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Abstract:  This article is the first in the literature to 
investigate the network traffic equilibrium for travelling and 
parking with autonomous vehicles (AVs) under a fully 
automated traffic environment. Given that AVs can drop off 
the travellers at their destinations and then drive to the 
parking spaces by themselves, we introduce the joint 
equilibrium of AV route choice and parking location choice, 
and develop a variational inequality (VI) based formulation 
for the proposed equilibrium. We prove the equivalence 
between the proposed VI model and the defined equilibrium 
conditions. We also show that the link flow solution at 
equilibrium is unique, even though both the route choices 
and parking choices are endogenous when human-occupied 
AV trips (from origin to destination) and empty AV trips (from 
destination to parking) are interacting with each other on the 
same network. We then develop a solution methodology 
based on the parking-route choice structure, where we adjust 
parking choices in the upper level and route choices in the 
lower level. Numerical analysis is conducted to explore 
insights from the introduced modelling framework for AV 
network equilibrium. The results reveal the significant 
difference in network equilibrium flows between the AV and 
non-AV situations. The results also indicate the sensitivity of 
the AV traffic pattern to different factors, such as value of 
time, parking pricing and supply. The proposed approach 
provides a critical modelling device for studying the traffic 
equilibrium under AV behaviour patterns, which can be used 
for the assessment of parking policies and infrastructure 
development in the future era of AVs. 
 
 

1 BACKGROUNDS 
 

In recent years, automobile and technology industries 
bring the potential of computerisation into driving, leading 
to the anticipation of a new version of future transportation - 

autonomous vehicles (AVs). The advancements in 
communication technology provide such a new vehicle mode 
with the capability of intelligent motion and action, including 
adaptive steering control and autonomous parking assistance 
systems (Burns, 2013). The emergence of AVs has the 
potential to reduce crashes, ease congestion and increase 
energy efficiency, particularly considering car sharing. In 
particular, AVs could completely change mobility in the 
coming decades (Soteropoulos et al., 2019). As AVs can 
drive themselves on roads and automatically navigate 
multiple types of traffic environment contexts, direct human 
inputs are no longer needed to complete daily trips. This 
means that former drivers could engage in other activities in 
an AV, such as having meals. Such a dramatic transformation 
not only increases the utility of commutes, but also provides 
mobility to vulnerable groups, such as the disabled. Although 
AVs are not yet available to a mass market, the rapid 
development of the technology in automation and robotics 
will break down the barriers to implementation and market 
penetration, which indicates revolutionization in motoring in 
the foreseeable future (Qu, 2009; Fagnant and Kockelman, 
2015).To prepare a healthy transportation system for the era 
of autonomous vehicles, transportation scientists are obliged 
to first give an answer to the important question – how will 
the AVs potentially change the network traffic performance? 
This is because a reliable estimation of network traffic 
pattern serves as the foundation of system assessment and 
governmental policymaking for infrastructure development. 
One methodological approach through which the network 
traffic pattern can be examined is the traffic assignment 
under the user equilibrium (UE) principle, which is also 
recognised as the network equilibrium. In the area of traffic 
assignment, the notion of user equilibrium was initially 
proposed by Wardrop (1952), followed by intensive research 
efforts in transport network modelling (Evans, 1976; Friesz, 
1983; Hamdouch et al., 2004; Ban et al., 2006; Unnikrishnan  
et al., 2009; Duthie  et al., 2010; Bar-Gera, 2010; Jiang et al., 
2012; Ferguson et al., 2012; Meng et al., 2014; Patriksson, 
2015; Yang et al., 2017; Zhang and Waller, 2018; Xie et al., 
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2019). The Wardropian UE principle holds the selfish route-
choice assumption, which states that every traveller 
minimises his or her own travel cost, and no one can further 
reduce the individual cost by unilaterally changing their 
routes at equilibrium.  

Previously, a diversity of network equilibrium models was 
developed to capture travellers’ behavioural realism and 
system-level traffic performance (Yang and Huang, 2004; 
Ziliaskopoulos et al, 2004; Unnikrishnan et al., 2009). For 
example, He et al. (2015), Xie and Jiang (2016), Chen et al. 
(2017b), Cen et al. (2018), and Zhang et al. (2018) modelled 
the network equilibrium considering driving ranges of 
electric vehicles and deployment of recharging facilities. 
Chen et al. (2017a) developed a mathematical framework for 
the optimal design of AV zones in a general network. Wen et 
al. (2018a, 2018b) and Duell et al. (2018) introduced the 
strategic user equilibrium accounting for demand volatility, 
which can replicate the behaviour of observed link travel 
time variability.  

In the scientific literature, transportation system analysis 
considering parking behaviour, which incorporates parking 
demand and cruising to find an appropriate vacant space, has 
attracted increasing attention. This is because the parking 
activity is an essential component in the travelling process, 
which could significantly influence the transportation system 
performance (Zhang et al., 2005; Lam et al., 2006; Li et al., 
2007, 2008; Zhang et al., 2008). For instance, Jiang and Xie 
(2014) addressed a network equilibrium problem with 
combined destination, route and parking choices under 
mixed-vehicular traffic consisting of both gasoline vehicles 
and electric vehicles. Boyles et al. (2015) presented a 
modelling framework which incorporated parking search 
into traffic assignment under the network equilibrium 
conditions. Liu et al. (2018) formulated the network traffic 
equilibrium with park-and-ride facilities. All of the above-
referenced studies explored the extent to which parking 
behaviour and relevant policies could impact the equilibrium 
traffic pattern with traditional non-autonomous vehicles. 

Although significant research efforts have been made to 
the network equilibrium modelling, analysis on the joint 
equilibrium of route and parking choice for autonomous 
vehicles is still lacking. This gap is to be properly addressed, 
and AVs may significantly reshape the parking-related 
problems. In central business districts of cities where the 
level of human activity is high, the space available for 
parking purposes is costly and limited, while, on the other 
side, a great deal of parking demand is generated by 
commuters every day (Van Ommeren et al., 2012). These 
traffic-related externalities incur a huge social parking cost 
considering the value of land at city centres, and meanwhile 
cause inconvenience or losses to travellers (Arnott et al., 
1991). For example, given a non-AV environment, travellers 
may have to drive their cars to search for a vacant parking 
space, which can be very costly to travellers. To mitigate 
these issues, academic studies related to parking have been 
experiencing a surge in popularity, particularly with the 
focuses on cruising for parking (Shoup 2006; Arnott and Inci, 
2006; Inci and Lindsey, 2015; Liu and Geroliminis, 2016), 
parking reservation or permit schemes (Yang et al., 2013; Liu 
et al., 2014; Shao et al., 2016; Chen et al., 2019), and parking 
pricing (Arnott et al., 1991; Qian and Rajagopal, 2014; 
Zheng and Geroliminis, 2016; Nourinejad and Roorda, 2017). 
However, all of these parking-related studies propose 

approaches for non-AV transportation systems. By contrast, 
in the context of AVs, the new behaviour patterns are 
threefold: (i) AVs can drop off commuters at the workplace 
and then find a parking spot via self-driving, which means 
that commuters are no longer need to spend time in cruising 
for parking by themselves; (ii) since AVs can drop off 
commuters before finding a parking spot via self-driving, the 
parking location is not necessarily close to the city centre, 
resulting in savings in land use at city centres and reductions 
in social parking costs; (iii) the time spent in walking 
between the parking lot and the workplace and that in 
searching for an available space within a parking facility can 
be completely eliminated with AV commutes. 

Motivated to incorporate the abovementioned new 
behaviour patterns associated with AVs, this study develops 
a modelling framework for network equilibrium with 
parking when commuters travel with AVs. Under such a 
framework, parking location choice is determined jointly 
with the route choice. Moreover, the parking flows (from 
travellers’ destinations to the chosen parking locations) and 
the commuting flows (from travellers’ origins to the 
destinations) are interacting with each other on the same 
network, which adds complexity to the modelling of the joint 
route and parking location choice problem. Recently, Liu 
(2018) has modelled the equilibrium of commuting and 
parking with AVs in a linear city. However, Liu (2018) is 
based on a highly stylized city setting. This study extends the 
literature by investigating the AV route-and-parking choice 
equilibrium notion at the network-wide level and exploring 
insights into autonomous system performance. For the sake 
of smart planning policies for future automated 
transportation, the achievements of this study are to provide 
answers to the following two important questions: (i) What 
are the essentials of network equilibrium with AV 
commuting and parking with regards to the non-AV 
situation? (ii) How do different influencing factors modify 
the equilibrium network performance in a fully autonomous 
transportation system? These factors including, e.g., the 
potential reduced value of in-vehicle time for AV trips. 

We differentiate our research work from the existing 
scientific literature on traffic assignment modelling by three 
dimensions and summarise the novelty of this study as 
follows. First, we originally develop a rigorous modelling 
framework for network equilibrium of commuting and 
parking under a fully AV environment. Second, we explore 
insights into the comparison between the equilibrium traffic 
pattern under the AV situation and that under the non-AV 
situation. Third, we investigate the sensitivity of autonomous 
vehicular traffic equilibria to multiple influencing factors, 
such as value of time for AVs, parking pricing and supply. 

In the era of AVs, there exist multiple possible scenarios: 
(i) privately-owned AVs; (ii) shared AVs, including ride-
hailing and car-sharing (Haboucha et al., 2017). This study 
investigates the AV network equilibrium under Scenario (i), 
while follow-up studies will cover both options. Consistent 
with the opinion in the literature, we believe that Scenario (i) 
is a possibility in the foreseeable future. Some of the reasons 
are summarised as follows. On the producer’s side, most 
major car manufacturers are racing to develop fully 
autonomous vehicles (Guerra, 2016). This implies that the 
supply of AVs is expected to satisfy the need of AV 
ownership. In addition, most developed AVs are electrified, 
and the cost of electric vehicles (EVs) have been falling. This 
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is because of the rapid development of battery technology 
(Nykvist and Nilsson, 2015) and the government incentive 
policy to lower the upfront purchasing cost of EVs for 
consumers (Zhou et al., 2015; Noori and Tatari, 
2016). Meanwhile, with the improvements in driverless 
technology, there will be a significant reduction in the 
production cost for AVs (Sergeenkov, 2019). Based on the 
above analysis, the mass-market penetration of AVs at an 
acceptable price can be anticipated. On the consumer’s side, 
people are motivated to own personal AVs, in consideration 
of convenience, reliability, costs and status (Litman, 2019). 
Particularly, private ownership of AVs will benefit people on 
high incomes, due to their larger travel distances and higher 
perceived value of time (Wadud, 2017). The existing studies 
also claim that individuals who currently own vehicles are 
likely to prefer private ownership of AVs to the mode of 
shared use (Lavieri et al., 2017).  

The rest of this article is structured as follows. Section 2 

introduces the concept of the network equilibrium with AV 
travelling and parking. Section 3 presents the modelling 
framework for the defined equilibrium by using the 
variational inequality formulation. Section 4 develops the 
methodological approach to solve the proposed model. 
Numerical analysis is conducted in Section 5. Finally, 
concluding remarks are provided in Section 6. 

 
 

2 NETWORK EQUILIBRIUM WITH AV 
 

In this section, we define a new mathematical concept of 
the network equilibrium with both route choice and parking 
location choice under autonomous transportation systems. 
Notations used in this article are summarised in Table 1 
unless otherwise specified. 

 
 

Table 1 
Mathematical notations 

Notation Description 
𝐺 Network graph 
𝑂 Set of origin node: {𝑟} 
𝐷 Set of destination node: {𝑠} 
𝐴 Set of link: {𝑎} 
𝑃 Set of parking node: {𝑝} 
𝛺 Set of origin-destination (OD) pair:{(𝑟, 𝑠)} ⊆ 𝑂 × 𝐷 
𝑡3 Travel time on link 𝑎 

𝑑56 Travel demand between OD pair (𝑟, 𝑠) 
𝒅 Travel demand vector, [𝑑56] 
𝑞56,; The travel demand between OD pair (𝑟, 𝑠) ending up with parking location 𝑝 
𝒒 Vector of demand by parking location, =𝑞56,;> 
𝒒∗ Vector of demand by parking location at equilibrium, =𝑞56,;∗ > 
𝐷@A@ Total travel demand for the network 
𝜋 Path index 
𝛱 Set of paths 
𝛱56 Set of paths for OD pair (𝑟, 𝑠) 
𝑇56,E The travel time from 𝑟 to 𝑠 through path 𝜋, 𝜋 ∈ 𝛱56 
ℎ56,E Flow on path 𝜋 from origin 𝑟 to destination 𝑠, 𝜋 ∈ 𝛱56 
𝒉 Path flow vector for the network, =ℎ56,E> 
𝒉∗ Equilibrium path flow vector, =ℎ56,E∗ > 
𝑓3 Flow on link 𝑎 ∈ 𝐴 
𝒇 Link flow vector  [𝑓3] 
𝒇∗ Equilibrium link flow vector [𝑓3∗] 
𝛼 The value of time for driving AVs 
𝛽 The value of time for AV self-driving 
𝑍; Parking fee at the parking lot 𝑝 
𝛹; Capacity of parking lot 𝑝 
𝐶56,; Travel disutility for a trip from origin 𝑟 to destination 𝑠, ending up with parking location 𝑝 
𝐶56,;∗  Travel disutility at equilibrium for a trip from origin 𝑟 to destination 𝑠, ending up with parking 

location 𝑝 
𝑈56 Set of feasible parking locations for OD pair (𝑟, 𝑠) 
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2.1 AV travel process and disutility 

We first describe the AV travel process. For commutes 
with AVs, the travel process follows the procedure: Depart 
from the origin → Arrive at the destination (e.g. workplace, 
school, shopping centre) and drop off commuters → Find a 
parking place by AV self-driving. This process has been 
discussed in Liu (2018). It has multiple significant 
differences from travels with non-AVs, particularly: (i) with 
AVs, commuters first reach the final destination, and then 
find an appropriate parking space, while with non-AVs, the 
parking location has to be determined prior to arrival to the 
destination; (ii) Walking from the parking spot to the final 
destination is eliminated for AV commutes, so that AVs can 
be parked far away from the destination with no concern for 
an unacceptable walking distance; (iii) Value of time (VoT) 
for driving AVs and AV self-driving is considered to be 
different from that for driving non-AVs, which would have 
impacts on travellers’ route choice behaviour. 

We now describe the decision-making on travel and 
parking choices for AV commuters. The AVs select an 
appropriate parking location prior to a trip, which will 
minimise the total individual travel disutility from the origin 
to the final parking location via the destination. In line with 
the parking choice and the willingness to minimise 
individual travel disutility, they will choose two shortest 
paths with minimal travel time, which includes one 
connecting from the origin to the destination, and the other 
one connecting from the destination to the selected parking 
location. This parking-route choice structure is later on 
utilised to develop the solving approach for the equilibrium 
model. Note that in reality, these choices (route and parking 
location) might be made simultaneously. 

We denote 𝐶56,; as the travel disutility for AVs that depart 
from the origin 𝑟 and travel to destination 𝑠, dropping off 
commuters, and finally arrive at the parking location 𝑝 via 
self-driving. We assume that for each OD pair, the feasible 
parking locations can be predetermined prior to a trip. We 
then formulate 𝐶56,; measured in cost unit as follows 

𝐶56,; = 𝛼 ∙ 𝑇56 + 𝛽 ∙ 𝑇6; + 𝑍;, ∀𝑟 ∈ 𝑂, 𝑠 ∈
𝐷, 𝑝 ∈ 𝑈56. 

(1)   

where 𝑇56 and 𝑇6; are respectively the travel time from the 
origin node 𝑟  to the destination node 𝑠  and that from the 
destination node 𝑠  to the parking facility 𝑝 ; the physical 
meanings of the other terms can be found in Table 1.  
It is expected that 𝛼 and 𝛽 are less than the value of time for 
driving a conventional vehicle, as people can get some benefit 
(such as relaxation) that results from driving automation in an 
AV environment. However, this does not mean that AV 
commuters do not care about the travel time. This is because 
the travel time directly contributes to the travel disutility with 
AVs, which is reflected in Equation (1). There are many 
reasons behind this. For example, even if commuters can do 
some work other than driving in their AVs, they are not 
absolutely free to do anything (for instance, having sports, 
doing housework). This mean that an increase in the in-
vehicle travel time will cause a sacrifice of time to be spent 
on some other activities (or at least less flexibility). For 
another example, a travel-time increase usually means an 
increase in the travel distance or a decrease in the vehicle 
speed, which could incur a greater cost of energy 

consumption (Zhang et al., 2019). Hence, each AV commuter 
is motivated to reduce his or her own travel time and travel 
disutility, resulting in a user-equilibrium traffic pattern. Next 
section will discuss the mathematical representation of the 
network equilibrium with AVs. 
 
2.2 Equilibrium of travel and parking with AVs 

The equilibrium conditions of parking location choice can 
be written as follows. 

U𝐶56,;∗ − 𝐶56W X ∙ 𝑞56,;∗ = 0 ,	 ∀𝑟 ∈ 𝑂, 𝑠 ∈ 𝐷, 𝑝 ∈
𝑈56, 

(2)    

𝐶56,;∗ ≥ 𝐶56W , ∀𝑟 ∈ 𝑂, 𝑠 ∈ 𝐷, 𝑝 ∈ 𝑈56, (3)  

𝑞56,;∗ ≥ 0, ∀𝑟 ∈ 𝑂, 𝑠 ∈ 𝐷, 𝑝 ∈ 𝑈56, (4)    

where 𝐶56W  is the minimal overall travel disutility for trips 
between OD pair (𝑟, 𝑠) ; 	𝐶56,;∗  and 𝑞56,;∗  respectively 
represent the corresponding values of 𝐶56,;  and 𝑞56,;  at 
equilibrium. In terms of travel demand, =𝑞56,;>  can be 
transformed into [𝑑56]  combined with =𝑑6;> , where [𝑑56] 
represents the travel demand vector including each OD pair 
(𝑟, 𝑠), and =𝑑6;>  is the vector of travel demand from the 
destination node 𝑠  to the parking location 𝑝 . With 𝒒 =
=𝑞56,;> considered given, we can determine the values of 𝑑56 
and 𝑑6; as follows 

𝑑56 = ∑ 𝑞56,;;∈]^_ , ∀𝑟 ∈ 𝑂, 𝑠 ∈ 𝐷, (5)    

𝑑6; = ∑ 𝑞56,;5∈` , ∀𝑠 ∈ 𝐷, 𝑝 ∈ 𝑃. (6)    

Furthermore, the following demand conservation 
relationships between 𝑑56 and 𝑑6; must hold. 

∑ 𝑑565∈` = ∑ 𝑑6;;∈a , ∀𝑠 ∈ 𝐷, (7)    

∑ 𝑑565∈`,6∈b = ∑ 𝑑6;6∈b,;∈a = 𝐷@A@. (8)    

=𝑑6;> can be considered as the newly derived travel demand 
𝒅c = =�̅�56eee> due to parking activities, wherein we have  

𝑑e𝑟𝑠c = 𝑑𝑠𝑝, �̅� = 𝑠 ∈ 𝑂e, �̅� = 𝑝 ∈ 𝐷c,.  (9)    

where 𝑂e = {𝑠}, 𝐷c = {𝑝}. Also, for the trips from 𝑠 to 𝑝, we 
define the OD set 𝛺e as  𝛺e = {𝑠, 𝑝} = {(�̅�, �̅�)} ⊆ 𝑂e × 𝐷c, and 
the set of paths connecting each (�̅�, �̅�) as 𝛱56eee. 

Equation (9) indicates that the traveller’s destination can 
be treated as a new origin for the AVs serving them. This is 
because once travellers are dropped at their destinations, 
their AVs will start with this destination and complete 
another trip for the parking purpose. Then, we define the 
transformed OD set as 𝛺f = {(𝑟f, 𝑠f)} = 𝛺 ∪ 𝛺e ⊆ 𝑂f × 𝐷f, 
with the path set for each OD pair (𝑟f, 𝑠f) as 𝛱5h6h = 𝛱56 ∪
𝛱56eee. We can then determine the corresponding travel demand 
as 𝒅′ = =𝑑5h6h

f >, where we have 
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 𝑑𝑟′𝑠′
′ =

⎩
⎪
⎨

⎪
⎧𝑑𝑟𝑠 + 𝑑

e𝑟𝑠c ,														𝑖𝑓	U𝑟′, 𝑠′X = (𝑟, 𝑠) = (𝑟e, 𝑠e)
𝑑𝑟𝑠,																										𝑖𝑓	U𝑟′, 𝑠′X = (𝑟, 𝑠) ≠ (𝑟e, 𝑠e)
𝑑e𝑟𝑠c ,																										𝑖𝑓	U𝑟′, 𝑠′X = (𝑟e, 𝑠e) ≠ (𝑟, 𝑠)
0,															𝑖𝑓	U𝑟′, 𝑠′X ≠ (𝑟e, 𝑠e), U𝑟′, 𝑠′X ≠ (𝑟, 𝑠)

	  
(10)   

 
Given the parking choice, the AVs will always choose the 

shortest route with the minimal travel time, for the travel 
with AVs from the origin to the destination and from the 
destination to the selected parking location. This means that 
the network traffic pattern will be formed by assigning the 
equivalent demand 𝒅′ under user equilibrium, at which no 
one can further reduce the individual travel time by 
unilaterally changing his or her route. Different from 𝒅, the 
transformed OD demand vector 𝒅′ is variable in this context. 
This is because 𝒅′  contains the demand �̅�56eee  from the 
destination to the parking location, while the parking 
location choice is associated with the decision vector 𝒒 , 
which is not known a priori. Mathematically, as per 
Equations (6) and (9), the variable �̅�56eee (a component of 𝑑5h6h 
as shown in Equation (10)) is calculated by using =𝑞56,;>, 
which is yet to be solved in the proposed equilibrium 
problem. 

With the transformed OD demand, the equilibrium 
condition of route choice by AVs can then be written as 
follows. 

U𝑇5h6h,E
∗ − 𝑇5h6hpX ∙ ℎ5h6h,E

∗ = 0, ∀𝑟f ∈ 𝑂f, 𝑠f ∈
𝐷f, 𝜋 ∈ 𝛱5h6h, 

(11)    

𝑇5h6h,E
∗ ≥ 𝑇5h6hp , ∀𝑟f ∈ 𝑂f, 𝑠f ∈ 𝐷f, 𝜋 ∈ 𝛱5h6h, (12)   

ℎ5h6h,E
∗ ≥ 0, ∀𝑟f ∈ 𝑂f, 𝑠f ∈ 𝐷f, 𝜋 ∈ 𝛱5h6h. (13)   

𝑇5h6hp represents the minimum travel time from the origin 𝑟′ 
to the destination 𝑠′ , and we have 𝑇5h6hp = min

E∈t^h_h
𝑇5h6h,E . 

Also, we let 𝒉f = =ℎ5h6h,E> and  𝒉f∗ = =ℎ5h6h,E
∗ >. One of the 

benefits of the OD transformation is that the traffic attributes 
(e.g. flow, demand) for both the trip from 𝑟  to 𝑠 and that 
from 𝑠 to 𝑝 are considered with the derived OD set 𝛺f in our 
equilibrium analysis. For example, 𝒉′  contains path flow 
between 𝑟 and 𝑠 and that between 𝑠 and 𝑝. 

Note that, for simplicity, many existing studies on network 
equilibrium with parking have employed special links (e.g. 
fictitious links) connecting the destination and the parking 
place. By contrast, we assign the demand that results from 
the cruise-for-parking via AV-self driving to the real network. 
By doing this, we can investigate the significance of AV 
parking events to the equilibrium traffic pattern, which will 
be further discussed in Section 5.   

Based on the above analysis, we can define the joint user 
equilibrium of parking location choice and route choice in 
the fully AV environment as follows. In the next section, we 
will present the modelling framework for the defined 
network equilibrium. 
 
Definition 1. A traffic pattern (𝒉f∗ , 𝒒∗) is formed at user 
equilibrium of parking location and route choice under a 
fully AV environment, if it satisfies the conditions (2) through 

(4), and (11) through (13) simultaneously. 
 
 

3 MODEL FORMULATION 
 

In this section, we develop the modelling framework for 
the proposed user-equilibrium traffic assignment problem for 
AVs, and then investigate the problem equivalency and 
solution properties. In this section, we use the variational 
inequality (VI) as the modelling medium, which was initially 
introduced by Smith (1979) and Dafermos (1980). Different 
from previous works, this study develops a VI model 
formulation for the joint equilibrium of AV commuting and 
parking on the network level. 
 
3.1 VI formulation for network equilibrium with AVs 

We first denote Φ as the set of combinations of feasible 
route flow ℎ5h6h,E  and travel demand by parking locations 
𝑞56,; . Then, ℎ5h6h,E  and 𝑞56,;  must satisfy Equations (5) 
through (10), as well as the following constraints. 

𝑞56,; ≥ 0, ∀𝑟 ∈ 𝑂, 𝑠 ∈ 𝐷, 𝑝 ∈ 𝑈56, (14)   

𝑑56 − ∑ 𝑞56,;;∈]^_ = 0, ∀𝑟 ∈ 𝑂, 𝑠 ∈ 𝐷, (15)   

ℎ5h6h,E ≥ 0, ∀𝑟f ∈ 𝑂f, 𝑠f ∈ 𝐷f, 𝜋 ∈ 𝛱5h6h, (16)   

𝑑𝑟′𝑠′
′ − ∑ ℎ𝑟′𝑠′,𝜋𝜋∈𝛱𝑟′𝑠′

= 0, (17)   

𝑓3 = ∑ ∑ ℎ5h6h,E ∙ 𝛿3,E5
h6h

E∈t^h_h(5h,6h)∈wh , (18)    

𝑇5h6h,E = ∑ 𝑡3 ∙ 𝛿3,E5
h6h

3 , ∀𝑟f ∈ 𝑂f, 𝑠f ∈ 𝐷f, 𝜋 ∈
𝛱5h6h, 

(19)      

∑ 𝑞56,;5∈`,6∈b ≤ 𝛹;. (20)   

Equation (14) is the nonnegativity constraint on travel 
demand by parking location. Equation (15) states that the sum 
of travel demand by all the feasible parking locations for OD 
pair (𝑟, 𝑠)  is equal to the travel demand of the OD pair. 
Equations (16)-(19) are constraints associated with the traffic 
pattern obtained by assigning the equivalent demand 𝒅′ to the 
network. Equation (16) is the nonnegativity constraint on path 
flows, while (17) states that the sum of flows of the paths 
connecting OD pair (𝑟f, 𝑠′) is equal to the demand between 
(𝑟f, 𝑠′) . Equations (18) and (19) are the definitional 
constraints on link attributes and path attributes, where 𝛿3,E5

h6his 
the link-subpath incidence coefficient, which equals one if 
link 𝑎 is contained in the path 𝜋 connecting OD pair (𝑟f, 𝑠′), 
and zero otherwise. In addition, Equation (19) describes the 
conservation constraint on travel time. In this study, we 
consider flow-dependent link travel time, which is assumed 
to be monotonically increasing with the flow: 

𝑡3 = 𝑡3(𝑓3). (21)   

Inequality (20) represents the parking capacity constraint, 
which ensures that the total number of AVs parked at the 
location 𝑝 should not exceed the capacity of that parking lot. 
In a static assignment model, we investigate the traffic pattern 
for a given time unit. In this context, the parking capacity 𝛹; 
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represents the number of parking spaces available at 𝑝 for that 
time unit considered. With the Constraint (20), 𝐶56,;∗  and 𝐶56W  
in parking location choice conditions (2) through (4) are 
corresponding to the generalised travel disutility. Particularly, 
we have 
𝐶56,;∗ = 𝐶56,;∗ f + 𝑣56,;. (22)   

In Equation (22), 𝐶56,;∗ f  is the travel disutility, which is 
defined by Equation (1). Similar to 𝐶56W  within the parking 
location choice conditions, 𝑣56,; is not known a priori. 𝑣56,; 
represents the values of multipliers associated with the 
parking capacity. We have 

𝑣56,;UΨ; − ∑ 𝑞56,;5∈`,6∈b X = 0  subject to 
(20). 

(23)   

i.e. 

{
𝑣56,; ≥ 0	 → 	Ψ; = ∑ 𝑞56,;5∈`,6∈b

𝑣56,; = 0	 → 	Ψ; > ∑ 𝑞56,;5∈`,6∈b
. 

(24)   

It can be seen that 𝑣56,;  could become positive only if the 
parking location 𝑝 has been saturated at capacity. With 𝑣56,; 
incorporated, the travel disutility across all the used parking 
locations for each OD pair will be equal to the same minimum 
value.  

We present the equivalent variational inequality (VI) 
formulation for the network equilibrium described in 
Theorem 1 as follows. 

 
Theorem 1. The network traffic pattern 𝒛∗ = (𝒉f∗, 𝒒∗) 
reaches the joint user-equilibrium of parking location choice 
and route choice, if and only if it satisfies the variational 
inequality (VI) problem as follows. 

P1: 

∑ ∑ 𝐶56,;∗ ∙ U𝑞56,; − 𝑞56,;∗ X;(5,6) +
∑ ∑ 𝑇5h6h,E

∗ ∙ Uℎ5h6h,E − ℎ5h6h,E
∗ XE(5h,6h) ≥ 0,  

(25)   

subject to Uℎ5h6h,E, 𝑞56,;X ∈ 𝛷.  

When we substitute (18) and (19) into (25), the VI problem 
can be re-written by specifying the combination of link flows 
and travel demands by parking locations, i.e. 𝒛∗=(𝒇∗, 𝒒∗), as 
follows. 
 

P2: 

∑ ∑ 𝐶56,;∗ ∙ U𝑞56,; − 𝑞56,;∗ X;(5,6) + ∑ 𝑡3(𝑓3∗) ∙3

(𝑓3 − 𝑓3∗) ≥ 0,  
(26)     

subject to Uℎ5h6h,E, 𝑞56,;X ∈ Φ.  

In this section, the developed VI model describes the 
defined network equilibrium with AVs. It is worth mentioning 
that although AVs can realise driving automation, each AV is 
assumed to work for the sake of their owners, i.e. individual 
commuters. Given this, the traffic pattern obtained by the 
user-equilibrium traffic assignment model can better reflect 
choice and behaviour patterns of AVs than that by the system-
optimal one. If we consider a centralised and coordinated AV 
system, adopting system-optimal traffic assignment will be 

more appropriate. For the system-optimal assignment, on the 
modelling side, an additional term representing the marginal 
cost is to be added to the travel disutility function. The 
mathematical framework of the system-optimal traffic 
assignment for AV commuting and parking will be further 
investigated in a follow-up study. 

In Section 3.2, we will prove that the VI model formulation 
is the necessary and sufficient condition of the user-
equilibrium traffic pattern determined by the parking location 
choice conditions, i.e. (2) through (4), and the route choice 
conditions, i.e. (11) through (13).  
 
3.2 Problem equivalency 

In this part, we will demonstrate that the developed VI 
model formulation is equivalent to the notion of joint 
network equilibrium of parking location choice and route 
choice of AVs as proposed by Definition 1. The proof of 
equivalency is to show that the transformation of the 
proposed AV network equilibrium problem to the 
mathematical program is justified. 
 
3.2.1 Proof of necessity 

First, we discuss the equilibrium parking choice 
conditions (2) through (4),  from which we obtain 

U𝐶56,;∗ − 𝐶56W X ∙ U𝑞56,; − 𝑞56,;∗ X ≥ 0 , ∀𝑟 ∈
𝑂, 𝑠 ∈ 𝐷, 𝑝 ∈ 𝑈56. 

(27)    

Summing inequality (27) across all the feasible parking 
locations 𝑝 ∈ 𝑈56 and using constraint (15) yields 

∑ 𝐶56,;∗ ∙ U𝑞56,; − 𝑞56,;∗ X; ≥ 0, ∀𝑟 ∈ 𝑂, 𝑠 ∈ 𝐷. (28)    

Summing inequality (28) for all OD pairs (𝑟, 𝑠) ∈ 𝛺  yields 

∑ ∑ 𝐶56,;∗ ∙ U𝑞56,; − 𝑞56,;∗ X;(5,6) ≥ 0  (29)     

Hence, from the equilibrium conditions of parking location 
choice, inequality (29) can be derived. 

Second, we discuss the equilibrium route choice 
conditions (11) through (13). These conditions imply that 

U𝑇5h6h,E
∗ − 𝑇5h6hpX ∙ Uℎ5h6h,E − ℎ5h6h,E

∗ X ≥ 0, 
∀𝑟f ∈ 𝑂f, 𝑠f ∈ 𝐷f, 𝜋 ∈ 𝛱5h6h. 

(30)    

Summing inequality (30) over all paths 𝜋 ∈ 𝛱5h6h and using 
constraint (17) yields 

∑ 𝑇5h6h,E
∗ ∙ Uℎ5h6h,E − ℎ5h6h,E

∗ XE∈t^h_h
≥ 0. (31)    

Summing inequality (31) for all OD pairs (𝑟f, 𝑠′) ∈ 𝛺f, and 
using (18) and (21), we obtain  
∑ 𝑡3(𝑓3∗) ∙ (𝑓3 − 𝑓3∗)3 ≥ 0. (32)    

This means that inequality (32) can be derived from the route 
choice conditions (11) through (13). By combining (29) and 
(32), we obtain the VI formulation (26). This completes the 
proof of necessity. 
 
3.2.2 Proof of sufficiency 

For sufficiency, we need to prove that any solution 𝒛∗ =
(𝒇∗, 𝒒∗)  to the VI formulation (26) satisfies the user-
equilibrium conditions of parking location choice and route 
choice. First, we prove that the equilibrium route choice 
conditions (11) to (13) always hold for any solution (𝒇∗, 𝒒∗). 
When the OD demand by parking location is considered 



A network traffic assignment model for autonomous vehicles with parking choices 7 

given, in other words, we let 	𝒒  be equal to the optimal 
solution 𝒒∗, the first term in (26) will vanish. We can then 
rewrite VI (26) as follows 
∑ 𝑡3(𝑓3∗) ∙ (𝑓3 − 𝑓3∗)3 ≥ 0 , (33)      

subject to Uℎ5h6h,E, 𝑞56,;X ∈ Φ.  

As discussed early, (33) can be written by specifying the path 
flows 

∑ ∑ 𝑇5h6h,E
∗ ∙ Uℎ5h6h,E − ℎ5h6h,E

∗ XE(5h,6h) . (34)       

For any OD pair (𝑟�f, 𝑠�′) among the network, we can derive 
a feasible traffic pattern in terms of path flows as follows. 
We let ℎ5h6h,E = ℎ5h6h,E

∗ , ∀	(𝑟�f, 𝑠�′) ∈ 𝛺f\{(𝑟�f, 𝑠�′)}, ∀𝜋 ∈
𝛱5h6h. We select a path 𝜗� ∈ 𝛱5�h6�h such that ℎ5�h6�h,��

∗ > 0. 
We can always find at least one positive path flow between 
(𝑟�f, 𝑠�′), simply because the travel demand for each OD pair 
considered is positive. We then select any path 𝜗� ∈
𝛱5�h6�h\{𝜗�}, and reassign the traffic flow: Let ℎ5�h6�h,�� =
ℎ5�h6�h,��
∗ − 𝜏, ℎ5�h6�h,�� = ℎ5�h6�h,��

∗ + 𝜏, where 𝜏 is positive 
but sufficiently small, i.e. 0 < 𝜏 ≪ ℎ5�h6�h,��

∗ ; Let all the 
other path flows be equal to ℎ5�h6�h,�

∗ , ∀𝜗 ∈ 𝛱5�h6�h\{𝜗�, 𝜗�}. 
When we substitute the newly constructed traffic pattern into 
inequality (34), we can get 

�𝑇5�h6�h,��
∗ − 𝑇5�h6�h,��

∗ � ∙ 𝜏 ≥ 0. (35)       

We now discuss the following two situations: 
(i) If ℎ5�h6�h,��

∗ = 0, according to (35), 𝑇5�h6�h,��
∗ ≥ 𝑇5�h6�h,��

∗  
must hold. 
(ii) If ℎ5�h6�h,��

∗ > 0, we can use the same method to construct 
another feasible network traffic pattern by reallocating the 
flows between paths 𝜗� and 𝜗�, which yields 

�𝑇5�h6�h,��
∗ − 𝑇5�h6�h,��

∗ � ∙ 𝜏 ≥ 0. (36)       

From (35) and (36), it can be easily verified that 𝑇5�h6�h,��
∗ =

𝑇5�h6�h,��
∗  if both ℎ5�h6�h,��

∗ > 0 and ℎ5�h6�h,��
∗ > 0 hold.  

By summarising the two situations: (i) (i.e., ℎ5�h6�h,��
∗ = 0) 

and (ii) (i.e., ℎ5�h6�h,��
∗ > 0), we can conclude that for OD 

pair (𝑟�f, 𝑠�′), all the used paths have the same minimal travel 
time. In other words, the travel time of any unused path is no 
smaller than that of any used path. Given that the OD pair 
(𝑟�f, 𝑠�′)  is selected in a random manner, the above 
conclusion can be generalised to all the OD pairs among a 
network. This means that a solution to the VI formulation 
(26) satisfies the equilibrium route choice conditions that are 
formulated by (11) to (13). 

Second, we prove that the equilibrium parking location 
choice conditions (2) to (4) always hold for any solution 
𝒛∗ = (𝒇∗, 𝒒∗)  to the VI formulation (26). For any given 
parking pattern 𝒒, the travel disutility 𝐶56,;  represents the 
minimum total cost of the whole travel process, which is 
calculated based on the equilibrium flow pattern, i.e. 𝐶56,; =
𝐶56,;(𝒇), ∀𝑟 ∈ 𝑂, 𝑠 ∈ 𝐷, 𝑝 ∈ 𝑈56. We have 𝑓 ≡ 𝑓∗, because: 
(i) the transformed OD demands by AVs 𝒅′ can be uniquely 
determined when any 𝒒 is given, which can be easily verified 
by Equations (5) through (10); (ii) when assigning 𝒅′ to the 
network under user equilibrium conditions, the solution 𝒇 is 
unique (Sheffi, 1985). Hence, when considering the parking 

location choice, we can re-express the VI formulation (26) as 
follows 

∑ ∑ 𝐶56,;∗ ∙ U𝑞56,; − 𝑞56,;∗ X;(5,6) ≥ 0.  (37)     

Similar to the proof of satisfaction of the equilibrium route 
choice conditions, we present the proof for parking location 
choice as follows. We select an OD pair (𝑟�, 𝑠�) from 𝛺 in a 
random manner, and construct a travel demand pattern by 
parking locations with a reallocation of 𝜖  from parking 
location 𝜑�  to 𝜑�  such that 𝑞5�6�,�� = 𝑞5�6�,��

∗ − 𝜖 , 
𝑞5�6�,�� = 𝑞5�6�,��

∗ + 𝜖. We assume 𝑞5�6�,��
∗ > 0, given that 

such a positive travel demand by parking location must exist 
because of ∑ 𝑞5�6�,;

∗
; = 𝑑5�6� > 0 . Substituting the 

constructed demand into (37), we obtain 

U𝐶5�6�,��
∗ − 𝐶5�6�,��

∗ X ∙ 𝜖 ≥ 0. (38)     

If 𝑞5�6�,��
∗ = 0, we have 𝐶5�6�,��

∗ ≥ 𝐶5�6�,��
∗ ; If 𝑞5�6�,��

∗ > 0, 
by reconstructing the demand pattern in the same way, we 
obtain 

 U𝐶5�6�,��
∗ − 𝐶5�6�,��

∗ X ∙ 𝜖 ≥ 0, (39)     

which results in 𝐶5�6�,��
∗ = 𝐶5�6�,��

∗ . Hence, all the selected 
parking locations are corresponding to the same minimal 
travel disutility. This means that the VI formulation (26)  
satisfies not only the equilibrium condition of route choice, 
but also the equilibrium condition of the parking location 
choice. This completes the proof of sufficiency. 

To summarise, Section 3.2.1 and Section 3.2.2 provide the 
proof of equivalency between the VI formulation (25) and 
(26) and the proposed network equilibrium for AV 
commuting and parking defined in Section 2. 
 
3.3 Solution property (existence and uniqueness/non-
uniqueness) 

For the property of the proposed VI formulation, a solution 
to the model must exist as all the terms and functions within 
the model are continuous and the set of feasible flows Φ is 
nonempty and compact (Facchinei and Pang, 2003). 

In terms of convexity, since the travel disutility and route 
travel time are not necessarily monotonically increasing with 
the corresponding travel demand and route flows 
respectively, the model cannot be guaranteed to strict 
convexity with respect to the travel disutility or route travel 
time. Hence, multiple local optimal solutions might exist. To 
illustrate, we present a demonstrating example on the 
synthetic network shown in Figure 1.  

 

 
 In this demonstration, four OD pairs are considered, i.e. 

(𝑂�, 𝐷�) , (𝑂�, 𝐷�) , (𝑂�, 𝐷�)  and (𝑂�, 𝐷�) , with the travel 
demand assumed to be 𝑑`�b� = 𝑑`�b� = 𝑑`�b� = 𝑑`�b� =
50 . For the value of time, we let 𝛼 = 2 and 𝛽 = 1 in this 

 
Figure 1 Synthetic network 
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case. Also, the parking fee is assumed to be 20, and the 
parking capacity to be 150 for each of the two public parking 
places 𝑃�  and 𝑃� . The parking spots in the public parking 
places can be used by commuters travelling between any OD 
pair. The link number is labelled along the corresponding 
link on the network graph, followed by the link travel time 
function in the parenthesis where 𝑥 refers to the link flow. 

We assume that each link has two symmetric directions. By 
solving the defined network equilibrium problem for AV 
travelling and parking, we can obtain multiple solutions of 
the traffic pattern (𝒉f∗, 𝒒∗), where some are listed in Table 2. 

 
 

 
Table 2  

Example of AV network equilibrium solutions 

Example No. Solution 
𝒉f∗ 𝒒∗ 

1 

ℎ`�b�,����� = 50, ℎ`�b�,����� = 0, 
ℎ`�b�,����� = 0, ℎ`�b�,����� = 50, 
ℎ`�b�,����� = 50, ℎ`�b�,����� = 0, 
ℎ`�b�,����� = 0, ℎ`�b�,����� = 50, 

ℎb�a�,� = 50, ℎb�a�,� = 50,  
ℎb�a�,� = 50, ℎb�a�,� = 50.	

𝑞`�b�,a� = 50, 𝑞`�b�,a� = 0, 
𝑞`�b�,a� = 0, 𝑞`�b�,a� = 50,	
𝑞`�b�,a� = 50, 𝑞`�b�,a� = 0, 
𝑞`�b�,a� = 0, 𝑞`�b�,a� = 50. 

2 

ℎ`�b�,����� = 0, ℎ`�b�,����� = 50, 
ℎ`�b�,����� = 50, ℎ`�b�,����� = 0, 
ℎ`�b�,����� = 0, ℎ`�b�,����� = 50, 
ℎ`�b�,����� = 50, ℎ`�b�,����� = 0, 

ℎb�a�,� = 50, ℎb�a�,� = 50, 
ℎb�a�,� = 50, ℎb�a�,� = 50. 

𝑞`�b�,a� = 0, 𝑞`�b�,a� = 50, 
𝑞`�b�,a� = 50, 𝑞`�b�,a� = 0,	
𝑞`�b�,a� = 0, 𝑞`�b�,a� = 50, 
𝑞`�b�,a� = 50, 𝑞`�b�,a� = 0. 

3 

ℎ`�b�,����� = 20, ℎ`�b�,����� = 30, 
ℎ`�b�,����� = 30, ℎ`�b�,����� = 20, 
ℎ`�b�,����� = 20, ℎ`�b�,����� = 30, 
ℎ`�b�,����� = 30, ℎ`�b�,����� = 20, 

ℎb�a�,� = 50, ℎb�a�,� = 50, 
ℎb�a�,� = 50, ℎb�a�,� = 50. 

𝑞`�b�,a� = 20, 𝑞`�b�,a� = 30, 
𝑞`�b�,a� = 30, 𝑞`�b�,a� = 20,	
𝑞`�b�,a� = 20, 𝑞`�b�,a� = 30, 
𝑞`�b�,a� = 30, 𝑞`�b�,a� = 20. 

4 

ℎ`�b�,����� = 30, ℎ`�b�,����� = 20, 
ℎ`�b�,����� = 20, ℎ`�b�,����� = 30, 
ℎ`�b�,����� = 30, ℎ`�b�,����� = 20, 
ℎ`�b�,����� = 20, ℎ`�b�,����� = 30, 

ℎb�a�,� = 50, ℎb�a�,� = 50, 
ℎb�a�,� = 50, ℎb�a�,� = 50. 

𝑞`�b�,a� = 30, 𝑞`�b�,a� = 20, 
𝑞`�b�,a� = 20, 𝑞`�b�,a� = 30,	
𝑞`�b�,a� = 30, 𝑞`�b�,a� = 20, 
𝑞`�b�,a� = 20, 𝑞`�b�,a� = 30. 

 

The example traffic patterns described in Table 2 are 
equilibrium solutions, because it can be easily verified that 
every network user for each OD pair turns out to have the 
identical travel disutility, and no one can further reduce the 
individual travel cost by unilaterally changing his or her own 
path choice or parking choice. This reveals that at the defined 
AV network equilibrium, the solution ( 𝒉f∗ , 𝒒∗ ) is not 
necessarily unique. The equilibrium solutions in Table 2 also 
show that ℎb�a�,�, ℎb�a�,�, ℎb�a�,�  and ℎb�a�,�  are positive, 
which means that the empty trips to parking lots have caused 
additional flows on Links 3,4,5, and 6, resulting in worse 
traffic congestion.  

Despite the non-uniqueness property of (𝒉f∗, 𝒒∗), we can 
establish the uniqueness of the equilibrium link flow pattern 
𝒇∗, which is discussed in the following. 
 
Proposition 1. Given any equilibrium pattern of 𝒒∗ , the 
corresponding link flow pattern 𝒇∗ at equilibrium is unique. 
 
 Proof. With 𝒒∗ = =𝑞56,;∗>  considered given, we can 

uniquely determine the transformed OD demand 𝒅′ =
=𝑑5h6h

f > , ∀	(𝑟f, 𝑠f) ∈ 𝛺f , which can be calculated by 
Equations (5) through (10). The solution 𝒇∗ can be obtained 
by assigning the demand 𝒅′  to the network under the 
deterministic user-equilibrium conditions in this context. 
Such a traffic assignment problem with homogeneous traffic 
is strictly convex if the link travel time function is 
monotonically increasing, i.e. Equation (21), which leads to 
a unique global optimal solution in terms of link flows 
(Sheffi, 1985). 
 
Proposition 2. Given any two different equilibrium patterns 
of 𝒒𝟏∗ and 𝒒𝟐∗, the following relationship between the two 
corresponding equilibrium link flow patterns must hold: 
𝒇𝟏

∗ = 𝒇𝟐
∗, where 𝒇𝟏

∗ = =𝑓3(�)> and 𝒇𝟐
∗ = =𝑓3(�)>. 

 
Proof. First, as per Proposition 1, we confirm that with 𝒒𝟏∗ 
and 𝒒𝟐∗  given, 𝒇𝟏

∗  and 𝒇𝟐
∗  can be uniquely determined, 

respectively. Second, based on Equation (26), we have the 
following relationship under the defined network 
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equilibrium: 

∑ ∑ 𝐶56,;(�) ∙ U𝑞56,;(�) − 𝑞56,;(�)X;(5,6) +
∑ 𝑡3(�)U𝑓3(�)X ∙ U𝑓3(�) − 𝑓3(�)X3 ≥ 0,  

(40)      

∑ ∑ 𝐶56,;(�) ∙ U𝑞56,;(�) − 𝑞56,;(�)X;(5,6) +
∑ 𝑡3(�)U𝑓3(�)X ∙ U𝑓3(�) − 𝑓3(�)X3 ≥ 0.  

(41)   

By combining (40) and (41), we have: 

=∑ ∑ U𝐶56,;(�) − 𝐶56,;(�)X ∙ U𝑞56,;(�) −;(5,6)

𝑞56,;(�)X> + ¡∑ �𝑡3(�)U𝑓3(�)X − 𝑡3(�)U𝑓3(�)X� ∙3

U𝑓3(�) − 𝑓3(�)X¢ ≥ 0. 

(42)   

As per the defined equilibrium conditions of AV parking 
choice, we have 𝐶56,;(�) = 𝐶56,;(�) = 𝐶56,;∗ , which causes the 
value of the term in the first square bracket within Equation 
(42) to be zero. We can then simplify Equation (42) as 
follows: 

∑ �𝑡3(�)U𝑓3(�)X − 𝑡3(�)U𝑓3(�)X� ∙ U𝑓3(�) −3

𝑓3(�)X ≥ 0. 
(43)      

Third, under the assumption of the monotonically increasing 
link travel time function, it holds that 

�𝑡3(�)U𝑓3(�)X − 𝑡3(�)U𝑓3(�)X� ∙ U𝑓3(�) −

𝑓3(�)X ≤ 0, ∀𝑎 ∈ 𝐴, 
(44)       

and the equality is satisfied only when 𝑓3(�) = 𝑓3(�) . 
Summing (44) over all links 𝑎 ∈ 𝐴 yields 

∑ �𝑡3(�)U𝑓3(�)X − 𝑡3(�)U𝑓3(�)X� ∙ U𝑓3(�) −3∈£

𝑓3(�)X ≤ 0, 
(45)       

and similarly, the equality holds only when 𝒇𝟏
∗ = 𝒇𝟐

∗ . In 
other words, if 𝒇𝟏

∗ ≠ 𝒇𝟐
∗, we then have  

∑ �𝑡3(�)U𝑓3(�)X − 𝑡3(�)U𝑓3(�)X� ∙ U𝑓3(�) −3∈£

𝑓3(�)X < 0, 
(46)       

which obviously contradicts with inequality (43). Therefore, 
𝒇𝟏

∗ and 𝒇𝟐
∗ must be identical. 

 
In the above analysis, we have proved the uniqueness of 

the link flow pattern under the defined network equilibrium 
for AVs. One implication of the unique link flow pattern is 
that the equilibrium parking demand at each parking lot, i.e., 
parking occupancy rate, can also be uniquely determined, 
since it can be calculated as the summation of all incoming 
link flows. Another important implication of the uniqueness 
is that the evaluation of network system performance and the 
assessment of transport policies can be conducted in a 
consistent manner when compared to the case with multiple 
equilibrium solutions. 
 
 

4 SOLUTION METHODOLOGY 
 

We now discuss the solution approach for the VI 
formulation. The proposed VI formulation for network 
equilibrium with AVs is indeed the outcome of integrating 

two sequential correlated sub-problems (the route choice 
problem and the parking choice problem). Specifically, with 
the OD demand and the parking supply considered given, the 
equilibrium conditions of parking location choice, i.e. (2) 
through (4), are equivalent to the following VI sub-problem 
(i): 

P3: VI sub-problem (i):  

∑ ∑ 𝐶56,;∗ ∙ U𝑞56,; − 𝑞56,;∗ X;(5,6) ≥ 0,  (47)   

subject to (14) (15) and (20).  

With 𝒒∗ = =𝑞56,;> determined by VI sub-problem (i), the 
equilibrium conditions of route choice, i.e. (11) through (13), 
are equivalent to the following VI sub-problem (ii): 

P4: VI sub-problem (ii):  

∑ 𝑡3(𝑓3∗) ∙ (𝑓3 − 𝑓3∗)3 ≥ 0,  (48)   

subject to (5)-(10) and (16)-(19).  

Indeed, the parking choice process and the route choice 
process are interrelated with each other. Under an initial 
parking choice pattern 𝒒, the path flow pattern 𝒉f  will be 
formed with each AV commuter pursuing the minimum 
individual travel cost, resulting in an update on the link flow 
pattern 𝒇 . The updated link flows will modify the travel 
disutility 𝐶56,; , leading to the reformation of 𝒒  under the 
equilibrium conditions. This loop will continue until the 
convergence is reached. Based on the above analysis, we 
develop the solution approach for our proposed network 
equilibrium problem with AVs. The solution procedure as 
depicted in Figure 2 is summarised below.  

 
Step 1 Initialising parameters 

Ø Initialise iteration count 𝑛 = 0. 
Ø Initialise decision vectors 𝒇 = 𝒇(¥) = 𝟎 , 𝒒 =

𝒒(¥) = 𝟎 and 𝒅f = 𝒅′(¥) = 𝟎 
Step 2 Determining the initial OD demand by parking 
choices 

Ø Calculating the travel disutility 𝐶56,;(§) based on the 
free-flow traffic pattern.  

Ø Selecting 𝑝  among 𝑈56  that minimises 𝐶56,;(§) , 
assigning 𝑑56  to 𝑞56,;  by using the All-or-Nothing 
algorithm, and updating 𝒒(§). 

Step 3 Solving VI sub-problem (ii) 
Ø Determining the travel demand 𝒅′(¥¨�)   based on 

𝒒(¥) by using Equations (5)-(10). 
Ø Calculating the user-equilibrium traffic pattern 

𝒇(¥¨�)  under 𝒅′(¥¨�)  by using the Frank-Wolfe 
algorithm. 

Step 4 Modifying the solution to VI sub-problem (i) 
Ø Calculating the travel disutility 𝐶𝑟𝑠,𝑝(𝑛+1) based on 

𝒇(𝑛+1). 

Ø Imposing the All-or-Nothing algorithm to obtain 
the auxiliary OD travel demand by parking choices, 
denoted as 𝒋 = 𝒋(¥¨�) = =𝑗56,;(¥¨�)>. 

Ø Updating the OD travel demand by parking choices  
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Ø  by using the Method of Successive Averages 
(MSA) algorithm: 

𝒒(𝑛+1) = ¡𝑞𝑟𝑠,𝑝(𝑛+1)¢ , where 𝑞𝑟𝑠,𝑝(𝑛+1) =
𝑛

𝑛+1
∙

𝑞𝑟𝑠,𝑝(𝑛) +
1

𝑛+1
∙ 𝑗𝑟𝑠,𝑝(𝑛+1). 

Step 5 Examining convergence 
Ø The algorithm will converge provided that the 

distance between 𝒛(𝑛+1)  and 𝒛(𝑛)  is sufficiently 

small. If so, let 𝒛∗ = (𝒇∗, 𝒒∗) = �𝒇(𝑛+1), 𝒒(𝑛+1)	�, 

and terminate. Otherwise, increment 𝑛 = 𝑛 + 1 
and return to Step 3. 

 
Remark 4.1. In Step 3, a number of existing solution 
approaches can be used to solve the VI sub-problem (ii), such 
as the Gradient Projection Method, the Frank-Wolfe Method. 
In this study, we adopt the Frank-Wolfe algorithm, 
considering its computational efficiency without the need of 
path enumeration (LeBlanc et al., 1985; Ukkusuri et al., 
2007; Unnikrishnan and Waller, 2009). In Step 4, some other 
methods, such as the solution algorithm for a combined 
distribution and assignment model (Evans, 1976; Friesz, 
1983; Patriksson, 2015), could also be used for updating the 
demand by parking locations. In this study, we adopt the 
MSA algorithm, given that it has been justified by the 
existing literature on network equilibrium with parking 
(Tong et al., 2004; Lam et al., 2006; Leurent and Boujnah, 
2014).  
 
Remark 4.2. In Step 2 and Step 4, the All-or-Nothing 
algorithm is implemented, subject to the parking capacity 
constraint, i.e. Equation (20). To obtain the results of 𝒒(0) (in 
Step 2) and 𝒋(𝑛+1)  (in Step 4), we solve the following 
optimisation problem (we use 𝒋(𝑛+1)  in the formulation 

below, which can be replaced by 𝒒(0)  when Step 2 is 
executed): 

P5: 

𝑚𝑖𝑛∑ ∑ 𝐶56,;(¥¨�) ∙ 𝑗56,;(¥¨�);56 , (49)   

subject to   

∑ 𝑗𝑟𝑠,𝑝(𝑛+1)𝑟∈𝑂,𝑠∈𝐷 ≤ 𝛹𝑝, (50)  

∑ 𝑗𝑟𝑠,𝑝(𝑛+1)𝑝∈𝑈𝑟𝑠 = 𝑑𝑟𝑠. (51)  

P5 is a linear programming problem, which can be solved by 
using the CPLEX optimiser (CPLEX, 2009). With the 
optimisation problem P5 solved in Step 2 and Step 4, we 
ensure that AV commuters always choose the parking 
location that results in the minimal travel disutility, which is 
consistent with the equilibrium conditions of AV parking 
choice. 
 
Remark 4.3. For the convergence criterion in Step 5, a 
relative gap, which incorporates the sum of functions by 
component in 𝒛, is appropriate for use (Sheffi, 1985). In this 
study, the total relative gap on each vector for iteration 𝑛 is 
calculated with the formulae as follows: 

𝑅𝐺(𝒇) =
∑ U®¯(°±�)�®¯(°)X

�
¯

∑ ®¯(°)¯
, 

(52)   

𝑅𝐺(𝒒) =
∑ ∑ U²^_,³(°±�)�²^_,³(°)X

�
³(^,_)

∑ ∑ ²^_,³(°)³(^,_)
. 

(53)  

Then, the selection criterion can be written as: 
𝑅𝐺(𝒇) < 𝑇𝑜𝑙� and 𝑅𝐺(𝒒) < 𝑇𝑜𝑙�, (54)   

where 𝑇𝑜𝑙1  and 𝑇𝑜𝑙2  are the predetermined tolerance 
thresholds. 

 
Figure 2 Flowchart of the solution procedure 
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5 COMPUTATIONAL RESULTS AND 
DISCUSSIONS 

 
In this section, we detail the implementation, summarise 

the computational results, and explore insights into the 
introduced network equilibrium with AVs. We apply the 
proposed model to the Sioux-Falls city network. The 
network data can be obtained from GitHub (2016). Figure 3 
shows the real Sioux-Falls city network in (a) (from 
https://www.openstreetmap.org), and the Sioux-Falls grid 
network in (b), which is used as a test problem. The data for 
travel demands and parking attributes are summarised in 
Table 3. There are three AV parking options considered in 
our case study: (i) parking at the workplace in the central 
business district (CBD); (ii) parking near the CBD; and (iii) 

parking at home. 
This section is organised as follows. Section 5.1 

investigates the difference in network equilibrium between 
the AV and non-AV situations. Section 5.2 and 5.3 
respectively explore the insights into the impacts of VoT and 
parking supply on the AV traffic pattern under the defined 
equilibrium. In this study, the experiments are implemented 
on a Windows 7 platform with an Intel Core i7–4770 
processor at 3.40 GHz and 16.0 GB of RAM. We report that 
the computational cost of solving the proposed network 
equilibrium model is around 10 to 20 seconds, under the 
convergence criterion with 𝑇𝑜𝑙1 = 0.1%  and 𝑇𝑜𝑙2 =
0.1%. 

 

  
(a) real network (b) test network 

Figure 3 Topology of Sioux-Falls city network 

 
 
 

5.1 Demonstration (I) 
In this demonstration, we present some numerical results 
which are obtained from applying the proposed model to the 
Sioux-Falls city network. The purpose of this demonstration 
is twofold: (i) to verify the developed modelling framework 
for the AV network equilibrium with parking and compare 
the derived traffic pattern with that under the non-AV 
situation; (ii) to assess the impacts on network flow results 
by the parking fee. We solve the developed VI model for AV 
network equilibrium on the Sioux-Falls city network, and in 
the meantime, solve the user-equilibrium traffic assignment 
problem under the non-AV environment by using the same 
network data. For commutes with non-AVs, the travel 
process follows the procedure: Depart from home → Drive 
to the parking lot → Walk to the destination. In this 
demonstration, we assume that people will choose to park at 
their destination, due to the unacceptable walking distance 
between the destination and the parking lots (except those at 
Node 10 and Node 15). In the implementation, we adopt the 
parking fee at public parking lots given in Table 3 as a 

benchmark, and then gradually decrease the value. For the 
value of time, we let 𝛼 = 7.0 and 𝛽 = 3.0 for demonstration 
purposes. We denote the percentage of decrease in parking 
fee as 𝜕, and investigate the system-level travel costs against 
𝜕  both in AV and non-AV environments. The results are 
summarised in Figure 4. 
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Table 3 
Summary of traffic data for Sioux-Falls city network 

(a) OD demand: 
OD pair Travel demand OD pair Travel demand 
(1,10) 2,000 (7,10) 1,200 
(1,15) 3,000 (7,15) 3,000 
(2,10) 2,000 (13,10) 3,600 
(2,15) 2,400 (13,15) 2,400 
(3,10) 1,600 (20,10) 4,000 
(3,15) 3,200 (20,15) 2,000 

 
(b) Parking options: 

Parking location 
(Centroid No.) Description Parking fee 

(dollar) 
Parking capacity 

(veh) 
10 Public parking in CBD 50 14400 
15 Public parking in CBD 50 16000 
9 Public parking near CBD 30 10000 
11 Public parking near CBD 30 8000 
14 Public parking near CBD 30 8000 
1 Private parking at home 0 5000 
2 Private parking at home 0 4400 
3 Private parking at home 0 4800 
7 Private parking at home 0 4200 
13 Private parking at home 0 6000 
20 Private parking at home 0 6000 

  
 

 

(a) 

 

(b) 
Figure 4 Comparison between AV and non-AV 

environments 
 

 
 

 
It can be observed from Figure 4 that, for an AV 

environment, the system-level travel costs, including both 
𝑇𝑆𝑇𝑇 and 𝑉𝑀𝑇, become smaller with the decrease in the 
parking fee at public parking lots. This is primarily because 
when the parking fee decreases, more AV commuters would 
prefer to park their cars in the city centre, in order to avoid 
the travel cost of cruising for a cheaper parking lot or driving 
themselves back home for the parking purpose. This can be 
reflected by the ratio of use (i.e. the parking demand divided 
by the parking capacity) for the parking lots at the workplace 
in the CBD, as depicted in Figure 5. By contrast, the system-
level travel costs remain unchanged under the non-AV 
environment. This is because, in this case, conventional 
vehicles have to be parked at the workplace regardless of the 
parking fee, as the walking distance between the workplace 
and the other public parking lots are unacceptable (also, non-
AVs are unlikely to be parked at home).  
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Figure 5 Ratio of use for the parking lots at the 
workplace 

 
Another important insight from Figure 4 is that when the 

parking fee at the public parking place is high, the system-
level travel costs for the AV situation are larger than those for 
the non-AV situation. This is caused by the empty trips by 
AV self-driving, the purpose of which is to find an 
appropriate parking lot (or parking at home) after dropping 
off commuters at their destinations, in order to achieve the 
minimal individual travel disutility. When the parking fee at 
the public parking lots is no longer costly, AVs will choose 
to park at the workplace, as discussed above. This means that 
the difference in the travel behaviour and the resultant 
network-wide travel cost between AV and non-AV situations 
would become less significant, as shown in Figure 4. Figure 
4 also reveals that for the AV and non-AV situations, the 
values of  𝑇𝑆𝑇𝑇  and 𝑉𝑀𝑇  tend to change in a consistent 
manner. This is primarily because both metrics indicate the 
system-level travel cost. We adopt these two metrics to 
describe travel costs from different aspects: 𝑇𝑆𝑇𝑇 represents 
the time spent on trips, while 𝑉𝑀𝑇 is associated with the 
travel distance (Zhang et al., 2019). 

In addition, Figure 5 provides the insight into the inbound 
and outbound flows, with regards to the travel destinations, 
Node 10 and Node 15. For these two nodes, the inbound AV 
flow resulting from the travel-related trip remains unchanged, 
which equals the sum of travel demands ending up with each 
destination node. By contrast, the outbound AV flow for the 
parking-related trip can be calculated as the abovementioned 
inbound flow multiplied by a percentage. The percentage is 
equal to 100% minus the ratio shown in Figure 5. Therefore, 
Figure 5 implies that the outbound congestion caused by trips 
for the parking purpose is reduced with the decrease in the 
parking fee. 

In this demonstration, we also investigate the average 
travel cost for individual trips, i.e. individual travel disutility, 
in both AV and non-AV situations. Given that conventional 
non-AVs have to be completely operated by commuters, the 
value of unit time cost for driving non-AVs, denoted as 𝛼′, is 
higher than that for driving AVs, i.e. 𝛼′ > 𝛼 , which is 
assumed to be 𝛼′ = 10  dollars per unit time in this 
demonstration. We denote 𝐶𝑟𝑠′  as the travel disutility for 
non-AVs travelling from 𝑟  to 𝑠  and ending up with 𝑠  for 
parking purposes. Different from AVs, the travel disutility for 
non-AVs can be determined as follows 

𝐶𝑟𝑠′ = 𝛼′ ∙ 𝑇𝑟𝑠 + 𝑍𝑠, ∀𝑟 ∈ 𝑂, 𝑠 ∈ 𝐷. (55)    
where 𝑍𝑠 is the parking fee at the parking lot 𝑠. The average 
individual travel disutility can be calculated by using 

Equations (1) and (55) when the network equilibrium has 
been reached. The computational results are shown in Figure 
6. 

 

 

(a) 

 

(b) 
Figure 6 Results of individual travel disutility 

 
It can be seen in Figure 6 that for both AV and non-AV 
situations, the average individual travel disutility decreases 
when the parking fee drops. For both situations, the common 
reason behind this phenomenon is that the parking fee is one 
of the important contributors to the travel disutility, which is 
indicated by (1) and (55). Another reason for the AV situation 
only is that a lower parking fee could incentivise more 
commuters to park at public parking lots, which decreases 
the road congestion caused by empty AV trips after dropping 
commuters at their workplace. Furthermore, when looking 
into Figure 4, we can find that under the AV environment, the 
individual travel cost is smaller than that in the non-AV 
situations, which indicates an increase in the utility of trips. 
To summarise the insights into Figure 4 and Figure 6, we can 
see that the autonomous vehicle will achieve high market 
penetration as it can lead to benefit for network users. 
However, on the other hand, the advent of an AV era means 
a new challenge to transport planners as it reshapes the 
network pattern and results in the increased traffic 
congestion. 
 
5.2 Demonstration (II) 

In this section, we vary the value of unit time cost for AV 
self-driving (i.e. 𝛽 ), and conduct sensitivity analysis. 
Specifically, we proceed to examine how the network traffic 
pattern shift due to the change of cost for AV self-driving in 
a fully AV environment. The results for the total system 
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travel time and vehicle miles travelled at equilibrium are 
given in Figure 7, where seven representative values, namely, 
𝛽 = 4.0,3.5,3.0, … ,1.0 dollars per unit time are adopted. The 
results of the percentage of commuters who go back home 
for the parking purpose are shown in Figure 8. 

 
 

 

Figure 7 Variation of system performance metrics against 
VoT for AV self-driving 

 

 

Figure 8 Variation of parking choice against VoT for AV 
self-driving 

 
Figure 7 shows that both 𝑇𝑆𝑇𝑇  and 𝑉𝑀𝑇  go up with the 
decrease in the value of time for empty AV trips. This is 
because the parking fee at public parking lots becomes 
relatively greater with regards to the decreased value of 𝛽. 
Hence, an increasing number of AVs are motivated to drive 
themselves back home after dropping off commuters at the 
workplace, which can be observed in Figure 8. Such empty 
trips via AV-self driving bring about additional flows among 
the network, which could increase the road congestion and, 
in the meantime, negatively affect the traffic condition for 
trips from the residential area to the workplace. After the 
value of 𝛽  decreases to 1.5, both network metrics remain 
unchanged. This is because such a VoT is sufficiently small, 
so that all AVs haven chosen to go back home to park after 
dropping off commuters. This means that a further reduction 
in the value of 𝛽  can no longer have impacts on the 
equilibrium traffic pattern under this circumstance. Another 
insight into Figure 7 is that the way the 𝑇𝑆𝑇𝑇 and 𝑉𝑀𝑇 vary 
over 𝛽 is nonlinear. This implies that when a change in the 
𝑉𝑜𝑇 for AV self-driving, it is difficult to quantify the extent 
to which the system performance metric will change without 
employing a modelling framework such as the one proposed 
in this study.  

 
5.3 Demonstration (III) 

In Demonstration (III), we evaluate the network-wide 
impacts of parking supply strategies, by varying the 
distribution of parking spaces among all the public parking 
lots. We assume the total number of parking spaces to be 
consistent with that given in Table 3. Then, we generate the 
random proportions of parking spaces allocated to each of 
the public parking lots. We test the network performance 
against twenty different parking space distribution patterns, 
numbered as 1, 2, …, 20. The computational results are 
summarised in Figure 9: Figure 9(a) displays box plots which 
illustrate the total system costs at equilibrium; Figure 9(b) 
records the results of equilibrium flow on some selected links. 
 

 

      
(a) 

 

 

(b) 
Figure 9 Variation of equilibrium flows against parking 

supply 
 

The results shown in Figure 9 reveal that the parking space 
distribution among different parking lots serves as a 
significant contributor to equilibrium results at both the 
network-wide level and the link-based level. From Figure 
9(b), we notice that the equilibrium flow changes 
considerably on some links (for instance, Link 15-14), but 
fluctuates slightly or remains unchanged on some other links 
(for instance, Link 18-7). It is important to note that there is 
no consistent relationship between the link flow and the 
parking supply, or between changes in different link flows 
over the parking space distribution. For example, when 
looking into patterns No.6 and No.7, we find that the 
equilibrium flow on Link 10-9 changes while that on Link 
16-10 stays the same. By contrast, when the parking supply 
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pattern switches from No. 9 to No. 10, it can be observed that 
the change in the equilibrium flow happens to Link 16-10, 
instead of Link 10-9. Hence, Figure 9 indicates that the 
proposed equilibrium approach in this study is a critical 
modelling device, which can be used to assess and to rank 
the parking supply policies in the context of infrastructure 
investment for future AV commutes. Specifically, the main 
objective of transportation planning is to maximise the 
overall benefit for the community subject to the limited 
amount of capital available. Under most circumstances, a set 
of comprehensive planning schemes are initially proposed, 
with each of them including measures such as network 
capacity expansion, parking facility deployment, parking 
pricing, and so forth. To evaluate the improvement in the 
performance of autonomous transportation systems, the 
modelling framework proposed by this study is needed in 
order to understand the reaction of AV commuters and 
estimate the traffic pattern under different schemes. Based on 
the evaluation result and the project budget, the 
governmental department can then rank the planning options 
and determine the optimal scheme for the capital investment 
in transport facility development. 
 
 

6 CONCLUSIONS 
 

This article introduces a novel modelling framework for 
the joint network equilibrium of route choice and parking 
location choice of autonomous vehicles (AVs). This is the 
first attempt in the literature to quantify the network 
equilibrium pattern under the fully autonomous traffic 
environment with new parking behaviour associated with 
AVs. We formulate the AV network equilibrium model as a 
variational inequality (VI) problem based on the hierarchical 
choice structure, and mathematically prove the equivalency 
between the VI model and the AV user-equilibrium 
conditions. Properties of the equilibrium solution are 
discussed, and the solution approach is developed. We 
conduct a series of computational experiments to validate the 
efficacy of the proposed approach. In particular, we compare 
the equilibrium traffic patterns under the AV and non-AV 
situations. We find that the application of AVs can lead to a 
lower individual travel disutility as compared to 
conventional vehicles, while on the other hand, it could 
worsen traffic congestion due to the empty trip of finding an 
appropriate parking place via self-driving. The results also 
indicate that in a fully AV environment, the system-level 
travel cost tends to become greater, when the charge for 
public parking increases or the value of time for AV self-
driving decreases. Moreover, the results show the spatial 
interactions between the AV equilibrium flow and the 
parking space distribution, and indicate that the latter has 
significant impacts on equilibrium flow both at the network 
level and at the link level. However, the way that the 
equilibrium result varies with the parking facility 
deployment is shown to be irregular. This means that it is 
difficult to quantify the change in AV traffic patterns under 
different facility provision options without solving the 
proposed model. Given the application prospect, the 
developed model can be employed to evaluate the network 
performance with AV operations and assess infrastructure 
development schemes for future transportation planning. 

This study can be extended in multiple directions. First, 

given the developed equilibrium model, we can optimise the 
parking planning and parking pricing strategy depending on 
different socioeconomic objectives. Second, as the first step 
to model network traffic patterns with both route and parking 
choices for AVs, we adopt a static equilibrium assignment 
approach. Future studies will extend it to the time-dependent 
case, where the accumulation of AV parking demand versus 
the park capacity should be taken into account. In the context 
of dynamic traffic assignment, the tactical AV parking choice 
with real-time information provision will be considered, in 
which case AVs might also have an altruistic route choice. 
Third, we will incorporate the car-sharing strategy and the 
ride-hailing service to the established framework for AV 
network equilibrium in the follow-up study. Fourth, future 
studies may model the network equilibrium problem for 
heterogeneous traffic consisting of both AVs and non-AVs in 
the transitional period, wherein the mode choice and its 
influencing factors (for instance, value of time for AVs) will 
be investigated. The combinations of flows both on links and 
at intersections will also be modelled in this area. Last but 
not least, human factors may be considered in the context of 
AV commutes, and their impacts on both individual travel 
behaviour and network-wide performance can be studied. 
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