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Abstract:  Toll optimization in a large-scale dynamic 

traffic network is typically characterized by an expensive-to-
evaluate objective function. In this paper, we propose two 
toll level problems (TLPs) integrated with a large-scale sim-
ulation-based dynamic traffic assignment (DTA) model of 
Melbourne, Australia. The first TLP aims to control the pric-
ing zone (PZ) through a time-varying joint distance and de-
lay toll (JDDT) such that the network fundamental diagram 
(NFD) of the PZ does not enter the congested regime. The 
second TLP is built upon the first TLP by further considering 
the minimization of the heterogeneity of congestion distribu-
tion in the PZ. To solve the two TLPs, a computationally ef-
ficient surrogate-based optimization method, i.e., regressing 
kriging (RK) with expected improvement (EI) sampling, is 
applied to approximate the simulation input-output mapping, 
which can balance well between local exploitation and 
global exploration. Results show that the two optimal TLP 
solutions reduce the average travel time in the PZ (entire 
network) by 29.5% (1.4%) and 21.6% (2.5%), respectively. 
Reducing the heterogeneity of congestion distribution 
achieves higher network flows in the PZ and a lower average 
travel time or a larger total travel time saving in the entire 
network. 

 
 

1 INTRODUCTION 
 
Congestion pricing as a promising travel demand manage-

ment strategy has been widely advocated and successfully 
implemented in cities around the world such as in Singapore, 
London, Stockholm, and Milan (Gu et al., 2018a). More re-
cently, with various emerging pricing technologies (de 
Palma and Lindsey, 2011), a few advanced pricing concepts 
and schemes have emerged including Singapore’s electronic 
road pricing (ERP) system from 2020 onward as a distance-
based pricing system, the opt-in distance-based pricing sys-
tem, OReGo, in Oregon, USA, New York City’s Move NY 
Plan aiming to charge taxis based on both distance and time, 

and the joint distance- and cordon-based pricing trial in Mel-
bourne, Australia. 

Congestion pricing theory has been well established since 
the seminal studies by Pigou (1920) and Knight (1924). Var-
ious first- and second-best pricing models have been pro-
posed as well as solution algorithms (Yang and Huang, 
2005). More recently, with the re-theorization of the network 
fundamental diagram (NFD) or macroscopic fundamental di-
agram (MFD) (Geroliminis and Daganzo, 2008), a new 
branch of theory has been enabled that largely facilitates the 
study, design, and implementation of large-scale pricing. 
Due to its macroscopic nature, the NFD does not require de-
tailed information about the origin-destination (OD) demand 
or any individual link in the network, thereby significantly 
simplifying the modeling and optimization of a large-scale 
network. See Aboudolas and Geroliminis (2013); 
Geroliminis et al. (2013); Keyvan-Ekbatani et al. (2012); 
Ramezani et al. (2015) for NFD-based perimeter control, and 
Gu et al. (2018c); Simoni et al. (2015); Zheng et al. (2016); 
Zheng et al. (2012) for NFD-based pricing. 

In this paper, we use the NFD to describe the level of con-
gestion in the network and propose a surrogate-based opti-
mization framework to solve two toll level problems (TLPs) 
in a large-scale network with heterogeneous congestion dis-
tribution. A recently developed simulation-based dynamic 
traffic assignment (DTA) model of Melbourne, Australia is 
used. 
 
1.1 Literature review 

The overall toll design problem (TDP) of area-based pric-
ing typically consists of a toll area problem (TAP) (Sumalee, 
2004) and a TLP. While few studies tried to solve the TAP 
and TLP simultaneously (Yang et al., 2002), the majority as-
sumed a predefined pricing zone (PZ) and solved the TLP 
considering one of the following regimes: (i) zonal (Simoni 
et al., 2015; Ye et al., 2015), (ii) cordon-based (Liu et al., 
2013; Zheng et al., 2016; Zheng et al., 2012), (iii) distance-
based (Daganzo and Lehe, 2015; Liu et al., 2017; Meng et 
al., 2012), and (iv) entry-exit based (Meng and Wang, 2008; 
Yang et al., 2004b). A joint distance and time toll (JDTT) 
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was recently proposed to overcome the limitation of the dis-
tance only toll whereby drivers would intentionally use the 
shortest paths in the PZ despite being congested (Liu et al., 
2014). The defect is that the time toll component as part of 
the JDTT tends to overcharge drivers as a longer link typi-
cally requires a larger travel time despite being uncongested. 
As such, an improved joint distance and delay toll (JDDT) 
was proposed (Gu et al., 2018c) and considered in this paper. 

The formulation of a TLP in a large-scale dynamic traffic 
network is often characterized by a computationally expen-
sive objective function, a high-dimensional decision vector, 
and simulation (if used) noise (Chen et al., 2014). While a 
stochastic traffic simulator is a source of simulation noise 
due to different random seed numbers used, many computer 
experiments involve another type of numerical noise that re-
fers to the random deviations from the expected smooth re-
sponse (Forrester et al., 2006). Demand uncertainty also con-
tributes to the computational complexity by requiring a sig-
nificantly larger number of system performance evaluations 
(Ukkusuri et al., 2007). Therefore, one can hardly devise an 
analytical method especially without an explicit mathemati-
cal model of the system under consideration. Exact gradient 
methods are no longer applicable, and metaheuristics 
(Unnikrishnan et al., 2009) are inappropriate given compu-
tational concerns. To address this network design problem 
with an expensive-to-evaluate objective function featuring 
non-convexity, non-linearity, and non-closed-form, simula-
tion optimization (SO) or simulation-based optimization 
(SBO) has recently been investigated and advocated 
(Amaran et al., 2016; Osorio and Bierlaire, 2013). When SO 
is applied to solve the TLP, existing methods can be classi-
fied into two broad categories of feedback control (Gu et al., 
2018c; Simoni et al., 2015; Zheng et al., 2016; Zheng et al., 
2012) and surrogate-based optimization (Chen et al., 2016; 
Chen et al., 2014; Chen et al., 2018; Chow and Regan, 2014; 
Ekström et al., 2016; He et al., 2017). 

Feedback control is a classical control strategy aiming to 
iteratively adjust the control input/decision vector based on 
the system output/objective function value to meet a desired 
set point. A pioneering study on feedback pricing control in 
a large-scale network was recently conducted in an agent-
based simulation environment where the NFD was used to 
describe congestion at the network level (Zheng et al., 2012). 
The authors applied a discrete integral (I-type) controller to 
iteratively adjust the cordon toll rate such that the NFD of the 
PZ does not enter the congested regime. This I-type control-
ler was later improved to a proportional-integral (PI) control-
ler whereby drivers’ adaptation to pricing was considered 
and modeled (Zheng et al., 2016). The authors made a com-
parison between the two controllers and showed that the lat-
ter outperformed the former. Given its superiority, the PI 
controller was further studied and integrated with a variety 
of other tolls (Gu et al., 2018c). A similar feedback structure 
for toll optimization was also proposed by Simoni et al. 
(2015), although without using a typical feedback controller. 

Instead, the authors integrated marginal-cost pricing (MCP) 
with the NFD to derive their own toll adjustment rule. 

Unlike feedback control which resembles a trial-and-error 
method (Yang et al., 2004a), surrogate-based optimization, 
also known as response surface method (RSM) or metamod-
eling, focuses on approximating the simulation input-output 
mapping using limited function evaluations (Amaran et al., 
2016). While surrogate models can be built in local regions 
to sequentially guide the search for the optimum, global sur-
rogate models from space-filling designs perform better in 
finding the global optimum (Forrester et al., 2008; Jones et 
al., 1998). The method, also known as kriging or Gaussian 
process regression, originates from geostatistics but has be-
come popular in designing and analyzing computer experi-
ments (Sacks et al., 1989). Successful attempts have been 
made to apply surrogate-based optimization for solving 
TLPs with different objectives and functional forms of the 
response surface. Chow and Regan (2014) chose the radial 
basis function to construct their surrogate model and solved 
a constrained multi-objective toll optimization problem. 
However, a comprehensive comparison between different 
surrogate models revealed that (regressing) kriging with ex-
pected improvement (EI) sampling is the best performing 
surrogate model (Chen et al., 2014; Ekström et al., 2016), 
which is hence further investigated in a few subsequent stud-
ies on toll optimization (Chen et al., 2016; Chen et al., 2018; 
He et al., 2017). 
 
1.2 Objectives and contributions 

In this paper, we propose a surrogate-based optimization 
framework to solve two TLPs in a large-scale dynamic traffic 
network with heterogeneous congestion distribution. We 
consider the time-varying JDDT and hence, the entire tolling 
period is partitioned into several small tolling intervals. 
Static distance and delay toll rates for each tolling interval 
are to be optimized, which is different from real-time pricing 
that produces continuously changing toll rates based on pre-
vious measurements. 

The objectives of toll pricing can be multiple including but 
not limited to total travel time minimization (Chen et al., 
2014), network speed optimization (Liu et al., 2013), revenue 
maximization (Saha et al., 2014), network travel time relia-
bility maximization (Chen et al., 2018), and network flow 
maximization (Zheng et al., 2016). Each of these objectives 
corresponds to a unique way by which the network is evalu-
ated and hence, different researchers and practitioners may 
have different preferences. Unlike existing studies on surro-
gate-based toll optimization, we use the NFD as the network 
performance indicator based on which two TLPs are formu-
lated. Similar to Simoni et al. (2015); Zheng et al. (2016); 
Zheng et al. (2012), the first TLP aims to maximize the net-
work flow of the PZ throughout the entire tolling period, but 
is further subject to a set of toll pattern smoothing con-
straints, also known as smoothing control constraints 
(Geroliminis et al., 2013), to help prevent radical changes in 



Surrogate-based toll optimization in a large-scale heterogeneously congested network 3 

the toll rates between adjacent tolling intervals. Therefore, 
the first TLP is essentially a constrained single-objective op-
timization problem. 

The second TLP is formulated as an extended optimization 
problem. Given that a heterogeneous distribution of conges-
tion results in a significant hysteresis loop in the NFD (i.e. a 
key determinant of the shape and scatter of the NFD) causing 
network unproductivity (Buisson and Ladier, 2009; Knoop 
and Hoogendoorn, 2013; Mazloumian et al., 2010; Saberi 
and Mahmassani, 2012; 2013), we introduce another objec-
tive into the first TLP to minimize the heterogeneity of con-
gestion distribution in the PZ throughout the entire tolling 
period. This, to some extent, represents an approach when 
dealing with large-scale heterogeneous networks (Simoni et 
al., 2015), as an alternative to network partitioning (Ji and 
Geroliminis, 2012; Saeedmanesh and Geroliminis, 2016; 
2017). Such an objective was previously used to develop a 
hierarchical perimeter control scheme (Ramezani et al., 
2015). Note that while both clustering-based network parti-
tioning and homogeneity control are effective in reducing 
heterogeneity, heterogeneity itself is an inherent nature of 
traffic networks that cannot completely disappear (Ramezani 
et al., 2015). In this paper, instead of solving directly a bi-
objective optimization problem, we keep flow maximization 
as a single objective while reformulating heterogeneity min-
imization as an additional constraint. A single-objective op-
timization problem is therefore formulated and to be solved. 

The overall contribution of the paper is twofold: 
 

i. A linear JDDT is investigated and inte-
grated with the NFD to formulate two 
new high-dimensional TLPs in a large-
scale heterogeneously congested dy-
namic traffic network. 

ii. Reducing the heterogeneity of conges-
tion distribution is considered and mod-
eled in the optimization problem, which 
is shown by the results to help achieve 
higher network flows. 

 
2 PROBLEM FORMULATION 

 
In this section, we first formulate the JDDT and the result-

ant generalized travel cost function to be used in the simula-
tion model for vehicle routing and path assignment. We then 
develop two TLPs to optimize the toll rates such that the net-
work performance objective(s) is achieved. 
 
2.1 Joint distance and delay toll (JDDT) 

Consider a network 𝐺 = (𝑁, 𝐴) where 𝑁 is the set of 
nodes and 𝐴 is the set of directed links. With a predefined 
pricing cordon, network 𝐺 is partitioned into a PZ 𝐺( =
)𝑁(,𝐴(* and a peripheral sub-network 𝐺+( = )𝑁+(, 𝐴+(*. 
Table 1 summarizes the notation used to formulate the 
JDDT. 

Let 𝛕 = [𝜐/,… , 𝜐1, 𝜔/, … , 𝜔1]4 be the toll decision vector 
for the 𝑚 tolling intervals where 𝜐6 and  𝜔6 are the distance 
toll rate and the delay toll rate for the ℎ-th tolling interval, 
respectively. We assume that the distance and the delay toll 
functions are both linear with respect to the distance traveled 
and the delay experienced within the PZ, respectively. Here, 
delay is defined as the difference between the actual simu-
lated travel time and the free-flow travel time. This assump-
tion enables the link additive property resulting in a link-
based approach to pricing system modeling and optimiza-
tion. If non-linearity is assumed, a path-based approach 
should be pursued (Liu et al., 2017). Let 𝑙9:;(ℎ) and 𝑡9:;(ℎ) 
be the distance traveled and the time spent within the PZ for 
path 𝑟 ∈ 𝑅:; during the ℎ-th tolling interval, respectively: 

 
Table 1 

Notation used to formulate the JDDT 
Notation Interpretation 
𝑊 The set of OD pairs where 𝑂 ⊂ 𝑁 is the set of origins 

and 𝐷 ⊂ 𝑁 is the set of destinations, i.e. 𝑊 =
{(𝑜, 𝑑)|𝑜 ∈ 𝑂, 𝑑 ∈ 𝐷} 

𝑅:; The set of paths between an OD pair (𝑜, 𝑑) ∈ 𝑊 
𝑚 Total number of tolling intervals 
𝑙I  Length of link 𝑎 ∈ 𝐴 
𝑡I(ℎ) Average travel time on link 𝑎 ∈ 𝐴 during the ℎ-th tolling 

interval 
𝛿I,9:; 𝛿I,9:; = 1 if path 𝑟 ∈ 𝑅:; includes link 𝑎, otherwise 

𝛿I,9:; = 0 
 

𝑙9:;(ℎ) = N 𝑙I𝛿I,9:;
I∈OP

 (1) 

𝑡9:;(ℎ) = N 𝑡I(ℎ)𝛿I,9:;
I∈OP

 (2) 

 
where 𝑟 ∈ 𝑅:;, (𝑜, 𝑑) ∈ 𝑊,ℎ ∈ (1,2,… ,𝑚). The distance 
toll component and the delay toll component, 𝜑9:;(ℎ) and 
𝜙9:;(ℎ), for path 𝑟 ∈ 𝑅:; during the ℎ-th tolling interval are 
therefore defined and calculated, respectively, as 

 
𝜑9:;(ℎ) = 𝜐6 N 𝑙I𝛿I,9:;

I∈OP

 (3) 

𝜙9:;(ℎ) = 𝜔6 N )𝑡I(ℎ) − 𝑡IU *𝛿I,9:;
I∈OP

 (4) 

 
where 𝑡IU  is the free-flow travel time on link 𝑎 ∈ 𝐴(. The gen-
eralized travel cost function, 𝑉9:;(ℎ), for path 𝑟 ∈ 𝑅:; dur-
ing the ℎ-th tolling interval is expressed as: 

 

𝑉9:;(ℎ) =N𝑡I(ℎ)𝛿I,9:;
I∈O

+
𝜑9:;(ℎ) + 𝜙9:;(ℎ)

𝑉𝑇𝑇  (5) 

 
where VTT is drivers’ average value of travel time. In the 
simulation model, Equation (5) is integrated with the C-logit 
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stochastic route choice model for path assignment (Cascetta 
et al., 1996). 
 
2.2 Single-objective toll level problem (TLP) 

In the single-objective TLP, we aim to optimize the time-
varying JDDT such that the NFD of the PZ does not enter the 
congested regime. Assuming the critical network density of 
the PZ does not change significantly before and after pricing, 
the single-objective TLP is formulated as follows: 

 

min
𝛕∈\

E ^
1
𝑚
N|𝐾̀6 − 𝐾ab|
1

6c/

d (6) 

s.t. 
|𝜐6 − 𝜐6e/| ≤ 𝛼, ℎ = 1,2, … ,𝑚 (7) 
|𝜔6 − 𝜔6e/| ≤ 𝛽, ℎ = 1,2,… ,𝑚 (8) 
𝐾̀6 = 𝐷𝑇𝐴(𝛕), ℎ = 1,2,… ,𝑚 (9) 

Ω = {𝛕|𝛕jk+ ≤ 𝛕 ≤ 𝛕jlm} (10) 
 

where 𝐾̀6 is the average network density of the PZ during the 
ℎ-th tolling interval, 𝐾ab is the critical network density of the 
PZ identified from the non-tolling NFD, 𝛼 and 𝛽 are the toll 
pattern smoothing parameters for the distance and the delay 
toll rates, respectively, and Ω is the feasible set of toll rates 
with 𝛕jk+ being the lower bound and 𝛕jlm being the upper 
bound. 

Given a stochastic traffic simulator, the objective function 
aims to minimize the expected average of the absolute dif-
ference between 𝐾̀6 and 𝐾ab for the 𝑚 tolling intervals. As 
such, the PZ is driven to achieve the maximum network flow 
throughout the entire tolling period. To calculate the expec-
tation, one can readily apply fixed-number sample path opti-
mization, also known as sample average approximation 
(Amaran et al., 2016). However, in the presence of a compu-
tationally expensive objective function, the sample size is 
usually restricted to a small number just to reduce the effect 
of noise rather than pursuing a complete noise filter. To han-
dle simulation noise more efficiently, one can apply variable-
number sample path optimization (He et al., 2017). Equa-
tions (7) and (8) are the toll pattern smoothing constraints 
used to ensure that the optimal toll rates do not fluctuate un-
duly between adjacent tolling intervals, and that we obtain a 
smooth optimal toll pattern. It would be practically infeasible 
to introduce a radically changing pricing scheme considering 
drivers’ adaptivity and system stability. Equation (9) repre-
sents the black-box function of the simulation-based DTA 
model to which 𝛕 is input to obtain 𝐾̀6. 
 
2.3 Bi-objective toll level problem (TLP) 

In the bi-objective TLP, we further aim to minimize the 
heterogeneity of congestion distribution in the PZ throughout 
the entire tolling period. To this end, we introduce the spatial 
spread of density, 𝛾, as the square root of the weighted vari-
ance of link densities (Knoop and Hoogendoorn, 2013) to 
quantify the heterogeneity of congestion distribution: 

 

𝛾 = o
∑ 𝑙q𝑛q(𝑘q − 𝐾)tq

∑ 𝑙q𝑛qq
, 𝐾 =

∑ 𝑘q𝑙q𝑛qq
∑ 𝑙q𝑛qq

 (11) 

 
where 𝑘q is the average density of link 𝑖 over the observation 
period, and 𝑙q and 𝑛q are the length and the number of lanes 
of link 𝑖, respectively. When 𝑙q𝑛q is the same for every link 𝑖 
in the network, Equation (11) reduces to the standard devia-
tion measure (Mahmassani et al., 2013; Mazloumian et al., 
2010; Saberi and Mahmassani, 2012). The spatial spread of 
density naturally increases with a growing accumulation – an 
increase in vehicles entering the PZ inevitably generates a 
higher spatial spread of density later in time as these vehicles 
continue their trips. Therefore, a better quantification of the 
heterogeneity of congestion distribution according to Simoni 
et al. (2015) are the positive deviations from the natural in-
crement represented by the lower envelope of the spread-ac-
cumulation relationship, which is termed the deviation from 
spread, Δ: 

 
Δ = 𝛾 − 𝛾(𝐾) (12) 

 
where 𝛾(𝐾) = 𝑎𝐾w + 𝑏𝐾t + 𝑐𝐾 is an assumed third-order 
polynomial function fitted to the lower envelope of the 
spread-accumulation relationship with coefficients 𝑎, 𝑏, and 
𝑐 to be estimated. Note that the lower envelope of the spread-
accumulation relationship corresponds to the upper envelope 
of the NFD, because the least possible heterogeneity of con-
gestion distribution contributes to the highest possible net-
work flow for a certain network density. Also note that the 
fitted function only serves as a mathematical approximation 
and hence does not necessarily represent the best functional 
form. 

The bi-objective TLP is therefore formulated as follows: 
 

min
𝛕∈\

E ^
1
𝑚
N|𝐾̀6 − 𝐾ab|
1

6c/

d (13) 

min
𝛕∈\

E ^
1
𝑚
N Δ̀6

1

6c/

d (14) 

s.t. 
|𝜐6 − 𝜐6e/| ≤ 𝛼, ℎ = 1,2, … ,𝑚 (15) 
|𝜔6 − 𝜔6e/| ≤ 𝛽, ℎ = 1,2,… ,𝑚 (16) 
𝐾̀6 = DTA(𝛕), ℎ = 1,2, … ,𝑚 (17) 

Ω = {𝛕|𝛕jk+ ≤ 𝛕 ≤ 𝛕jlm} (18) 
 

where Δ̀6 is the average deviation from spread of the PZ dur-
ing the ℎ-th tolling interval. The unique feature of Problem 
(13-18) is that we know a priori that both objective functions 
have a lower bound of zero (because Equation (13) involves 
an absolute value operator and we use the lower envelope to 
calculate Δ in Equation (12)), although being too ideal to 
achieve. While we could solve the bi-objective optimization 
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problem as it is, we could alternatively utilize this unique 
feature by keeping Equation (13) as the single objective and 
reformulating Equation (14) as an additional constraint. The 
original bi-objective TLP is therefore transformed into the 
following single-objective optimization problem: 

 

min
𝛕∈\

E ^
1
𝑚
N|𝐾̀6 − 𝐾ab|
1

6c/

d (19) 

s.t. 

E ^
1
𝑚
N Δ̀6

1

6c/

d ≤ Δjlm (20) 

|𝜐6 − 𝜐6e/| ≤ 𝛼, ℎ = 1,2, … ,𝑚 (21) 
|𝜔6 − 𝜔6e/| ≤ 𝛽, ℎ = 1,2,… ,𝑚 (22) 
𝐾̀6 = 𝐷𝑇𝐴(𝛕), ℎ = 1,2,… ,𝑚 (23) 

Ω = {𝛕|𝛕jk+ ≤ 𝛕 ≤ 𝛕jlm} (24) 
 

where Δjlm is a constraint limit to ensure that the heteroge-
neity of congestion distribution is below a certain threshold. 
How to determine Δjlm depends on the network performance 
under consideration, and hence is case-specific. In general, 
we apply trail-and-error by utilizing the knowledge of the 
network performance under the non-tolling scenario as well 
as the results of the single-objective TLP – Δjlm should be 
smaller than E }/

1
∑ Δ̀61
6c/ ~ from solving the single-objective 

TLP and larger than that under the non-tolling scenario if the 
NFD enters the congested regime without experiencing net-
work recovery. While we could alternatively keep Equation 
(14) as the objective and reformulate Equation (13) as the 
constraint, we choose not to so as to be consistent with the 
formulation of Problem (6-10). 

Note that one could also construct a weighted average of 
the two objectives to formulate a single-objective optimiza-
tion problem (Chen et al., 2016), but the key question is how 
to choose the relative weight (perhaps through a sensitivity 
analysis). There is no need to re-organize the complex con-
straints as part of the objective function, e.g., through a pen-
alty method or Lagrangian relaxation. This is because the 
surrogate-based optimization method to be introduced and 
applied can well handle complex constraints. 

 
3 SURROGATE-BASED OPTIMIZATION 

 
 To solve the two TLPs, a surrogate-based optimization 

method is applied featuring regressing kriging (RK) with ex-
pected improvement (EI) sampling (see Figure 1). To con-
struct the starting surrogate model, a few initial sample 
points need to be generated through a space-filling design of 
experiments (DOE), for each of which a network simulation 
is performed to evaluate the objective function. The con-
structed surrogate model is further subject to adding infill 
sample points via EI sampling until model validation is 
passed. Here, accuracy measures how well RK predicts while 
convergence indicates whether there is still room for 

augmenting RK to improve the objective function value. It is 
possible that an infill sample point does not improve the cur-
rent best solution since the constructed response surface used 
for calculating and maximizing the EI is an approximation to 
the true unknown response surface. As a result, the surro-
gate-based optimum approximates the true unknown opti-
mum. For most practical applications with tight computa-
tional budgets, a maximum number of iterations or function 
evaluations is usually reached first before a good conver-
gence is achieved suggesting that the final solution is not as-
sumed to be optimal (Amaran et al., 2016; Osorio and Punzo, 
2019). 

 

 
Figure 1 Flowchart representation the surrogate-based opti-
mization method 
 
3.1 Design of Experiments (DOE) 

Since DOE aims to provide an initial set of sample points 
to construct the starting surrogate model, the space-filling 
property is desirable as the resultant sample points are spread 
as uniformly as possible over the entire feasible domain. 
Latin Hypercube Sampling (LHS) is a space-filling DOE 
whereby each problem dimension is stratified into an equal 
number of intervals from which points are uniformly sam-
pled. As such, there is no overlap in LHS when mapping the 
multi-dimensional sample points into each dimension. To 
achieve the maximum uniformity or space-fillingness of an 
LHS plan, one can apply maximin LHS to maximize the min-
imum distance between all the sample points by generating 

Design of experiments (DOE):
initial sample points 

Network simulation:
objective function evaluations

Constructing the surrogate model:
regressing kriging (RK)

Model validation: 
convergence achieved?

Yes

Adding infill sample points:
expected improvement (EI) sampling

No

Model validation: 
accuracy achieved?

Yes

No

Surrogate-based optimum
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and evaluating a set of candidate plans (Forrester et al., 
2008). According to Ekström et al. (2016), at least 2𝑚 + 1 
sample points are required to construct the starting surrogate 
model where 2𝑚 is the problem dimension, i.e., the size of 
the toll decision vector. Due to the much higher dimension 
of our toll optimization problem, we choose the size of the 
initial set of sample points to be 2(2𝑚 + 1). A few addi-
tional sample points can also be considered as part of the in-
itial plan such as the corner and center points of the design 
space. 
 
3.2 Regressing kriging (RK) 

Kriging metamodeling is a stochastic process approach 
originating from Bayesian reasoning where the output of a 
deterministic computer experiment is modeled as a realiza-
tion of a stochastic process. The well-known ordinary kriging 
model assumes an unknown constant mean 𝜇 of the response 
surface 𝑦(𝛕) where 𝛕 is the toll decision vector, and a zero-
mean second-order stationary Gaussian process 𝑍, i.e., 
𝑦(𝛕) = 𝜇 + 𝑍(𝛕) where E[𝑍(𝛕)] = 0. Here, 𝑦(𝛕) equates to 
E }/

1
∑ |𝐾̀6 − 𝐾ab|1
6c/ ~ in Equation (19). The covariance func-

tion of 𝑍 between any two points 𝛕(q) and 𝛕(�) 
is	𝜎t𝜓)𝛕(q), 𝛕(�)*	where 𝜎t is the process variance and 𝜓(∙) 
is the Gaussian correlation function depending on the dis-
tance between 𝛕(q) and 𝛕(�) only, i.e., 𝜓)𝛕(q), 𝛕(�)* =

exp �−∑ 𝜃�t1
�c/ �𝛕�

(q) − 𝛕�
(�)�

t
� where 𝛉	is a vector of scaling 

coefficients that allows for varying impacts of different di-
mensions on the correlation function and 2𝑚 is the dimension 
of the toll optimization problem formulated in Section 2. The 
correlation matrix 𝚿 is constructed with the (𝑖, 𝑗)-th element 
being 𝜓)𝛕(q), 𝛕(�)*. 

The ordinary kriging model is an interpolation method that 
constructs the response surface by passing through all the 
sample points. When computer simulations display the nu-
merical noise, i.e., the output tend to have a random scatter 
about a smooth trend rather than lying on it, the interpolating 
kriging model may exhibit overfitting without being able to 
tolerate data fluctuations (Forrester et al., 2006). The solution 
is to allow the kriging model not to interpolate but to regress 
the sample points, which is achieved by adding a regulariza-
tion constant, 𝜆, to the diagonal of the correlation matrix. 
That is, 𝐑 = 𝚿+ 𝜆𝐈 where 𝐑 is known as the regressing cor-
relation matrix and 𝐈 is an identity matrix of the same dimen-
sion. The resultant model is commonly known as RK (Chen 
et al., 2014; Forrester et al., 2006; He et al., 2017). 

Given the assumption of a Gaussian process, the kriging 
predictor and the prediction error can be obtained by maxim-
izing the augmented log-likelihood as shown in Forrester et 
al. (2006): 

 
𝑦�(𝛕∗) = 𝜇̂ +𝛙4𝐑�𝟏(𝐲 − 𝟏𝜇̂) (25) 
𝑠̂t(𝛕∗) = 𝜎�t)1 + 𝜆� −𝛙4𝐑�𝟏𝛙* (26) 

 

where 𝛙 = �𝜓)𝛕∗, 𝛕(/)*, 𝜓)𝛕∗, 𝛕(t)*,… , 𝜓)𝛕∗, 𝛕( )*¡
4
is the 

correlation vector between the new point 𝛕∗ and all the exist-
ing sample points. Equations (25) and (26) clearly show the 
essence of RK or Bayesian reasoning – the prediction is mod-
eled as a distribution with a mean and a variance (namely a 
random variable), rather than being deterministic. In general, 
we are more confident in the prediction if the variance is low, 
and vice versa. To obtain the maximum likelihood estimates 
(MLEs) of the parameters involved in the log-likelihood 
function, i.e., 𝜇̂, 𝜎�t, 𝜆�, and 𝛉¢, we apply the genetic algorithm 
(GA). 

 
3.3 EI sampling 

When kriging is used to approximate the simulation input-
output mapping, additional infill sample points are required 
to enhance the constructed response surface. In general, there 
are two categories of infill strategies (Ekström et al., 2016): 

 
i. One-stage infill strategies which search for infill 

sample points according to a certain merit func-
tion, e.g., maximizing the minimum distance be-
tween all the sample points, without using infor-
mation about the constructed response surface 

ii. Two-stage infill strategies which search for infill 
sample points by utilizing the constructed re-
sponse surface 

 
We choose a two-stage infill strategy given its self-learn-

ing mechanism – the new response surface is iteratively aug-
mented based on its predecessor. Specifically, we apply a 
global optimal infill strategy known as EI sampling as op-
posed to a suboptimal infill strategy that balances poorly be-
tween exploring unvisited regions and exploiting visited re-
gions (Chen et al., 2014). While trying to locate infill sample 
points that lead to low predictor values for a minimization 
problem, EI sampling also considers uncertainty about the 
constructed response surface as reflected by the prediction 
error. In regions with few sample points, although the current 
prediction may not be promising, the error is likely to be high 
suggesting a good opportunity to improve the current best 
solution by adding infill sample points. Therefore, as a global 
search method, EI sampling can balance well between local 
exploitation and global exploration (Forrester et al., 2008). 
To solve the EI maximization problem, we use the GA. 

 
3.3.1 Unconstrained EI sampling 

Unconstrained EI sampling only considers maximizing 
the EI of the objective when adding infill sample points. At 
each iteration, a new response surface approximating the ob-
jective function in Equation (6) is constructed using all the 
exiting sample points. This enables us to predict for any point 
in the design space using Equations (25) and (26). Our goal 
is then to find the point that maximizes the EI because a lager 
EI equates to a greater probability of improving the current 
best solution, and to evaluate this identified point through the 
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simulation model for further augmenting the response sur-
face. Let 𝑦jk+ denote the best observed objective function 
value so far. The improvement at a new infill sample point 
𝛕∗ is defined as 𝐼(𝛕∗) = max	(𝑦jk+ − 𝑦(𝛕∗), 0). The EI at 
this point hence reads E[𝐼(𝛕∗)] = E[max(yjk+ − y(𝛕∗), 0)]. 
When 𝑠̂t(𝛕∗) = 0, E[𝐼(𝛕∗)] = 0; when 𝑠̂t(𝛕∗) > 0, given 
the assumption of a Gaussian process, 

 

E[𝐼(𝛕∗)] =
1

√2𝜋𝑠̂t(𝛕∗)
© (𝑦jk+
ª«¬­

�®

− 𝑢) exp °−
)𝑢 − 𝑦�(𝛕∗)*

t

2𝑠̂t(𝛕∗)
±𝑑𝑢 

(27) 

 
When using ordinary kriging, both the prediction error and 

the EI stay at zero for all the existing sample points. It is 
therefore impossible to add an infill sample point that has 
already been sampled. However, when using RK, 𝑠̂t(𝛕∗) =
0 does not hold at an existing sample point resulting in the 
possibility of maximizing E[𝐼(𝛕∗)] at a previously sampled 
point. To prevent RK from getting trapped at an existing 
sample point, Forrester et al. (2006) proposed a reinterpola-
tion MLE of 𝜎t: 

 

𝜎�bkt =
(𝐲 − 𝟏𝜇̂)4𝐑�/𝚿𝐑�/(𝐲 − 𝟏𝜇̂)

𝑛  (28) 

 
The reinterpolation prediction error reads 𝑠̂bkt (𝛕∗) = 𝜎�bkt(1 −
𝛙4𝐑�𝟏𝛙). Now, 𝑠̂bkt (𝛕∗) = 0 holds for all the existing sam-
ple points for which E[𝐼bk(𝛕∗)] = 0. When 𝑠̂bkt (𝛕∗) > 0 and 
assuming 𝑦(𝛕∗)~𝑁�𝑦�(𝛕∗), 𝑠̂bkt (𝛕∗)�, E[𝐼bk(𝛕∗)] can be calcu-
lated through Equation (27) by simply replacing 𝑠̂t(𝛕∗) with 
𝑠̂bkt (𝛕∗). 
 
3.3.2 Constrained EI sampling 

While maximizing the EI of the objective, constrained EI 
sampling further considers the impact of the constraint on 
adding infill sample points. At each iteration, apart from con-
structing a new response surface to approximate the objec-
tive function in Equation (19) using all the exiting sample 
points, we also construct a new response surface to approxi-
mate the constraint in Equation (20). By calculating the EI of 
the objective and the probability of not violating the con-
straint, and maximizing their product, we are able to find the 
point that potentially improves the current best solution most 
while satisfying the constraint. 

Let 𝑐(𝛕) denote the response surface of the constraint to 
be no greater than Δjlm, i.e., 𝑐(𝛕) equates to E }/

1
∑ Δ̀61
6c/ ~ 

in Equation (20). The constrained improvement at a new in-
fill sample point is defined as 

 

𝐶𝐼(𝛕∗) = ´𝐼(𝛕
∗), 𝑐(𝛕∗) ≤ Δjlm

0,																𝑐(𝛕∗) > Δjlm
 (29) 

 

If the constraint is violated at 𝛕∗, i.e., 𝑐(𝛕∗) > Δjlm, 𝐶𝐼(𝛕∗) 
is zero even if 𝑦jk+ − 𝑦(𝛕∗) is large. The constrained EI 
hence reads E[𝐶𝐼(𝛕∗)] = E[𝐼(𝛕∗)]P[𝑐(𝛕∗) ≤ Δjlm] where 
P[𝑐(𝛕∗) ≤ Δjlm] is the probability of not violating the con-
straint. The constrained EI is large only if the EI of the ob-
jective and the probability of not violating the constraint are 
both large. With reinterpolation, we end up with 
E[𝐶𝐼bk(𝛕∗)] = E[𝐼bk(𝛕∗)]Pbk[𝑐(𝛕∗) ≤ Δjlm] where 

 
Pbk[𝑐(𝛕∗) ≤ Δjlm]

=
1

√2𝜋𝑠̂abkt (𝛕∗)
© exp°−

)𝑢 − 𝑐̂(𝛕∗)*
t

2𝑠̂abkt (𝛕∗)
±𝑑𝑢

¶«·¸

�®
 

(30) 

 
3.4 Model validation 

To validate the accuracy of the constructed surrogate 
model, one option is to select a few additional sample points 
to form a test set based on which the observed and predicted 
objective function values are compared. The training set ob-
viously includes the initial sample points and those added as 
infill sample points. This option, however, is not desirable 
particularly when concern about the extra computational ef-
fort prevails. A better option which has been adopted in a few 
relevant studies (Chen et al., 2014; Ekström et al., 2016) is 
to leave out one observation and predict it based on the re-
maining observations. This procedure is commonly known 
as the leave-one-out cross validation (CV) which requires no 
additional sample points to validate the accuracy of the 
model. 

With a total of 𝑛 observations, the leave-one-out CV is re-
peated 𝑛 times and each time it produces a cross-validated 
prediction 𝑦��q)𝛕(q)* for the corresponding observation 
𝑦)𝛕(q)*. While common measures of effectiveness (MOEs) 
can be calculated to reflect the prediction accuracy, they are 
inappropriate for evaluating the surrogate model as the pre-
diction at any point is a normally distributed random variable 
rather than a scalar (Chen et al., 2014). Knowing that, along 
with the cross-validated prediction, we also obtain a cross-
validated standard error 𝑠̂�q)𝛕(q)*, we can calculate the 
99.7% confidence interval for each 𝑦)𝛕(q)* using the predic-
tion plus or minus three standard errors (Jones et al., 1998). 

Alternatively, we can calculate ª)𝛕
(¹)*�ª�º¹)𝛕(¹)*
»̂º¹)𝛕(¹)*

 to obtain a 

standardized cross-validated residual, the value of which 
should be lying roughly within [−3,3] for an accurate surro-
gate model. Unfortunately, there is no clean proof of conver-
gence for the surrogate-based optimization method. A prac-
tical technique is to track the convergence history of the EI 
as we will show in Section 4. 

 
4 RESULTS AND DISCUSSION 

 
4.1 Experimental setup 

In this paper, we employ a recently developed large-scale 
simulation-based DTA model of Melbourne, Australia 
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(Shafiei et al., 2018). The model is deployed in AIMSUN 
with time-varying commuting demand during the 6-10 AM 
peak period. By using multi-source big traffic data, major 
supply (Gu et al., 2016; 2018b) and demand (Shafiei et al., 
2018) input to the model has been calibrated and validated. 
Figure 2(a) shows the extracted sub-network from the greater 
Melbourne area model. There are 4,375 links and 1,977 
nodes in the entire network, and 282 links and 91 nodes in 
the PZ represented by the inner rectangle. During the simu-
lation, path assignment is calculated every 15 minutes using 
the C-logit stochastic route choice model assuming VTT =
$15/h. 30% of drivers are assumed adaptive having access 
to real-time information and hence, can update their shortest 
paths enroute at the beginning of every path assignment in-
terval using information of traffic conditions from the previ-
ous interval. Note that the simulation model does not explic-
itly account for how information is communicated between 
vehicles and the network infrastructure. A sensitivity analy-
sis on the percentage of adaptive driving is provided in Ap-
pendix B. 

To determine the critical network density and the tolling 
period, we run simulation without pricing and show the den-
sity time series and the simulated NFDs of the PZ in Figure 
2(b) and (c), respectively. Results suggest that we set 𝐾ab at 
25 vpkmpl which leads to a 2-h tolling period between 8 (a 
few minutes before the network density reaches the 25 
threshold and the network becomes congested) and 10 AM. 

 

  
(a) (b) 

  
(c) (d) 

Figure 2 (a) Extracted sub-network from the greater Mel-
bourne area model and the simulation results of the PZ under 
the non-tolling scenario: (b) density time series, (c) simu-
lated NFDs, and (d) spread-accumulation relationship 
 

To demonstrate the capability of the surrogate-based opti-
mization framework in dealing with high-dimensional prob-
lems, we use a 15-min duration and partition the entire toll-
ing period into 8 small tolling intervals. Hence a total of 16 
toll decision variables are to be optimized, 8 of which are 
distance toll rates and the other 8 are delay toll rates. 

Accordingly, in the maximin LHS plan, the total number of 
the initial sample points is 37. When applying the surrogate-
based optimization framework, we allow a maximum of 100 
iterations, i.e., the total number of sample points is 100 with 
63 infill sample points. Without loss of generality, 𝛕jk+ and 
𝛕jlm are set at [0,… ,0,0,… ,0]4 and [1, , … ,1,15,… ,15]4, re-
spectively, and 𝛼 and 𝛽 are set at /

w
(1 − 0) ≈ 0.33 and 

/
w
(15 − 0) = 5, respectively. A sensitivity analysis on 𝛼 and 
𝛽 is provided in Appendix A. To estimate 𝑎, 𝑏, and 𝑐, we run 
ten replications without pricing and obtain the following fit-
ted functional form, 𝛾(𝐾) = −0.0002032𝐾w +
0.004432𝐾t + 1.587𝐾, which is also shown in Figure 2(d). 
Although being estimated under the non-tolling scenario, 
𝛾(𝐾) is applicable to different pricing scenarios because it 
captures the highest possible network flow for a certain net-
work density, which can be considered as the invariant “ca-
pacity” of the network corresponding to this network density. 
 
4.2 Solving the single-objective toll level problem (TLP) 

Figure 3(a) validates the accuracy of the constructed sur-
rogate model with 100 sample points. The model accuracy is 
sufficiently achieved with 98 standardized cross-validated 
residuals lying within [−3,3]. One outlier corresponds to the 
non-tolling scenario with 𝛕 = 𝛕jk+ = [0,0,… ,0,0,0,… ,0]4. 
Since the non-tolling network produces the highest objective 
function value, the surrogate model makes little effort ex-
ploring the region surrounding the non-tolling sample point 
where the prediction becomes poor, as expected. Figure 3(b) 
illustrates the convergence history of the EI. Although, due 
to the heuristic nature of the method, intermittent peaks rep-
resenting possible significant improvements in the objective 
function value are observed, the overall trend of the change 
as represented by the average curve (averaged every four 
consecutive points) displays a relatively smooth conver-
gence pattern towards zero. This implies that, at the end of 
optimization, the surrogate model is unable to locate a new 
solution that significantly improves the current best solution 
and hence, we can terminate the algorithm with confidence. 
 

  
(a) (b) 

Figure 3 Solving the single-objective TLP: (a) validating the 
accuracy of the constructed surrogate model, and (b) conver-
gence history of the EI 
 

The solution to the single-objective TLP is shown in Fig-
ure 4(a). The changes in the distance and delay toll rates be-
tween adjacent tolling intervals are clearly bounded by the 
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toll pattern smoothing constraints in Equations (7) and (8), 
respectively. Figure 4(b) shows the simulated averaged NFD 
of the PZ after applying the optimal toll rates. As expected, 
the congested regime of the NFD that appears and remains 
until the end of simulation under the non-tolling scenario no 
longer exists and is substituted by a combination of a (near-
)capacity regime and a clock-wise hysteresis loop. 

 When the network is unloading, namely recovering from 
congestion, the distribution of congestion tends to be more 
heterogeneous than when the network is loading, because the 
congested area often clear slowly and are fragmented during 
network unloading/recovery. The heterogeneous distribution 
of congestion inevitably reduces the network flow giving rise 
to a clockwise hysteresis loop in the NFD (Gayah and 
Daganzo, 2011; Geroliminis and Sun, 2011; Saberi and 
Mahmassani, 2013). An interesting observation out of the 
comparison is that, compared with the non-tolling NFD, the 
tolling NFD undergoes a network flow drop immediately af-
ter the implementation of pricing, which, in part, contributes 
to the hysteresis loop in the NFD. This drop, as was also ob-
served in Gu et al. (2018c), results from the reduced inflow 
or demand to the PZ due to the presence of pricing. An ex-
treme and apparently unrealistic scenario is that we imple-
ment an exceptionally high toll price whereby no one would 
enter the PZ. With such demand dropping sharply to zero, 
the hysteresis loop in the NFD is amplified most significantly 
(Mahmassani et al., 2013). A complete elimination of the 

network flow drop is too ideal and perhaps only possible with 
an extremely smooth toll pattern starting from zero, i.e. a 
very slow-varying toll. Figure 4(c-e) show, respectively, the 
density, speed, and queue time series of the PZ under the op-
timal tolling scenario in comparison with those under the 
non-tolling scenario. It is evident and consistent across dif-
ferent replications that pricing has brought significant per-
formance improvement to the PZ represented by the area in 
between the two curves. 

The computational efficiency of the surrogate-based opti-
mization method has been highlighted, e.g., in Chen et al. 
(2014); Chow et al. (2010) in comparison with the GA as a 
random search optimization method. To further show the 
computational efficiency of RK, we apply another global op-
timization method termed DIviding RECTangles (DIRECT) 
to solve the single-objective TLP in comparison with RK. 
DIRECT is a deterministic method originating from Lip-
schitzian optimization. It works by iteratively partitioning 
the search space into multiple hyperrectangles and identify-
ing what are called the potentially optimal hyperrectangles 
for further partitioning. Details of DIRECT and its mathe-
matical properties can be found in Jones et al. (1993). How-
ever, DIRECT cannot be applied directly due to the presence 
of the toll pattern smoothing constraints in the TLP. We 
therefore integrate DIRECT with the penalty function 
method (Bazaraa et al., 2013) to transform the original con-
strained optimization problem into an unconstrained one. To 

  
 

(a) (b) (c) 

   
(d) (e) (f) 

Figure 4 (a) Optimal distance and delay toll patterns from solving the single-objective TLP, (b) simulated NFDs for all 
replications (dashed lines) and the averaged NFD (solid line) of the PZ, (c-e) time series of density, speed, and queue of 
the PZ(dashed/solid lines represent the before-/after-pricing scenario), and (f) changes in the optimal objective function 
value as the number of function evaluations increases for both RK and DIRECT 
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be consistent with RK, we terminate DIRECT when the num-
ber of function evaluations exceeds 100. We perform RK for 
a total of three runs given its stochastic nature arising from 
LHS and the GA, but only one run of DIRECT is performed 
because of its deterministic nature. With 121 function evalu-
ations, the optimal objective function value of DIRECT is 
4.06 vpkmpl, while with 100 function evaluations, the opti-
mal objective function values of RK are 3.78, 4.17, and 4.11 
vpkmpl, respectively. Although the solution quality of RK 
and DIRECT is similar, the latter requires a larger number of 
function evaluations as shown in Figure 4(f). Since DIRECT 
identifies all the potentially optimal hyperrectangles and 
evaluates their center points at each iteration, there are only 
three points along the curve representing the three iterations 
before termination. The three iterations perform 33, 30, and 
58 function evaluations, respectively, which add up to the 
121 function evaluations. Within 50 function evaluations, 
RK manages to find a solution that is very close to the final 
optimum, whereas DIRECT needs 63 function evaluations to 
achieve roughly the same level of optimality. RK manages 
to locate the final optimum with about 80 function evalua-
tions, whereas DIRECT needs a much larger 121 function 
evaluations. Since each function evaluation (i.e., one simu-
lation run) takes on average 15-20 minutes, RK can save 
more than 10 hours of simulation time compared with DI-
RECT and hence, has better performance in terms of the 
computational efficiency. 
 
4.3 Solving the bi-objective toll level problem (TLP) 

 
When solving the bi-objective TLP, we set 𝛿jlm at 8 

vpkmpl in Equation (20). Figure 5(a) validates the accuracy 
of the constructed surrogate model with 100 sample points. 
As with Figure 3(a), there are 98 well-predicted sample 
points plus two outliers. One of the outliers still corresponds 
to the non-tolling scenario with 𝛕 = 𝛕jk+ =
[0,… ,0,0,… ,0]4, while the other outlier corresponds to the 
“full” tolling scenario with 𝛕 = 𝛕jlm = [1,… ,1,15,… ,15]4. 
The reason is the same. 𝛕jk+ undercharges drivers while 
𝛕jlm overcharges drivers, both of which give rise to the high-
est objective function values and hence the lowest probabil-
ity of finding the minimum solution in their proximity. To 
solve the minimization problem, the surrogate model natu-
rally spends most of its effort exploring other regions in the 
design space, thereby predicting poorly for 𝛕jk+ and 𝛕jlm. 
Figure 5(b) shows the convergence history of the probabilis-
tic EI. While exhibiting a brief increasing trend at the begin-
ning of optimization, the pattern gradually and eventually 
converges to zero like Figure 3(b). Note that the probabilistic 
EI values in Figure 5(b) are generally smaller than those in 
Figure 3(b) because the probability of satisfying the con-
straint in Equation (30) is always less than or equal to one. 

 

  
(a) (b) 

Figure 5 Solving the bi-objective TLP: (a) validating the ac-
curacy of the constructed surrogate model, and (b) conver-
gence history of the probabilistic EI 

 
Figure 6(a) shows the distribution of the 100 sample points 

based on their objective and constraint function values. Ob-
viously, we are only interested in points lying below the con-
straint limit line represented by the blue filled circles. An in-
teresting observation is that a Pareto front seems to appear 
suggesting a conflicting relation between the objective and 
the constraint. This observation, in part, supports our previ-
ous argument about the network flow drop. Specifically, 
while a higher toll price may decrease the objective function 
value, it may also increase the constraint function value by 
creating a more significant drop in the inflow to the PZ. A 
further reduced inflow equates to a more notable network 
flow drop and hence, a larger hysteresis loop in the NFD or 
a higher level of deviation from spread. Under the non-toll-
ing scenario, the deviation from spread is the lowest as the 
PZ goes all the way to almost gridlock with no network un-
loading/recovery (see Figure 2(c)). The solution to the bi-ob-
jective TLP is shown in Figure 6(b) which corresponds to the 
corner point at the intersection of the Pareto front and the 
constraint limit line in Figure 6(a). The solution to the single-
objective TLP is also shown by the green cross which has a 
lower objective function value but a higher constraint func-
tion value, as expected. Figure 6(c-f) show, respectively, the 
simulated averaged NFD, density, speed, and queue time se-
ries of the PZ under the optimal tolling scenario. The tolling 
NFD successfully maintains itself within the free-flow and at 
or near the capacity regimes without entering the congested 
branch of the non-tolling NFD. Traffic conditions in the PZ 
experience significant improvement with much lower densi-
ties and queues, and larger speeds. 
 
4.4 Comparing the two optimal solutions 
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Figure 7(a) compares the simulated NFDs of the PZ. The 
NFD from bi-objective optimization shifts more to the right 
because the heterogeneity constraint results in a lower toll 
price and hence a higher objective function value. Neverthe-
less, due to a lower constraint function value, higher flows 
are achieved during network loading which equates to a re-
duced network flow drop. During the transition period, alt-
hough the NFD from bi-objective optimization works at 
higher densities, it produces similar or even slightly higher 
flows. Assuming a trapezoidal network exit function, there is 
a range of densities centering around the critical network den-
sity within which the flow can maintain at or near capacity 
(Daganzo, 2007; Mahmassani et al., 2013). Another observa-
tion is that the NFD from single-objective optimization ex-
hibits a more significant local oscillatory loop. While the den-
sity remains almost constant, the flow undergoes a near-ver-
tical jump along with a more heterogeneous distribution of 
congestion (see Figure 7(a) and (b)). This was also reported 
in Simoni et al. (2015). During network unloading/recovery, 
both NFDs exhibit a sizable hysteresis loop amplified by the 
very low demand entering the PZ at the end of simulation. 
Figure 7(b) shows that, although bi-objective optimization 

leads to higher densities, it produces slightly and consistently 
higher flows throughout the tolling period due to a lower 
level of the deviation from spread. Figure 7(c) and (d) show 
the average travel time in the PZ and in the entire network, 
respectively. Compared with the non-tolling scenario, the 
two optimal TLP solutions reduce the average travel time in 
the PZ by an average of 29.5% and 21.6%, respectively. Bi-
objective optimization achieves less travel time improvement 
in the PZ because it allows the density to evolve further be-
yond the critical network density. While one may immedi-
ately question the 7.9% loss of travel time improvement in 
the PZ, a comparison between the average travel time in the 
entire network certainly provides the answer. Compared with 
the non-tolling scenario, bi-objective optimization reduces 
the average travel time in the entire network by an average of 
2.5%, which is 1.1% higher than that by single-objective op-
timization. Hence, bi-objective optimization essentially man-
ages to convert the 7.9% loss of travel time improvement in 
the PZ into the 1.1% gain of travel time improvement in the 
entire network. While producing less network-wide travel 
time improvement in the first two replications, single-objec-
tive optimization slightly increases the average network 

 

  

(a) (b) (c) 

   
(d) (e) (f) 

Figure 6 (a) Distribution of the 100 sample points based on their objective and constraint function values, (b) optimal 
distance and delay toll patterns from solving the bi-objective TLP, (c) simulated NFDs for all replications (dashed lines) 
and the averaged NFD (solid line) of the PZ, (d-f) time series of density, speed, and queue of the PZ (dashed/solid lines 
represent the before-/after-pricing scenario) 
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travel time in the third replication probably due to overcharg-
ing the PZ and shifting congestion to the peripheral network. 
Two questions remain to be answered: (i) why is the travel 
time improvement in the entire network much lower than that 
in the PZ? And (ii) is it worthwhile to achieve the 1.1% gain 
of travel time improvement in the entire network at the cost 
of the 7.9% loss of travel time improvement in the PZ? 

The answer to the first question is quite straightforward. 
The scale effect is a major reason given that the PZ only 

covers a relatively small area of the entire network (see Fig-
ure 2(a)). It is therefore no surprise that the performance of 
the entire network changes very little (see Figure 7(e)) when 
pricing a relatively small sub-network (Gu et al., 2018c). The 
performance of the entire network may even reduce, e.g. in 
the third replication, due to the redistribution of detour vehi-
cles around the PZ which is highly dependent on the network 
configuration and the structure and magnitude of the de-
mand, and hence case-specific. The proposed surrogate-

 
 

(a) (b) 

  
(c) (d) 

 
(e) 

Figure 7 Comparing the two optimal solutions: (a) simulated averaged NFDs of the PZ, (b) deviation, density, and flow 
time series of the PZ, (c) average travel time in the PZ, (d) average travel time in the entire network, and (e) density, speed, 
and queue time series of the entire network 
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based optimization framework represents an uncoordinated 
approach to pricing system design as our focus is explicitly 
and entirely on optimizing the performance of the PZ. There-
fore, we need to check and ensure in an unsystematic manner 
that the optimal solution does not create unintended evident 
deterioration in the performance of the entire network. This 
is perhaps a limitation of our approach that motivates further 
investigation into two- or multi-area coordinated pricing. 

The answer to the second question is a quick yes, at least 
from the authors’ perspective. While acknowledging the fact 
that 1.1% is much lower and hence less seemingly appealing 
than 7.9%, we emphasize that the average travel time is nor-
malized against the total distance traveled. Given that the to-
tal distance traveled in the entire network is over 60 times of 
that in the PZ, the total travel time saving in the entire net-
work offered by the 1.1% is accordingly much higher than 
that in the PZ offered by the 7.9%. Indeed, we achieve on 
average a further network-wide total travel time saving of al-
most 700 hours. Hence from the entire network point of 
view, it is worthwhile to achieve the 1.1% gain of travel time 
improvement in the entire network at the cost of the 7.9% 
loss of travel time improvement in the PZ. 
 

5 CONCLUSIONS 
 
Toll optimization in a large-scale congested traffic net-

work is often characterized by an expensive-to-evaluate ob-
jective function that requires considerable computational ef-
fort. An analytical solution or a brute force method is hardly 
possible as well as any commonly used metaheuristics. 
Therefore, in this paper, we solve two TLPs in a large-scale 
congested traffic network using surrogate-based optimiza-
tion, a computationally efficient method for solving optimi-
zation problems that would otherwise involve much more ex-
pensive objective function evaluations. Specifically, we ap-
ply RK in conjunction with EI sampling as a global search 
method to determine the optimal toll pattern. Using the NFD 
to describe the level of network-wide congestion, we aim to 
optimize the time-varying JDDT such that the NFD of the PZ 
does not enter the congested regime. This logic formulates 
the first TLP which is a single-objective optimization prob-
lem. The second TLP is a direct extension by further consid-
ering minimizing the heterogeneity of congestion distribu-
tion. This is achieved by adding another objective in the for-
mulation. To solve the bi-objective optimization problem, 
we convert one of the objectives into a constraint and refor-
mulate a single-objective optimization problem. 

A large-scale simulation-based DTA model of Melbourne, 
Australia is used to demonstrate the applicability of the sur-
rogate-based toll optimization framework. Results show that 
both the optimal TLP solutions significantly improve the 
traffic conditions in the PZ including increased network 
speed, decreased network density, queue, and average travel 
time, and an NFD without the congested branch. A compar-
ison further illuminates the advantage of bi-objective 

optimization. By considering and reducing the heterogeneity 
of congestion distribution, we achieve higher flows in the PZ 
as well as a lower average travel time or a higher total travel 
time saving in the entire network. We emphasize that surro-
gate-based optimization is also applicable to a wide range of 
high-dimensional network design problems other than toll 
optimization investigated in this paper. 

The current research can be extended in a few promising 
directions. The first direction is to build and integrate a de-
mand model with the DTA model to reflect more realistically 
drivers’ behavioral changes in response to pricing. We do 
admit, however, that building a demand model itself is not a 
trivial task. The second direction, as has been touched upon 
early in the paper, is to investigate a coordinated approach 
that considers both the PZ and the peripheral network. This 
could be a major step towards designing a landmark coordi-
nated multi-area pricing system. Note that the JDDT com-
prises a delay toll component and hence might raise safety 
concerns. An expedient is to apply speed limits and speeding 
penalties to discourage aggressive driving. To the best of our 
knowledge, different area-based pricing regimes have their 
respective pros and cons and there is no perfect one that cur-
rently exists in the literature. Further effort along this re-
search line is therefore particularly desirable. 
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APPENDIX A 

 
To investigate the effects of toll pattern smoothing param-

eters 𝛼 and 𝛽 on the pricing control results, we perform a 
sensitivity analysis with two additional pairs of parameters: 
(i) 𝛼 = /

È
(1 − 0) = 0.2, 𝛽 = /

È
(15 − 0) = 3, and (ii) 𝛼 =

/
t
(1 − 0) = 0.5, 𝛽 = /

t
(15 − 0) = 7.5. Theoretically speak-

ing, a larger pair of 𝛼 and 𝛽 imposes less constraint on the 
optimization and hence would achieve a better optimal ob-
jective function value, and vice versa. With a larger pair of 
𝛼 and 𝛽, the optimal toll patterns shown in Figure A.1(c) is, 
as expected, less smooth than those shown in Figure A.1(a). 
Accordingly, the simulated averaged NFD shown in Figure 
A.1(d) exhibits more chaotic behavior than that shown in 
Figure A.1(b) possibly due to the radical changes in the toll 
rates. 

 

  
(a) (b) 

  
(c) (d) 

Figure A. 1 Sensitivity analysis on the toll pattern smoothing 
parameters: (a) and (b) 𝜶 = 𝟎. 𝟐,𝜷 = 𝟑, (c) and (d) 𝜶 =
𝟎.𝟓, 𝜷 = 𝟕. 𝟓 

 
APPENDIX B 

 
We further apply the surrogate-based optimization method 

to solve the single-objective TLP but with different percent-
ages of adaptive driving in the simulation model including 
60%, 80%, and 100%. Note that for this sensitivity analysis, 
we only consider the first replication of the simulation as it 
is far more time-consuming to run all the three replications. 
Also note that a higher percentage of adaptive driving gener-
ally leads to less congestion in the network and hence, we 
have to manually create some congestion by increasing the 
demand. 

Figure B.1 clearly shows that the surrogate-based optimi-
zation method is robust and performs well for different as-
sumed percentages of adaptive driving in the simulation 
model. The optimal objective function values as shown in 
Figure B.1(a) consistently reduce and converge as the num-
ber of function evaluations increases to 100. The before-and-
after comparison of the simulated NFDs of the PZ as shown 
in Figure B.1(b-d) further confirms that the method works 
well across different adaptive driving scenarios and that the 
pricing control objective is consistently achieved (recall that 
25 vpkmpl is the pricing control threshold). 
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(c) (d) 

Figure B. 1 Sensitivity analysis on the percentage of adap-
tive driving: (a) changes in the optimal objective function 
value as the number of function evaluations increases, and 
(b-d) 60%, 80%, and 100% adaptive driving 


