation which allows assessing the different 

algorithms without losing significant modelling or 

testing capability. However, slightly lower results 

have been obtained in subchapter level in the 

experimentation where the Cost Databases dataset 

has been considered as training data and the 

Projects dataset as testing data. This occurs due to 

the fact that the vocabulary to describe work 

descriptions in both datasets is different (the cost 

databases are usually elaborated by public and 

private entities and real projects are developed by 

architects). In this case, we have reproduced a real 

scenario of the current problem of classifying work 

descriptions in a data warehouse from BoQ 

documents. The more knowledge about real 

projects has the model, the higher success rate of 

the classifier is expected to be obtained. Since the 

time consumed in building the classifier is not 

excessive, a periodic update of the classification 

model can be carried out so that it incorporates 

knowledge regarding new projects that had been 

inserted in the data warehouse in this period. 

Table 9 

Results in Cost Databases and Projects Datasets in the chapter level. 
    RF C4.5 NB NN SVM kNN 

C nWD Re Pr F Re Pr F Re Pr F Re Pr F Re Pr F Re Pr F 

C1 1114 0,96 0,94 0,95 0,95 0,93 0,94 0,59 0,96 0,73 0,88 0,93 0,90 0,90 0,94 0,92 0,95 0,91 0,93 
C2 722 0,94 0,93 0,94 0,92 0,94 0,93 0,84 0,97 0,90 0,92 0,90 0,91 0,92 0,93 0,92 0,93 0,90 0,91 

C3 751 0,91 0,89 0,90 0,88 0,88 0,88 0,71 0,85 0,77 0,82 0,71 0,76 0,68 0,96 0,79 0,87 0,85 0,86 

C4 900 0,92 0,87 0,89 0,88 0,86 0,87 0,70 0,90 0,79 0,83 0,84 0,84 0,82 0,88 0,85 0,87 0,87 0,87 

C5 888 0,83 0,91 0,87 0,84 0,86 0,85 0,62 0,80 0,70 0,65 0,77 0,71 0,73 0,97 0,83 0,79 0,92 0,85 

C6 2209 0,92 0,93 0,92 0,89 0,90 0,89 0,57 0,86 0,69 0,87 0,85 0,86 0,84 0,92 0,88 0,88 0,90 0,89 
C7 1315 0,93 0,94 0,94 0,89 0,93 0,91 0,55 0,77 0,64 0,81 0,85 0,83 0,83 0,96 0,89 0,86 0,94 0,90 

C8 9830 0,97 0,95 0,96 0,97 0,95 0,96 0,98 0,59 0,73 0,97 0,95 0,96 0,99 0,83 0,90 0,96 0,95 0,95 

C9 1073 0,89 0,94 0,92 0,80 0,88 0,84 0,45 0,92 0,61 0,83 0,71 0,76 0,82 0,91 0,86 0,80 0,90 0,84 

C10 3841 0,96 0,96 0,96 0,94 0,92 0,93 0,55 0,95 0,69 0,93 0,95 0,94 0,92 0,91 0,92 0,95 0,91 0,93 

C11 1256 0,96 0,96 0,96 0,94 0,95 0,95 0,70 0,96 0,81 0,89 0,92 0,90 0,89 0,99 0,94 0,93 0,96 0,95 
C12 2587 0,95 0,96 0,96 0,93 0,94 0,93 0,66 0,93 0,77 0,90 0,93 0,91 0,90 0,96 0,93 0,92 0,94 0,93 

C13 937 0,99 0,98 0,98 0,98 0,96 0,97 0,83 1,00 0,90 0,93 0,96 0,94 0,93 0,99 0,96 0,97 0,96 0,97 

C14 780 0,95 0,94 0,94 0,88 0,91 0,90 0,59 0,98 0,74 0,89 0,92 0,90 0,82 0,95 0,88 0,90 0,88 0,89 

C15 1061 0,81 0,96 0,88 0,79 0,86 0,82 0,33 0,83 0,48 0,80 0,82 0,81 0,58 0,88 0,70 0,80 0,77 0,79 

     FT 0,95   FT  0,92   FT  0,72    FT 0,90   FT  0,89    FT 0,92 

 

Table 10 

Results in Cost Databases and Projects Datasets in the subchapter level. 
    RF C4.5 NB NN SVM kNN 

C nWD Re Pr F Re Pr F Re Pr F Re Pr F Re Pr F Re Pr F 

C1 1114 0,98 0,98 0,98 0,98 0,98 0,98 0,99 0,99 0,99 0,99 0,99 0,99 0,96 0,96 0,95 0,98 0,98 0,98 

C2 722 0,95 0,96 0,95 0,94 0,94 0,94 0,94 0,95 0,94 0,93 0,95 0,94 0,87 0,82 0,84 0,96 0,96 0,96 
C3 751 0,96 0,96 0,96 0,92 0,92 0,92 0,86 0,89 0,86 0,90 0,91 0,90 0,85 0,89 0,84 0,89 0,88 0,88 

C4 900 0,96 0,96 0,96 0,93 0,92 0,93 0,84 0,86 0,84 0,93 0,94 0,93 0,91 0,91 0,91 0,92 0,92 0,92 

C5 888 0,92 0,92 0,92 0,89 0,89 0,89 0,82 0,84 0,81 0,90 0,91 0,90 0,83 0,87 0,82 0,87 0,88 0,87 

C6 2209 0,92 0,92 0,92 0,90 0,90 0,90 0,77 0,82 0,77 0,92 0,92 0,92 0,85 0,87 0,86 0,88 0,88 0,88 
C7 1315 0,92 0,92 0,92 0,88 0,88 0,88 0,78 0,83 0,78 0,89 0,89 0,89 0,86 0,87 0,86 0,85 0,84 0,84 

C8 9830 0,93 0,93 0,93 0,89 0,89 0,89 0,67 0,77 0,67 0,91 0,91 0,91 0,86 0,87 0,86 0,87 0,87 0,87 

C9 1073 0,99 0,99 0,99 0,95 0,95 0,95 0,80 0,85 0,80 0,98 0,98 0,98 0,95 0,95 0,95 0,94 0,94 0,94 

C10 3841 0,98 0,98 0,98 0,97 0,97 0,97 0,82 0,85 0,81 0,97 0,97 0,97 0,94 0,94 0,94 0,96 0,96 0,96 

C11 1256 0,98 0,98 0,98 0,97 0,97 0,97 0,93 0,93 0,93 0,96 0,98 0,97 0,95 0,95 0,95 0,95 0,95 0,95 
C12 2587 0,96 0,96 0,96 0,93 0,93 0,93 0,86 0,86 0,85 0,95 0,95 0,95 0,91 0,91 0,90 0,93 0,93 0,93 

C13 937 0,98 0,98 0,98 0,98 0,98 0,98 0,91 0,91 0,91 0,99 0,99 0,99 0,97 0,97 0,97 0,98 0,98 0,98 

C14 780 0,86 0,85 0,85 0,81 0,79 0,80 0,81 0,80 0,80 0,86 0,85 0,85 0,79 0,79 0,72 0,82 0,80 0,81 

C15 1061 0,96 0,96 0,96 0,94 0,94 0,94 0,78 0,85 0,78 0,95 0,96 0,95 0,89 0,89 0,88 0,92 0,92 0,92 

     FT 0,95    FT 0,92   FT  0,78   FT  0,93   FT  0,88   FT  0,91 
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- In general, in chapter levels, the lower results 

correspond with chapters that contain similar group of 

tasks, so the vocabulary is very similar. In these cases, 

the number of discriminant terms is lower, yielding 

lower results in the classification task. In addition, 

lower results coincide with chapters that have a 

smaller number of work descriptions. This occurs both 

in the experimentation that considers each dataset 

separately and in the combination of the two datasets. 

- Similarly, in subchapter level, subchapters that present 

lower results are those that contain a similar 

vocabulary, so classification algorithms are more 

sensitive in the task of locating the work descriptions 

in the right place.  

- Regarding the behaviour of algoritms, the results 

obtained in our experimentation show how NN and RF 

obtain the best results, being RF the method with the 

best accuracy in all cases. This is because RF is an 

ensemble that fuses the information provided by a high 

number of decision trees to perform the forecast and 

does not require special features (such as large-scale, 

non-stationary data, etc), achieving a high accuracy in 

highly multiclass problems as in our classification 

case. In addition, they are less sensitive to liguistic 

nuances in the work descriptions as occurs in some 

chapters where the vocabulary for describing work 

descriptions is very similar. Even so, these algorithms 

have a scope for improvement, either by adjusting 

parameters or by processing the vocabulary for 

discriminating between similar terms. 

 

To conclude, the obtained results support, on the one 

hand, that our proposal is suitable to place work descriptions 

from BoQ documents with a completely different structure 

in the right location of a proposed reference structure with a 

high success rate. In this sense, our proposal takes special 

value in countries where there is a lack of reference standards 

for BoQ data management. Our proposal is not limited to a 

reference structure but can also be extended to the countries 

where a standard exists to organize the information contained 

in the BoQ document. This issue is also being relevant, for 

instance, if the standards are changed or new ones emerge 

over time. On the other hand, the feasibility of applying well-

known machine learning techniques, concretely RF, to 

construct the ETL processes in construction data 

warehouses, enabling the automatic classification of work 

descriptions from BoQ documents in a given reference. 

 

 

 

 

 

 
 

 

 
 

 

4 CONCLUSIONS AND FUTURE WORK 

 

The research described in this paper contributes to the goal 

of building data warehouses to support decision making in 

the field of construction. In particular, we focus on the 

construction of data warehouses that feed on the work 

descriptions that are contained in BoQ documents. 

To automate the task of inserting work descriptions that 

come from very diverse projects under the common structure 

of the data warehouse, a classifier needs to be built. In this 

work, we analyze the development of such a classifier based 

on analyzing the text that corresponds to each work 

description. 

We have proposed a methodology for processing these 

texts which reduces the vocabulary considered. Thanks to 

this methodology, we can build datasets within margins that 

allow us to apply well-known techniques of machine 

learning for the construction of the classifier. 

Our analysis of the problem has included an extensive 

experimentation with some of the most widely used classifier 

techniques in the field of machine learning. We have worked 

with two datasets of a certain magnitude, which include 

descriptions made by a panel of experts as well as real 

engineers. Both datasets have offered the opportunity to 

evaluate the goodness of our proposal to classify work 

descriptions: the results obtained are very promising 

(accuracy over 92%) in a classification problem with 15 

Table 11 

Results by training with Cost Databases and 50% Projects 

Datasets and testing with 50% Projects with RF. 

 

C nWD Re Pr F Re Pr F 

C1 87 0,89 0,66 0,75 0,86 0,63 0,73 

C2 135 0,97 0,94 0,95 0,88 0,85 0,86 

C3 233 0,92 0,89 0,90 0,89 0,86 0,87 

C4 250 0,93 0,87 0,90 0,87 0,81 0,84 

C5 91 0,64 0,77 0,70 0,61 0,73 0,66 

C6 431 0,89 0,92 0,91 0,80 0,82 0,81 

C7 128 0,80 0,88 0,84 0,64 0,70 0,67 

C8 2001 0,96 0,95 0,96 0,85 0,84 0,84 

C9 111 0,84 0,82 0,83 0,84 0,82 0,83 

C10 494 0,94 0,93 0,93 0,91 0,90 0,91 

C11 166 0,89 0,95 0,92 0,85 0,90 0,87 

C12 354 0,91 0,89 0,90 0,85 0,84 0,85 

C13 72 1,00 0,94 0,97 0,97 0,92 0,94 

C14 118 0,98 0,92 0,95 0,91 0,86 0,88 

C15 164 0,74 0,93 0,82 0,70 0,86 0,78 

   FT 0,92  FT 0,84 
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classes in the chapter level and 69 classes in the subchapter 

level and allow us to be optimistic in the challenge of 

automating the task of inserting real project data in a 

common repository for strategic decision support. Even so, 

in some chapters the results have margin for improvement, a 

problem that we intend to face in the future, for example, 

through the use of more advanced techniques of 

characterization of texts and text mining (Feldma & Sanger, 

2007). 

This proposal has special value in countries where, as in 

Spain, a reference standard is not used to organize BoQ 

documents. Notice that, although our experimentation has 

been developed with cost databases and real projects in 

Spain, the proposed methodology can be adapted to be 

applied on other datasets. In this sense, we will consider 

extending our methodology to other datasets and other 

hierarchical reference structures such as Uniclass. 
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Appendix 1 

Hierarchical Reference Structure 
      

C1 Previous work SC2 Concrete Structure C9 Insulation & dampproofing 

SC1 Consolidations SC3 Precast Concrete Structure SC1 Insulation 

SC2 Demolition SC4 Wood Structure SC2 Dampproofing 

SC3 Loads and Transport SC5 Various C10 Coatings 

C2 Land Conditioning C6 Masonry SC1 Ceilings 

SC1 Land Preparation SC1 Stonework SC2 Walls 

SC2 Explanation SC2 Curtain wall SC3 Pavements 

SC3 Excavation SC3 Internal divisions C11 Carpentry 

SC4 Refining SC4 Receive SC1 Doors 

SC5 Filling SC5 Pref. Ventilation & Various SC2 Wardrobe 

SC6 Compaction SC6 Support SC3 Windows 

SC7 Load C7 Roofing SC4 Railings-Stair-Handrails 

SC8 Transport SC1 Slope Formation SC5 Blinds and Lattices 

C3 Sanitation SC2 Pitched roof C12 Metal & locksmithing 

SC1 Current intakes SC3 Not passable flat roofs SC1 Exterior Carpentry 

SC2 Conduct pit & Wells SC4 Passable flat roofs SC2 Locking - Protection 

SC3 Depuration system SC5 Gutters-Downspouts SC3 Various 

SC4 Pipes & sanitary sewer SC6 Various finishing C13 Glass & synthetic 

SC5 Catch basin C8 Installations SC1 Glasses 

SC6 Drainage systems SC1 Plumbing SC2 Special glasses 

C4 Foundations SC2 Sanitary equipment C14 Paintings 

SC1 Reinforcing bars SC3 Electrical and Lighting SC1 Paintings 

SC2 Special Foundations SC4 Telecommunications SC2 Treatments 

SC3 Formworks SC5 Heating SC3 Special paintings 

SC4 Concrete SC6 Ventilation C15 Equipment 

SC5 Slabs SC7 Gas SC1 Equipment 

C5 Structure SC8 Elevation SC2 Swimming pool 

SC1 Steel structure SC9 Protection SC3 Garden-Irrigation 
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